Impacts of altered precipitation on forest soil microbial structure and function Katy J. Faulkner^[1], Sally Hilton^[1], Simon Oakley^[2], Kelly Mason^[2], Niall P. McNamara^[2], Christopher J. van der Gast^[3], Sami Ullah^[4], Gary D. Bending^[1] RCP2.6 90th percentile [1] School of Life Sciences, University of Warwick, CV4 7AL [2] Centre of Ecology and Hydrology, Lancaster, LA1 4AP [3] School of Healthcare Science, Manchester Metropolitan University, M1 5GD [4] School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Shifting precipitation patterns and increased frequency, duration and magnitude of high rainfall events Soil moisture is a key driver of microbial processes such as decomposition, methane oxidation and denitrification Temperate forests act as important carbon stores and sinks/sources of major greenhouse gases CO_2 , CH_4 and N_2O Aim: to investigate how forest soil-climate feedbacks, particularly those involving microbial community structure and function, could be affected by climate change ## Experiment phase I: resilience of forest soil microbial structure and function to altered precipitation regimes Temperature forest (BIFoR) in situ field experiment where soil moisture was increased by ~30 % compared to ambient for an 8-week period using custombuilt mesocosm system (a-d). Intact soil core laboratory incubation experiment to gain mechanistic understanding of how soil moisture impacts soil function across depth (e-g). #### Experiment phase II: high rainfall under elevated CO₂ Fully factorial experiment where rainfall amount is manipulated under ambient and elevated CO₂ conditions Impacts on microbial community structure and function within the root and soil ### High rainfall reduces forest soil methane sink capacity and soil carbon dioxide efflux Soil methane sink capacity reduced by ~21-67 % during high rainfall with slow recovery Soil CO₂ efflux reduced ~2-23 % during high rainfall Soil N₂O flux not affected #### Direct and indirect drivers of soil CO₂ and CH₄ fluxes