Biological nitrogen fixation (BNF) and nitrogen mineralization in forest soils under elevated CO₂ Manon Rumeau, Michaela Reay, Rob Mackenzie, Yolima Carillo and Sami Ullah

Context

N cycle processes : key elements to predict soil C sequestration:

- Tree has higher demand for available N under eCO₂
- Trees will allocate more organic C belowground to Ο support microbes for mineralizing soil organic N and to fix atmospheric N where possible.
- Microbial metabolic N demands may increase like trees under eCO₂
- Progressive N limitation expected if no other N sources secured by trees ^[1]
- BNF is the main pathway for N increment in natural ecosystems
- \blacktriangleright N mineralization under elevated CO₂ is expected to increase as a result of microbial activity stimulation

Scientific questions :

- Will BNF and organic N mineralization compensate the higher demand for available nitrogen by trees under elevated CO_2 ?
- How will enhanced carbon allocation belowground by trees and subsequent microbial activity affect the emission of N_2O and N_2 gases under eCO_2 ?

Free living N fixers in forests: understudied organisms:

Where? In Soil, Leaf litter, mosses, lichens and (canopy Ο leaves ?)

Regulation ?

- Downregulated by N availability
- Upregulated by P, K, Mo, Fe, V, Zn availability \bigcirc
- Upregulated by humidity, temperature and light^[2]

N mineralization (ammonification, nitrification & immobilization)

- Mineralization will increase with immobilization (relative rates critical to predict N availability)
- Enhanced mineralization will increase $N_2O \& N_2$ Ο emissions.

[1] Van Groenigen, K.-J., de Graaff, M.-A., Six, J., Harris, D., Kuikman, P., van Kessel, C., 2006. The Impact of Elevated Atmospheric [CO2] on Soil C and N Dynamics: A Meta-Analysis.

[2] Reed, S.C., Cleveland, C.C., Townsend, A.R., 2011. Functional Ecology of Free-Living Nitrogen Fixation: A Contemporary Perspective

Material & Methods

Experiments:

- BNF activity under elevated CO₂ at BIFOR FACE in UK and EucFACE in Australia
- BNF activity under N&P fertilization (QUINTUS

• N mineralization and N emission under elevated

Methods: ¹⁵N isotopic assimilation and pool dilution

- ¹⁵N assimilation method : determine the amount of N fixed
- ¹⁵N pool dilution method : determine N cycle rate processes (mineralization,
- immobilization, nitrification and N emission)

Metagenomic method for BNF :

Analysis of nifH gene expression

Expected outcomes

- Better understanding of BNF (rate, control and
- Understand direct and indirect effects of CO₂ on BNF and on N mineralization
- Better prediction of tree growth and C
- sequestration under climate change

PhD student funded by NERC/QUINTUS

MSc in Sustainable Plant Production MLR094@student.bham.ac.uk

UNIVERSITYOF

BIRMINGHAM

