The impact of elevated CO, on mature oak and seedling defence against powdery mildew Mark Raw¹, Rosa Sanchez-Lucas¹, Carolina Mayoral¹, Victoria Pastor² & Estrella Luna¹ ¹Birmingham Institute of Forest Research, University of Birmingham, UK; ²University Jaume I of Castellon, Spain #### Background Human activity is causing CO2 levels to rise which has been shown to impact plant growth and metabolism. Oaks are a vital aspect of British woodland and their regeneration is limited by powdery mildew (PM) infections of oak seedlings. #### **Objectives:** - Identify phenotypic differences in mature and seedling PM infections - Explore the potential molecular causes using an untargeted metabolomics approach. ### Approach Free Air CO₂ Enrichment (FACE) Experiment PM quantification in leaves of seedlings and mature trees using image J analysis Untargeted MS/MS metabolomics analysis LC-MS/MS Data analysis **Metabolite** Pathway analysis identification (poplar database) Seedlings but not mature trees show increased susceptibility to PM under eCO₂. % coverage of PM on mature oak trees assessed by scanned image analysis. #### **Seedling and mature PCA** comparison the severity of leaf infection. Seedlings and mature trees display high levels of separation in their metabolomes. Seedlings show greater variance in their metabolome. # Mature May CO₂ Shared pathways Seedlings CO_2 360 Sept CO₂ 289 CO_2 # ABC transporters Anthocyanin biosynthesis Arachidonic acid metabolism Cysteine and methionine metabolism Degradation of aromatic compounds Glutathione metabolism One carbon pool by folate Phenylpropanoid biosynthesis Secondary metabolism Stress and defence pathways were shown to be shared between mature trees and seedlings under eCO₂ when infected with PM ## **Conclusions** - Seedlings show increased susceptibility to PM under eCO₂ - Mature trees show no difference in susceptibility. - Seedlings and mature trees show highly different metabolite profiles. - Some differentially accumulated pathways are shared and are known to play a role in defence. #### **Future work** - Confirmation of shared metabolites presence in samples - Study their role in oak immunity through external application of metabolites - Assess the survivability of oak seedlings infected with powdery mildew under raised CO2