Atmospheric exchanges of CO,, CH, and N,O of temperate forest soils under
elevated CO, at BIFOR-FACE
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3 —Deep collar = Pseudo-root exclusion collars.

Two parallel systems exist, placed within paired and aCO, arrays

Results

Figure 2 — Hourly flux rate (umol m2 s ) of CO, (a), CH, (b) and N,O (c) against volumetric water content (%) and temperature (°¢) across 7 soil depths for all Arrays.

Corresponding tables contain correlations (Sig 0.0, Sig 0.05,(Not Sig).
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Figure 1 — Hourly flux rate (umol m2 s ) of CO, (a), CH, (b) and N,O (c) with corresponding mean values of each gas flux for each array (d, e, f).
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Figure 4 — Mean gasfluxrates for CO, (a), CH, (b) and N,O (c) with corresponding
tables for mean values and A% between shallow, deep and medium collar types.
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Figure 3 —CO2 flux rates (a, g) and mean collar values (b, h) with corresponding 613C values derived from linear flux rates
(c, d, i, ]), with keeling plot derived R2 values for each observation (e, k) alongside mean R? values for each collar type (d, ).



