Modeling the Chaotic Waterwheel

Matt Gerholdt

Department of Mathematics University of Colorado at Colorado Springs

Graduate Student Presentation, Spring 2009

Outline

- Introduction
 - Chaos
 - Lorenz Equations
 - Waterwheel
- Modeling the Waterwheel
 - Conservation of Mass
 - Torque Balance
 - Fourier Analysis
 - Equivalence
- Simulation
 - Simulation

Definition

 Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.

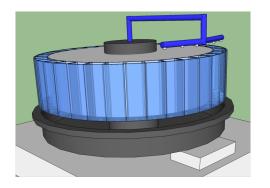
Lorenz Equations

$$x' = \sigma(y - x)$$

$$y' = rx - y - xz$$

$$z' = xy - bz$$

Waterwheel



Variables

- θ = angle of wheel
- $\omega(t)$ = angular velocity of wheel
- $m(\theta, t)$ = mass distribution of water
- $Q(\theta)$ = inflow of water
- r = radius of wheel
- K = leakage rate
- v = rotational damping rate
- I = moment of inertia of the wheel

Change in Mass With Regard to Time

- Water pumped in by the nozzles $(Q(\theta))$
- Water that leaks out $(Km(\theta, t))$
- Rotation of the wheel $(\omega \frac{\partial m}{\partial \theta})$

Equation

$$\frac{\partial \mathbf{m}}{\partial t} = \mathbf{Q} - \mathbf{K}\mathbf{m} - \omega \frac{\partial \mathbf{m}}{\partial \theta}$$

Variables

- θ = angle of wheel
- $\omega(t)$ = angular velocity of wheel
- $m(\theta, t)$ = mass distribution of water
- $Q(\theta)$ = inflow of water
- r = radius of wheel
- K = leakage rate
- v = rotational damping rate
- I = moment of inertia of the wheel

Torque Balance

- $I\omega'$ = damping torque + gravitational torque
- damping torque = $-v\omega$
- gravitational torque = $gr \int_0^{2\pi} m(\theta, t) \sin \theta \ d\theta$

Equation

$$I\omega' = -v\omega + gr \int_0^{2\pi} m(\theta, t) \sin\theta \ d\theta$$

Fourier Analysis

Fourier Series

$$m(\theta,t) = \sum_{n=0}^{\infty} \left[a_n(t) \sin(n\theta) + b_n(t) \cos(n\theta) \right]$$

$$Q(\theta) = \sum_{n=0}^{\infty} q_n \cos(n\theta)$$

Fourier Analysis $m(\theta, t)$

$$\frac{\partial m}{\partial t} = Q - Km - \omega \frac{\partial m}{\partial \theta}$$

$$\frac{\partial}{\partial t} \left[\sum_{n=0}^{\infty} a_n(t) \sin n\theta + b_n(t) \cos n\theta \right] =$$

$$\sum_{n=0}^{\infty} q_n \cos n\theta$$

$$-K \left[\sum_{n=0}^{\infty} a_n(t) \sin n\theta + b_n(t) \cos n\theta \right]$$

$$-\omega \frac{\partial}{\partial t} \left[\sum_{n=0}^{\infty} a_n(t) \sin n\theta + b_n(t) \cos n\theta \right]$$

Fourier Analysis $m(\theta, t)II$

$$a'_n = n\omega b_n - Ka_n$$

 $b'_n = -n\omega a_n - Kb_n + q_n$

Fourier Analysis $\omega(t)$

$$I\omega' = -v\omega + gr \int_0^{2\pi} m(\theta, t) \sin\theta \ d\theta$$

$$I\omega' = -v\omega + gr \int_0^{2\pi} \left[\sum_{n=0}^{\infty} a_n(t) \sin n\theta + b_n(t) \cos n\theta \right] \sin \theta \ d\theta$$

$$I\omega' = -v\omega + gr \int_0^{2\pi} a_1 \sin^2 \theta \ d\theta$$

$$I\omega' = -v\omega + \pi gr a_1$$

Final Equations

$$a'_n = n\omega b_n - Ka_n$$

 $b'_n = -n\omega a_n - Kb_n + q_n$
 $\omega' = (-v\omega + \pi gra_1)/I$

Final equations

$$a'_1 = n\omega b_1 - Ka_1$$

$$b'_1 = -n\omega a_1 - Kb_1 + q_1$$

$$\omega' = (-v\omega + \pi gra_1)/I$$

Change of Variables

- $a_1 = \alpha y$
- $b_1 = \beta z + q_1/K$
- \bullet $\omega = \gamma X$
- $t = T\tau$

$$\frac{\partial \alpha y}{\partial T \tau} = [\gamma x] [\beta z + q_1/K] - K [\alpha y]$$

$$\frac{\partial [\beta z + q_1/K]}{\partial T \tau} = -[\gamma x] [\alpha y] - K [\beta z + q_1/K] + q_1$$

$$\frac{\partial \gamma x}{\partial T \tau} = (-v [\gamma x] + \alpha \pi g r [\alpha y])/I$$

Change of Variables II

$$T = 1/K$$
, $\gamma = \pm K$. Pick $\gamma = K$

•
$$a_1 = [Kv/\pi gr] y$$

•
$$b_1 = [-Kv/\pi gr]z + q_1/K$$

•
$$\omega = [K] x$$

•
$$t = [1/K] \tau$$

•
$$\sigma = v/KI$$

$$r = \pi g r q_1 / K^2 v$$

Simulation

Summary

 The Lorenz Waterwheel is a mechanical representation of the Lorenz equations.