UNIVERSITYOF BIRMINGHAM

BIO-ENERGY RESEARCH CLUSTER

BUSHRA AL-DURI Chemical Engineering - EPSReader in Hydrothermal Processing
Champion of Bio-Energy Cluster
Deputy Director of MEGS

Energy at Birmingham
July 8th 2011

CONTENTS

- What is Bio energy?
- Global considerations that drive bio-energy research.
- Bio-energy scene in the UK
 - Facts, figures & targets.
 - Research gaps.
- Bio energy at Birmingham University.

What we can offer!

UNIVERSITYOF BIRMINGHAM

WHAT IS BIO-ENERGY?

- Bio-energy is obtained by converting biomass (<u>plants</u> or <u>their metabolic by-products</u>) into biofuels (biodiesel & biogas), energy vectors (H₂) & other useful products without 'upsetting' the carbon cycle in nature.
- Feedstock can be
 - Specially grown crops (perennial).
 - Lignin & other low grade carbonaceous materials.
 - Waste biomass [food, kitchen, forestry, dead plants].
- Bio-energy research covers energy sources, production & recovery, waste elimination; taking the environment, economic and political aspects into account.

GLOBAL CONSIDERATIONS

The main global factors that drive the need for bio-energy are:

- Climate Change.
- Energy Security and Supply: decline in fossil fuel, geographical location of fossil fuels, international trading, oil prices...
- Flexibility of the bio-economy: not intermittent, several markets: energy and food, electricity, heat, fuels, chemicals...
- Development (including social and economic).
- Environmental Sustainability: global trade issues, ecosystem services, protection of water sources, atmospheric pollution control, biodiversity.

BIRMINGHAM

BIO-ENERGY IN THE UK

□ The UK also has a large biomass resource (~ 30 M tonnes yr⁻¹) that is largely under-utilised. There are only approximately 10,000 ha of energy crops in a 17 M ha landscape.

Further, considerable energy is lost as 'waste' in wood and other ligno-cellulosic resources and in food wastes.

Indeed, an increased contribution from the bio-energy sector is expected considering the UK policy context which is defined by some important targets:

FACTS, FIGURES & TARGETS

- UK Renewable Energy Strategy (2009): ~30% of the UK's overall 15% renewable energy target could come from biomass heat & electricity in 2020.
- European Renewable Energy Directive (RED): UK has indicated sourcing 10% of transport energy from renewable resources by 2020.
- CO₂ emissions reduction and Stern Review: 60% reduction from 1990 emission by 2050.
- There is sufficient land to meet UK Government biomass strategy objective for electricity without significantly impacting on food production.

UNIVERSITY OF BIRMINGHAM

RESEARCH GAPS

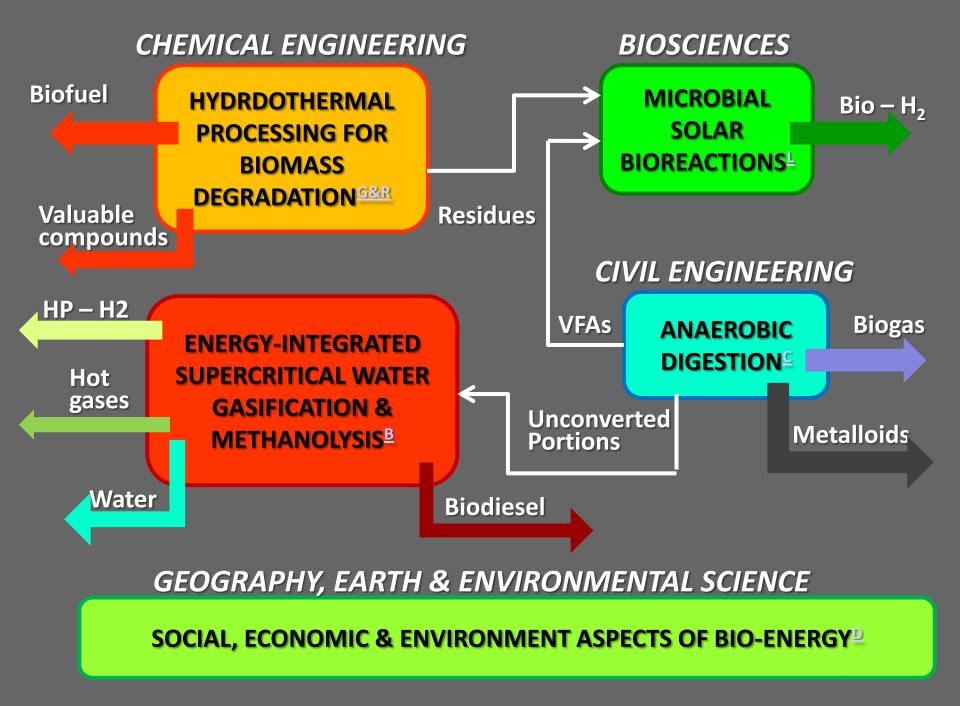
- ☐ Microbial conversion processes (by novel routes).
- Microbial conversion for energy vectors (carriers); e.g. biomass to give hydrogen and methane.
- Advanced Conversion technologies, e.g.
 - Thermo chemical.
 - Advanced gasification.
 - Chemical engineering applications.
- Carbon/energy balances.

RESEARCH GAPS

- Modelling: Whole systems modelling, lifecycle; process design, climate change impacts.
- Scaling of Bio-generation.
- Integration of different technologies.
- Environmental sustainability: land use, lifecycle, biodiversity, global context, ecosystem service.
- Economic and socio-economics.

BIO-ENERGY @ BIRMINGHAM

We aim for a 'technology mix' that squeezes all energy vectors, useful intermediates and valuable residues out of the starting feedstock, while sticking to carbon-neutral policy and keeping our environment safe & clean!


BIRMINGHAM

WHAT CAN BIRMINGHAM OFFER?

- Unique expertise in <u>advanced hydrothermal technologies</u> that can turn waste biomass into hydrogen and biofuel, with high efficiency & very fast rates.
- With a variety of expertise within the cluster, we have the capability to cover the different aspects required to pursue a "technology mix" approach, for maximum outcome & minimum waste.
- Our cluster has the combined capability to 'carve the path' from laboratory to commercial use; covering science, engineering and socio-economy & environment.

UNIVERSITY OF BIRMINGHAM

Capabilities in Anaerobic Digestion Research

Civil Engineering: anaerobic digestion modelling, computational fluid dynamics modelling, microbiology & biochemistry of methane production; metal speciation in AD; resource security.

Biosciences: microbial genomics; microbiology and biochemistry of combining AD with hydrogen production.

Geography, Earth and Environmental Sciences: biogeochemistry of AD; social and economic aspects of bioenergy from AD.
UNIVERSITYON
PIRMINGHAN

Capabilities in Biomaterials & Bio-Hydrogen Research

Biosciences: Fermentation science specialising in biohydrogen production from wastes, biogenic fuel cells made with precious metals recovered from scrap and spent catalytic converters.

Biochemical Engineering: Development of pilot plant for studying scale-up of bio-hydrogen production, includes fermentation reactors and solar-simulation photo-bioreactor for bio-hydrogen production from waste.

UNIVERSITYOF BIRMINGHAM

Capabilities in Socio-Economic & Environmental Aspects of Bio-Energy

Social interactions shape technologies and technologies shape social interactions.

Our work at Birmingham covers the entire lifecycle of bioenergy:

- Public perceptions of agriculture at home and abroad,
- Local protests against proposed biomass energy plants,
- The ways in which we run our energy technologies in the home and the comfort we derive from them,
- How we dispose of biomass waste, then
- Back again to how 'green' different biomass UNIVERSITYON feedstocks are.
 BIRMINGHAN

SCW for Waste Minimisation & Energy Production Research

SCWG is the *only* process to date, known to convert the entire lignocelluloses into high purity hydrogen *without* the concurrent generation of chars and tars, which are inevitable in other combustion and gasification processes.

We have expertise in:

- Fundamentals & thermodynamics of SCF.
- Design & construction of SCW rigs.
- Energy integrated systems (theoretical analysis & experimental constructions.
- 'Coupling of processes' for more efficient & economically feasible outcome.

