
Sn-anode infiltration for Direct-biogas SOFC operation

L. Troskialina, A. Dhir, R. Steinberger-Wilckens

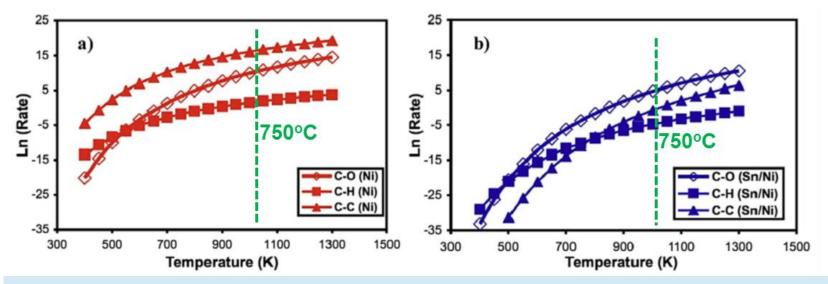
Center for Fuel Cells and Hydrogen Research School of Chemical Engineering University of Birmingham

Aim: to contribute to sustainable direct-biogas SOFC operation

Reactions of biogas fuel at anode

Dry reforming of CH₄

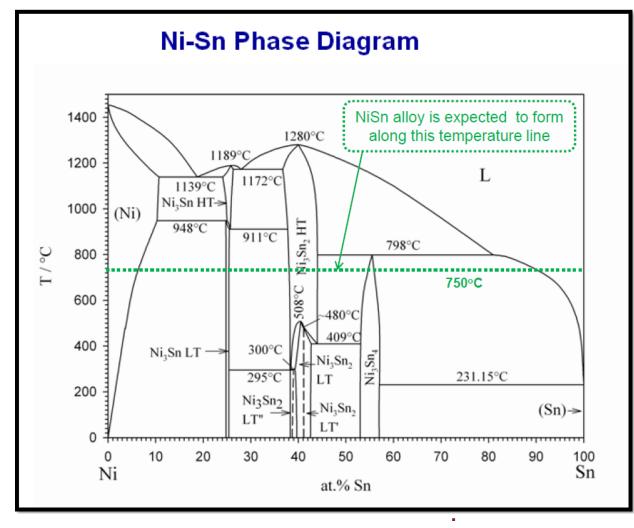
$$CH_4 + CO_2 \rightarrow 2CO + 2H_2$$


Which occurs via dissociative adsorption of CH₄ followed by C oxidation

- ✓ Supported Ni (on zirconia, silica, alumina, magnesia) are among the widely used catalysts for methane reforming
- ✓ Bimetallic Ni catalysts are already developed to assist in carbon removal. Ni-Sn catalyst system is one of them.

Trimm, D.L., Catalysts for the control of coking during steam reforming. Catalysis Today, 1999. 49(1–3): p. 3-10

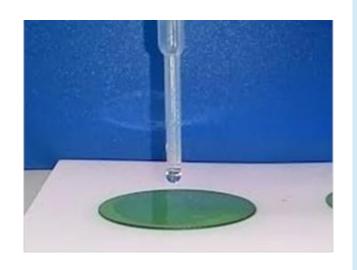
Reference results from Calculation using Density Functional Theory (in steam reforming)


At 750°C, on both SnNiYSZ (blue) and NiYSZ (red) C-H bond activation is the rate limiting step

On NiYSZ (red) C-C bond formation is faster than C-O bond formation On SnNiYSZ (blue) C-O bond formation is faster than C-C bond formation Question: Will these behavior apply in dry reforming? Let's investigate!

Nikolla, E., J. Schwank, and S. Linic, Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. Journal of Catalysis, 2009. 263(2): p. 220-227

Formation of Ni-Sn alloy at typical SOFC operating condition is expected


Possible phases:

- ✓ Ni₃Sn Low Temp.
- ✓ Ni₃Sn High Temp.
- ✓ Ni₃Sn₂ Low Temp.
- ✓ Ni₃Sn₂ High Temp.
- ✓ Ni₃Sn₄

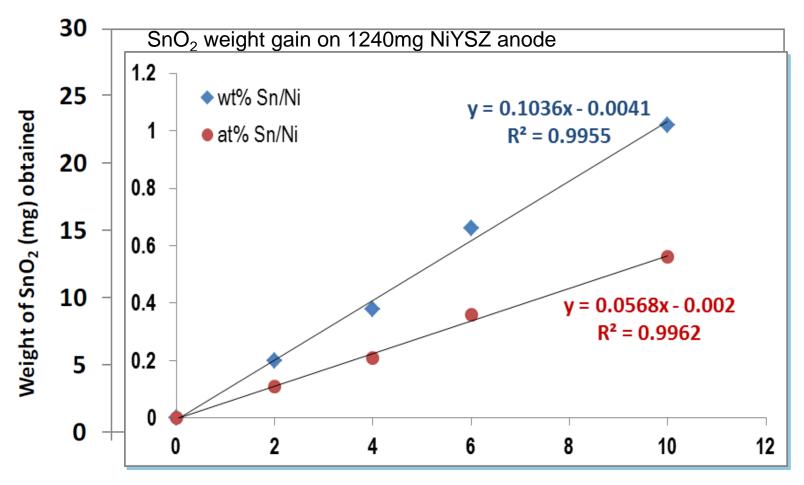
Chart adapted from Schmetterer, C., et al., A new investigation of the system Ni-Sn. Intermetallics, 2007. 15(7): p. 869-884

Sn-infiltration method

- ✓ Infiltration by pipette-drop on commercial NiYSZ anode surface
- √ Ø 30mm, 600mg Ni
- ✓ Multiple drops were performed

Dopant solution: $SnCl_2$ in ethanol 1 mg Sn/drop solution 1 drop = 20 μ l

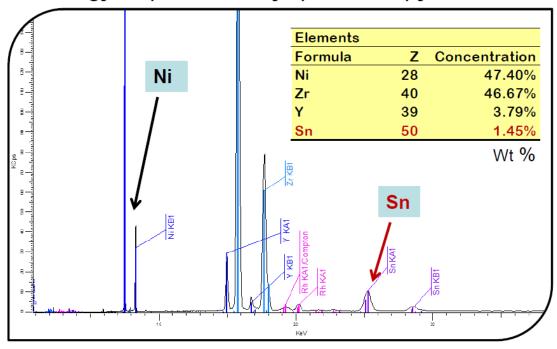
Method:

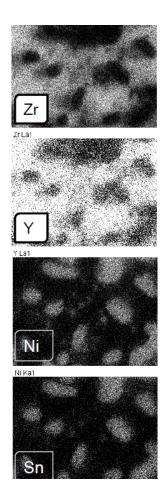

- Drop on sintered anode surface
- Air dry at ambient temperature
- Oven dry at 100-120°C
- Calcine at 600°C
- Reduce in H₂/He at 750°C
- Perform dry reforming
- Monitor outlet gas composition using mass spectrometer

TGA and possible reactions of SnCl₂.2H₂O as dopant to form Ni-Sn alloys

Infiltration stage Drying at 70 °C and 100 °C (Solvent evaporation)	Reactions $C_2H_5OH_{(liq)} \rightarrow C_2H_5OH_{(vap)}$ $H_2O_{(liq)} \rightarrow H_2O_{(vap)}$	TG Region 1
First stage heating up to 200 °C (anhydrous SnCl ₂ formation)	SnCl ₂ .2 H ₂ O \rightarrow SnCl ₂ + 2H ₂ O $_{(vap)}$	2
Further heating to 600 °C during calcinations (SnCl ₂ evaporation and calcinations)	$SnCl_{2 (solid)} \rightarrow SnCl_{2 (liq)}$ Partial $SnCl_{2 (liq)} \rightarrow SnCl_{2 (vap)}$ Partial $SnCl_{2} + \frac{1}{2} O_{2 (g)} \rightarrow SnO + Cl_{2 (g)}$	3
Reduction with H ₂ at 750 °C	$SnO + \frac{1}{2}O_{2(g)} \rightarrow SnO_{2}$ $SnO_{2} + 2H_{2(g)} \rightarrow Sn + 2H_{2}O_{(vap)}$ $NiO + H_{2(g)} \rightarrow Ni + H_{2}O_{vap)}$	4
Alloy formation at 750 °C	Ni + Sn → Ni-Sn alloys	

Repeatable infiltration on sintered commercial SOFC anodes with different Sn loading

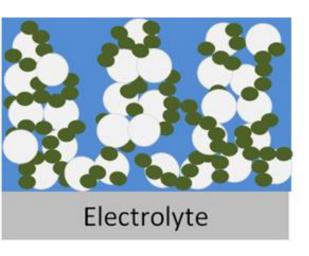

Number of drops of dopant solution

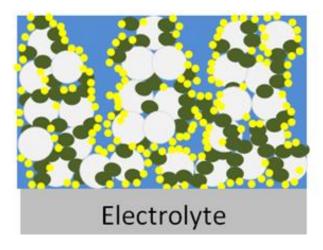


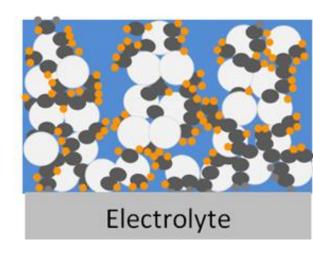
COLLEGE OF ENGINEERING AND PHYSICAL SCIENCES

Evidence of doped Sn

X-ray Fluorescence Energy-dispersive X-ray spectroscopy







Proposed simple structural model

of Sn-infiltration using pipette-drop method on NiYSZ anode

a. Before infiltration

b. after infiltration

c. after infiltration and reduction

Dry Reforming Test Rig

Out to MS

Reactants in

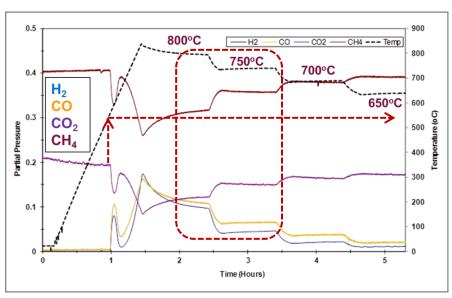
Mass Flow Controllers

Furnace

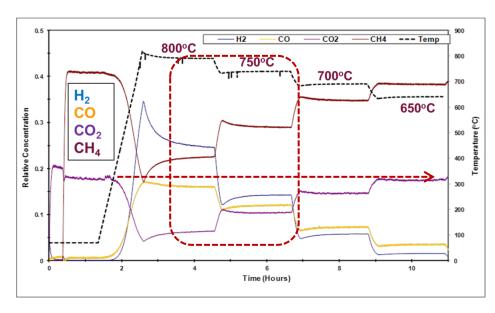
Quartz Tube
Reactor/SOFC
holder

Furnace
Temp.

Controller

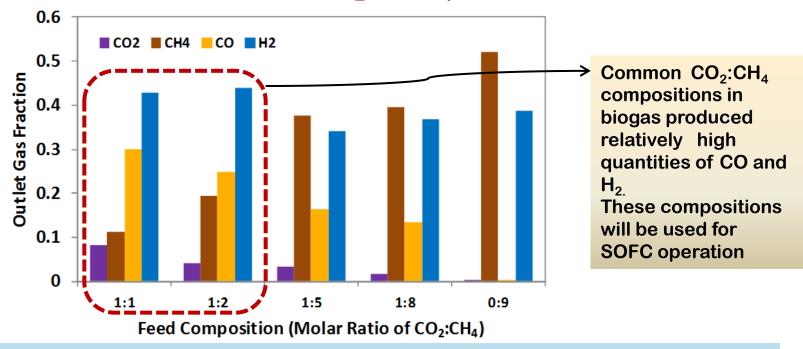

Tunnel

Fuel Mixer


- ✓ Operating at 650 800°C
- ✓ Simulated biogas of CO₂ and CH₄ mixture

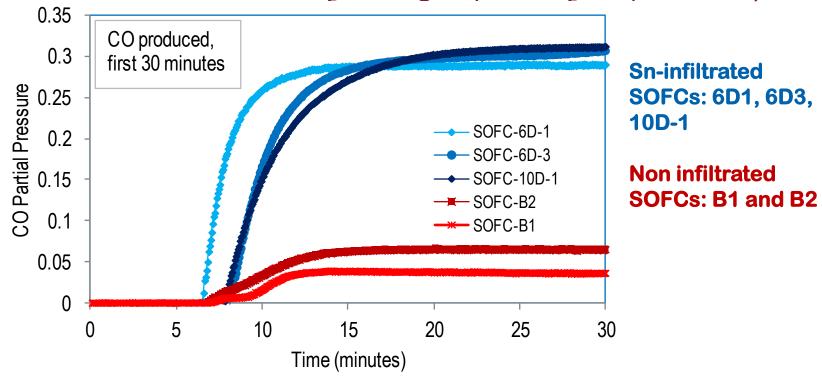
Dry reforming product gas composition at varied temperature

A. on non-infiltrated SOFC anode chips


B. on Sn-infiltrated SOFC anode chips

- ✓ Sn-infiltrated anode chips
 - ✓ started to produce H₂ and CO at 330°C while non-infiltrated ones at 550°C
 - ✓ produced much more H₂ and CO than non-infiltrated ones.
- ✓ Catalyst-activity-wise: operating SOFCs at 750-800°C in DR mode is feasible.

Product gas composition of DR on 4D Sn-infiltrated SOFC chips at different CO₂: CH₄ ratio, at 800°C



The bar chart is derived from Mass Spectra that records only gaseous components; so solid carbon as one of the reforming products is not shown above.

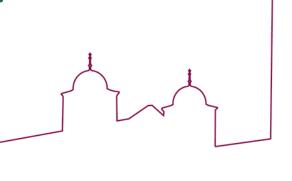
As low as 1:8 CO₂:CH₄ ratio produces significant amount of H₂ and CO. Highest reactants conversions and amount of CO was obtained at 1:1 CO₂:CH₄, Reforming at 1:2 CO₂:CH₄ produced similar quantity of CO and H₂ to that at 1:1 ratio

Mass spectra of SOFC outlet gas collected from 6 SOFCs at OCV when fuel is switched from H₂ to biogas (1:2 CO₂:CH₄ at 750°C)

- ✓ CO level appears much higher on Sn-infiltrated SOFCs than on noninfiltrated SOFCs.
- ✓ The slope of the curves show that formation of C-O bond is faster on Sn-Ni catalysts than that on Ni catalysts which promise less carbon formation is expected on Sn-Ni/YSZ SOFCs compared to that on NiYSZ SOFCs. Further investigations are still needed.

Conclusions

- Sn- anode infiltration was successfully carried out on sintered anode surface, using commercially available NiYSZ anodes,
- □ Sn/Ni alloy presence on NiYSZ have significantly increased CH₄ conversion in biogas dry reforming. This finding forms a firm ground for operating SOFC directly on biogas with high power output
- □ Further work is on going to further
 - characterise the catalysts,
 - elucidate mechanism of biogas dry reforming,
 - elaborate on how Sn improves NiYSZ catalytic activity in DR
 - evaluate carbon formation and
 - evaluate Sn-doping on in-house SOFC anodes


Acknowledgements

- □ We would like to thank those who have been great supporters and inspirers in this study
 - ✓ Prof. Kevin Kendall and the late Dr. Waldemar Bujalski
 - ✓ Prof. Hugh Evans
 - ✓ Dr. Mark Cassidy and Prof. Tim Button
- ✓ Colleagues at the Centre for Fuel Cell and Hydrogen Research – University of Birmingham
- ✓ The Ministry of Education of Indonesia for the scholarship awarded to carry out this study
- ✓ Financial supports from: MMLCR=SOFC and SCORED 2:0 EU projects

Thank you for your attention Any Questions?

I.troskialina@bham.ac.uk

