UNIVERSITY^{OF} BIRMINGHAM

31st May - 1st June 2017

MILLENNIUM POINT, BIRMINGHAM

Review of the European Activity

Jean-Luc DELPLANCKE

Université Libre de Bruxelles

Content

- The Energy Union context
- FCH JU structure and objectives
- FCH JU projects portfolio
- FCH JU success stories
- Conclusions

I want to reform and reorganise Europe's energy policy in a new European Energy Union.

Jean-Claude Juncker (President of the European Commission)

The vision of the Energy Union:

- A sustainable, low-carbon and climate friendly economy that is designed to last
- Strong, innovative and competitive European companies that develop the industrial products and technology needed to deliver energy efficiency and low-carbon technologies inside and outside Europe;
- Citizens at its core, where citizens take ownership of the energy transition, benefit from new technologies to reduce their bills and participate actively in the market, and where vulnerable consumers are protected.

Energy Union (1)

The targets of EU policy on the EnergyUnion and climate action:

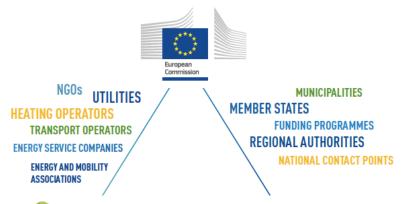
- Reduction of greenhouse gas emissions by 40% compared to 1990;
- Increase in renewable energy to 27% of total production;
- Making 27% energy savings compared to 1990.

Sustainable development

Security of supply

Competitiveness

Energy Union (2)


Energy Union strategy:

- Energy security, solidarity and trust;
- A fully integrated European energy market;
- Energy efficiency contributing to moderation of demand;
- Decarbonising the economy;
- Research, innovation and competitiveness

Content

- The Energy Union context
- FCH JU structure and objectives
- FCH JU projects portfolio
- FCH JU success stories
- Conclusions

Hydrogen Europe

SMEs

The FCH JU – A strong Public Private Partnership (PPP)

ON ERGHY

FCH JU - 1: 2008-2014 budget €940 million (FP7)

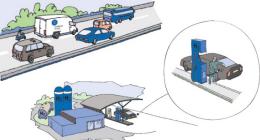
UNIVERSITIES
RESEARCH ORGANISATIONS

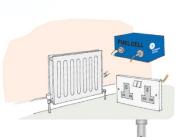
FCH JU - 2: 2014-2020 budget €1.33 billion (H2020)

To implement an optimal research and innovation programme to bring FCH technologies to the point of market readiness by 2020

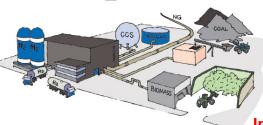
FCH JU - 2 objectives

Reduction of production costs of long lifetime FC systems to be used in transport applications


Increase of the electrical efficiency and durability of low cost FCs used for power production



Feed to electricity grid

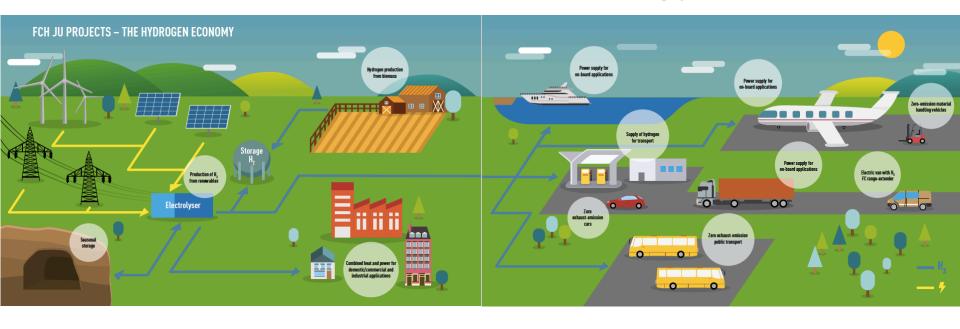


Reduce the use of critical raw materials

Existing natural gas, electricity and transport infrastructures

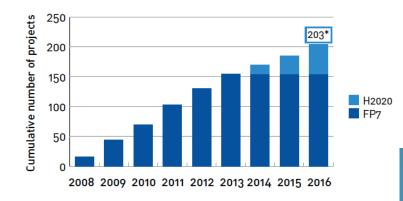
By-product from Chemical Industry

Increase the energy efficiency of low cost production of hydrogen from water electrolysis and renewable sources



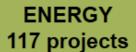
Methanisation feed to natural gas grid

Large scale use hydrogen to support integration of renewable energy sources into the energy systems


The FCH JU in the Energy Union context

Content

- The Energy Union context
- FCH JU structure and objectives
- FCH JU projects portfolio
- FCH JU success stories
- Conclusions


FCH JU 1&2 results

204 projects supported for 737 M€ Similar leverage of private funding: 782 M€

projects signed at 01/03/2017*

Success rate: 24%

Newcomers: 31%

- Hydrogen production and distribution
- Hydrogen storage for renewable energy integration
 - Fuel cells for power & combined heat & power generation

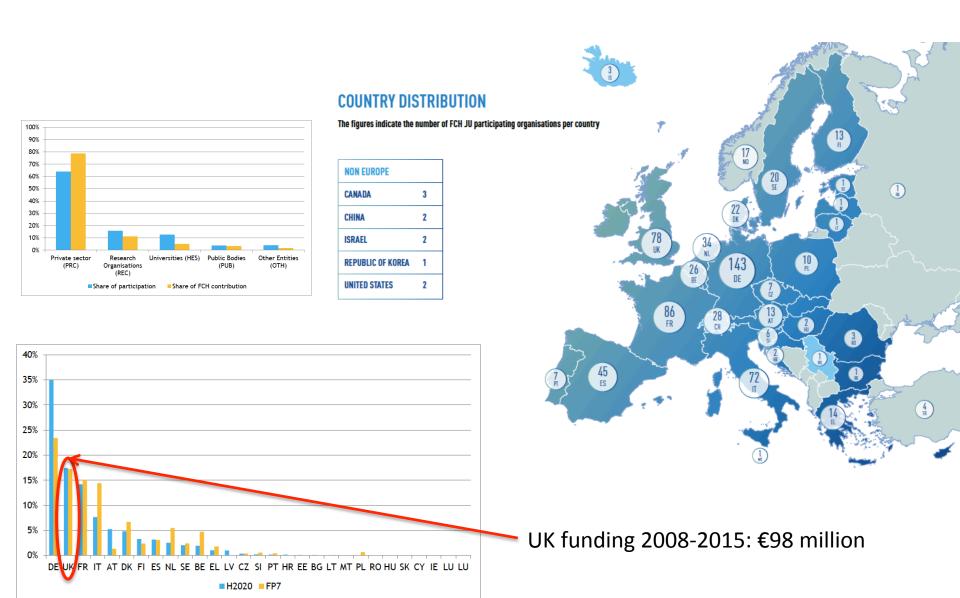
TRANSPORT 53 projects

- Road vehicles
 - Non-road vehicles and machinery
 - Refuelling infrastructure
- Maritime, rail and aviation applications

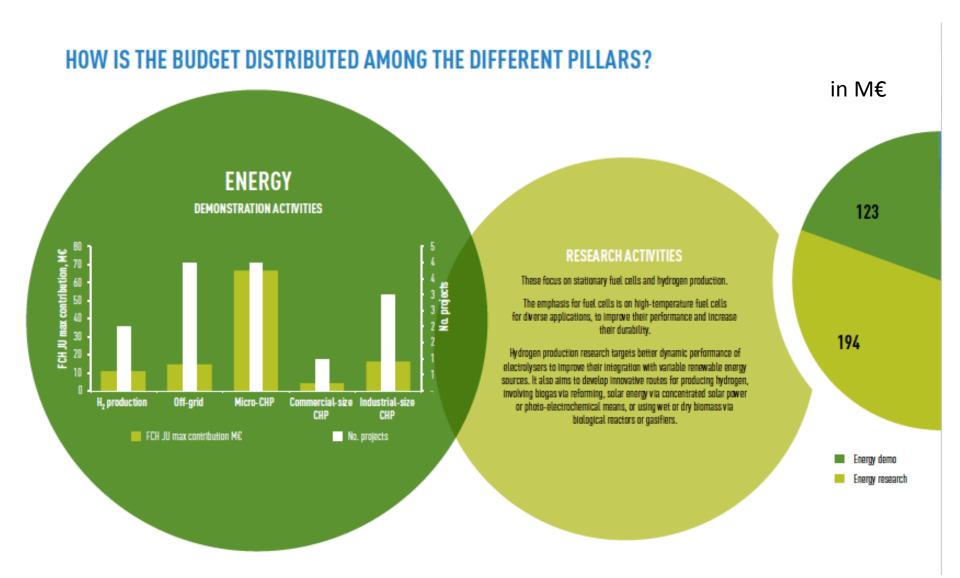
Cross-cutting, 34 projects

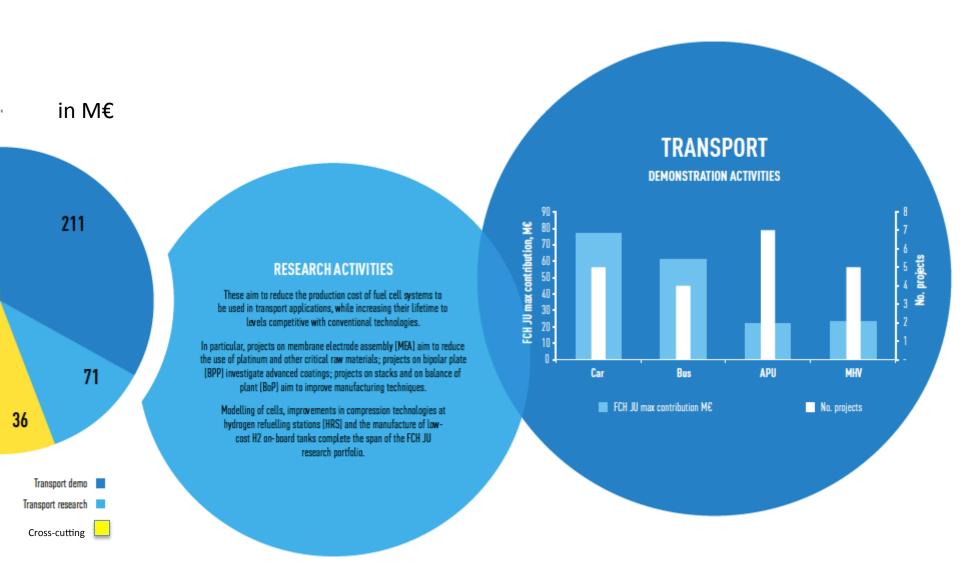
39

M€


337 M€, 46%

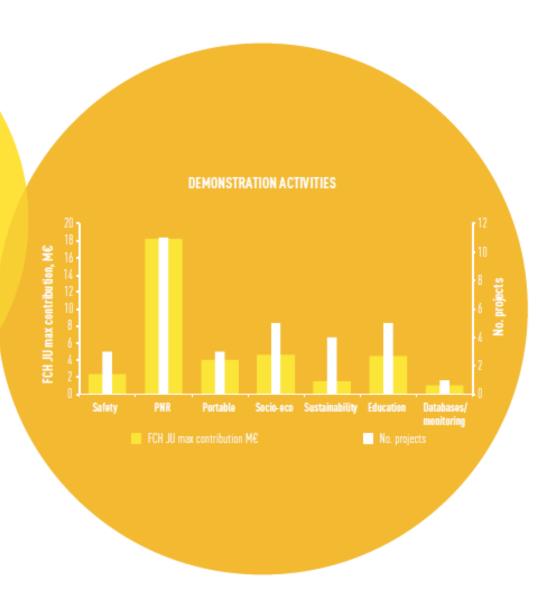
360 M€, 49%


(e.g. standards, safety, education, consumer awareness, ...)


Beneficiary and funding distribution per country

Energy projects

Transport projects

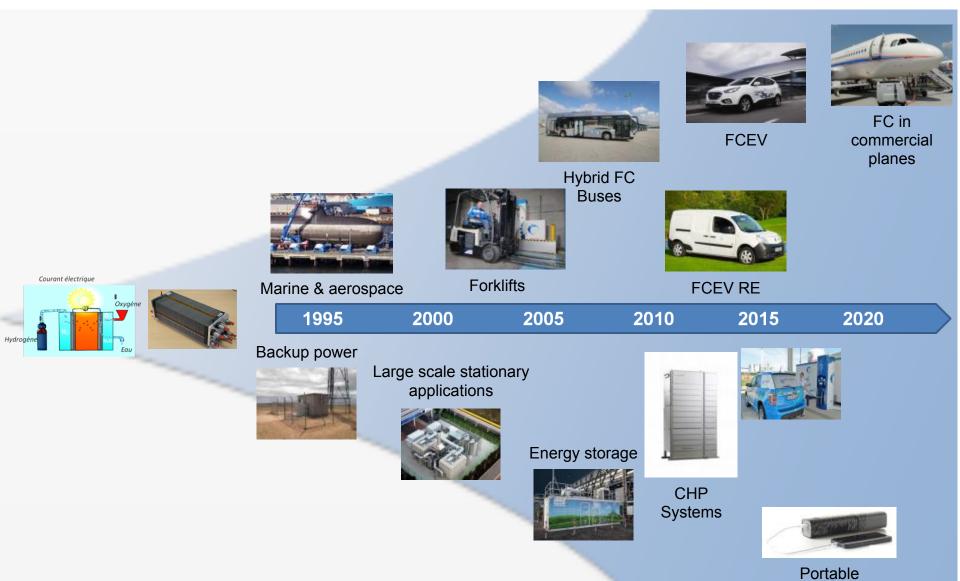

Cross-cutting projects

CROSS-CUTTING PROJECTS

The FCH JU programme also covers a wide range of cross-cutting activities that support both energy and transport developments.

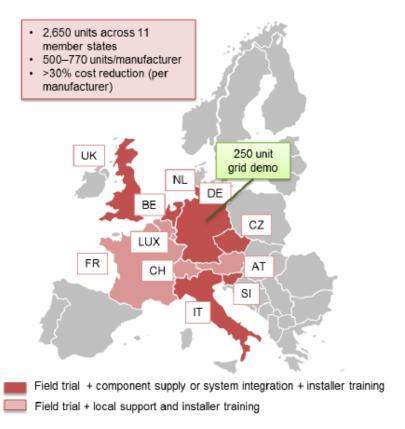
Backing deployment activities and technical developments alone is not enough to ensure smooth entry into the market. It is crucial to remove regulatory barriers and encourage the public to be aware of and have trust in emerging technologies.

Therefore an important part of the FCH JU portfolio supports projects dealing with topics that help technical developments become part of everyday life. These include safety innovations and tests, education and public awareness, and pre-normative research – research whose results are used to develop regulations and standards.



Content

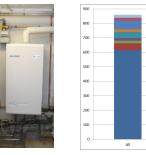
- The Energy Union context
- FCH JU structure and objectives
- FCH JU projects portfolio
- FCH JU success stories
- Conclusions


Fuel Cells scope of applications

applications

Residential Market Segment (< 5 kW)

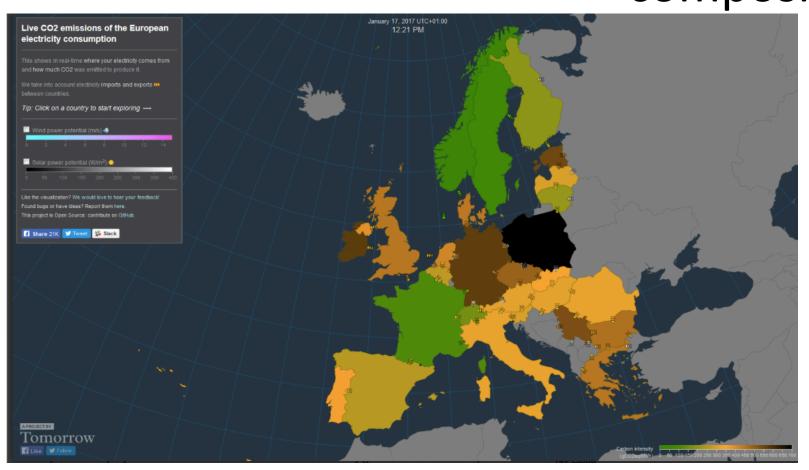
PACE: Pathway to A Competitive European FC mCHP market


m-CHP: from National to EU initiative(s) initial volume uptake, market readiness

ene.field*

More than 500 units installed in 10 countries of Europe, reliabilities and OPEX confirmed, very good customer satisfaction (over 70% positive feedback),

SOFT-PACT


65 fuel cell systems, electrical efficiency higher than 42 % over lifetime (total efficency higher than 78%), 25% cost reduction

Importance of the energy mix composition

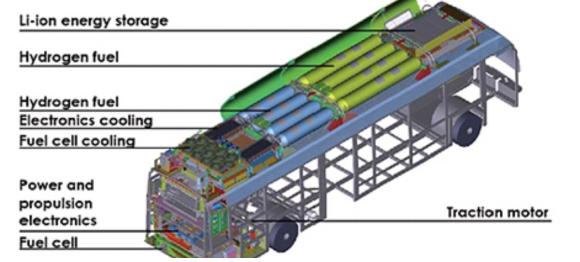
https://www.electricitymap.org/?wind=false&solar=false&page=map

To achieve a reduction of GHG emissions by 40% with FCs in distributed generation, the energy mix must emit more than 255 gCO₂/kWh.

The higher the percentage of renewable energy in the energy mix, the lower the GHG emissions and the less interesting the distributed energy generation.

Hydrogen enables us to get the most out of our Wind and Solar energy

Achievements


On-site installation of hydrogen equipment after receiving exploitation permit, certification and CE conformity:

- Solar pannels (800 kWp) and wind turbines (1500kWp)
- 2 Electrolysers (one alkaline and one PEM): 130 kg H₂/day
- 2 Compressors
- Hydrogen storage capacity 100 kg at 45 Mpa
- Hydrogen dispenser for a fleet of 200 fuel cell forklifts and FC cars
- 100 kWe Fuel Cell connected to the grid

https://www.youtube.com/watch?v=hvsEiN-XFsg

Fuel Cell Bus

Situation and Outlook in Europe: 91 buses in operation or about to start

Ongoing EU-funded fuel cell bus projects

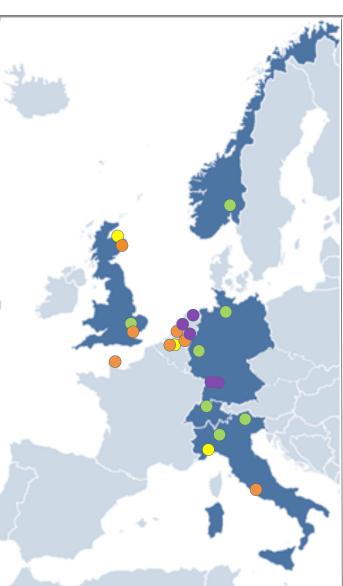
CHIC (

- ✓ Bolzano, IT– 5 FC buses (2013)
- ✓ Aargau, CH –5 FC buses (2011)
- ✓ London, UK 8 FC buses (2011)
- ✓ Milan, IT 3 FC buses (2013)
- ✓ Oslo, NO 5 FC buses (2013)
- ✓ Cologne, DE* 4 FC buses (2011/14)
- ✓ Hamburg, DE* 6 FC buses (2011/2015)

High V.LO-City

- ✓ Liguria, IT 5 FC buses (2015)
- ✓ Antwerp, BE 5 FC buses (2015)
- ✓ Aberdeen, UK 4 FC buses (2015)

HyTransit


✓ Aberdeen, UK – 6 FC buses (2015)

Legend

- CHIC countries
- ✓ In operation
- ✓ Planned operation

(2015) Operation start/planned start

* Co-financed by regional/national funding sources

Ongoing EU-funded fuel cell bus project

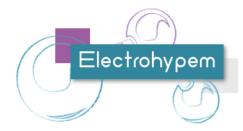
3Emotion

- ✓ Cherbourg, FR 5 FC buses (2016/17)
- ✓ Rotterdam, NL 4 FC buses(2016/17)
- ✓ South Holland, NL 2 FC buses
- ✓ London, UK 2 FC buses (2016/17)
- ✓ Flanders, BE 3 FC buses (2016/17)
- ✓ Rome, IT 5 FC buses (2016/17)

<u>Current national/regional-funded</u> <u>fuel cell bus projects</u>

- ✓ Karlsruhe, DE * 2 FC buses (2013)
- ✓ Stuttgart, DE * 4 FC buses (2014)
- ✓ Arnhem, NL* 3 FC buses (2016/17)
- ✓ Groningen, NL* 2 FC buses (2016/17)
- ✓ Brabant, NL* 2 FC buses (2016/17)

Last update: October 2015

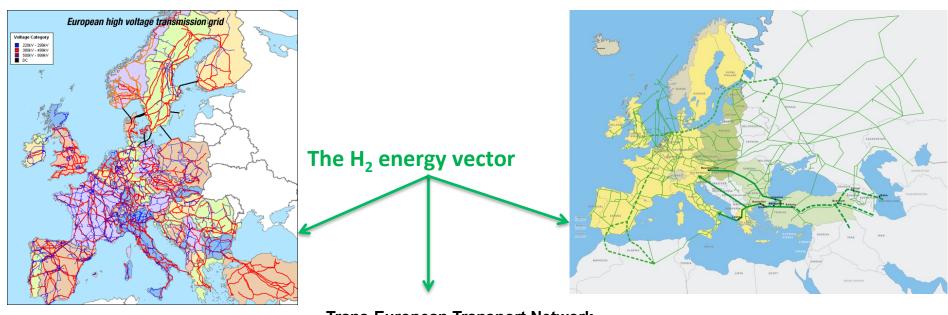


PEM Water electrolysis for Hydrogen as a clean, local fuel for transport

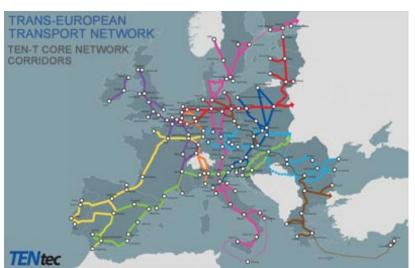
Refuelling stations: **81 (20)**

Achievements

- 1 MW water electrolysers powered by wind or solar energy sources, ensuring security of low carbon energy supply
- New Proton Exchange Membrane Electrolysers (PEMFC) with high efficiency and operability (10-100% of full range and stable when off)
- High Hydrogen purity complying with SAE J2601 (2014): 99,999% at 70 MPa
- Compact and easily scalable
- Electrolyser capital cost below 3.7 M€/(ton H₂/day)
- PRAEDRUS VIDEO v1-Mobile.mp4
- Stable and compact PEM water electrolyser operating at high temperature (up to 140°C) with low catalyst loading (PGM <0.5 mg/cm² MEA) and new high efficient Aquivion® membrane
- Electricity consumption 45 KWh/kg $\rm H_2$ (vs 2017 target of 52-55 KWh/kg $\rm H_2$) for electrolysis
- Increased hydrogen output per stack by 50%
- Rapid response (< 2 s from min to max power)
- Long term stability (degradation lower than 5 μV/hr/cell)
- European technology: electrolysis system commercialised by an European SME, stack components (membrane, catalyst) commercialised by European Industry and SME



Content


- The Energy Union context
- FCH JU structure and objectives
- FCH JU projects portfolio
- FCH JU success stories
- Conclusions

Connecting the European grids

Electricity grid

Trans-European Transport Network

Natural gas grid

V. WHAT NEXT FOR THE FCH JU?

BY 2030, THROUGH THE JU'S SUPPORT:

BY 2020: an attordable and corneeds;

 Successful demonstration of fuel cell applications for homes and businesses across many countries:

2020

Very efficient fuel cell systems;

TO DEVELOP

Cleaner transport solutions.

- Fuel cell cars, buses and generators will be an affordable and convenient option for users' needs;
- Fuel cells and hydrogen will make a big contribution to EU targets to reduce greenhouse gas emissions by 40 %, increase renewables to 27 % of Europe's energy needs, and reduce energy use by 27 %.

2030

BY 2050, THROUGH THE JU-INITIATED MARKET EXPANSION:

- Zero-emission transport will be achieved, with fuel cells playing a major part;
- Zero-carbon energy, with renewable energy, fuel cell generators and hydrogen will become an everyday reality.

For more information

Thank you for your attention!

Further info:

FCH JU: http://www.fch.europa.eu/

• HYDROGEN EUROPE : www.hydrogeneurope.eu

• N.ERGHY: http://www.nerghy.eu

