The transgenerational impact of elevated CO_2 on oak progeny growth and development

Mark Raw, Rachel Selman, Rosa Sanchez-Lucas & Estrella Luna University of Birmingham

Background

Human activity is causing CO_2 levels to rise. It is currently unknown how this rise will impact on the growth and development of oak trees and their progenies. This is significant as oak is the Uk's dominant tree species.

Objectives

To compare the growth and development of oak seedlings produced under elevated CO_2 (eCO₂) and ambient CO_2 (aCO₂) (parentage) and then grown under eithereCO₂ or aCO₂ conditions.

Conclusions

- Preliminary statistical analysis (MANOVA) found that at multiple timepoints seedlings grown under eCO_2 were taller and had bigger diameters that the ones grown under aCO₂. Therefore, eCO_2 impacts growth of seedlings.
- The amount of leaves produced by the plant and their size was not affected by eCO_2 .
- Tree's parentage (i.e. CO2 conditions where acorns were produced) does not impact on seedlings' rate of growth.

Future Work

- Develop an statistics pipeline to include modelling of the responses
- To test the effect of CO₂ in the response of seedlings to biotic stresses, including infection to powdery mildew and insect infestation.
- To carry out similar experiments at the BIFoR FACE facility with naturally regenerated oak seedlings
- To carry out molecular studies to see how eCO₂ impacts oak gene expression and metabolism

