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(1) Hydrogen Production
Efficient Bio-H,
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Photofermentation

e Organic acids = H, + CO,
e Light-driven (sunlight)

 Rhodobacter sphaeroides
— Strain 0.U.001 (WT)
— Photobioreactor (PBR)

« High yield, broad range
— e.g. Lactate > 6 H,

« H, produced by Nitrogenase enzyme

— Very sensitive to NH,* -
— Can use wastes with high C/N 4
4
UNBI)i\efZCIi{eSnICTe\S(O ; Prof Lynne Macaskie F
(L.E.Macaskie@bham.ac.uk)
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(2) Hydrogen Separation
* “Pd membranes provide < 1 ppb purity with any gas quality” - JM

s Pd or Pd alloy membrane

( 2-5um

NS

>
Adsorption & lonization Desorption & )
Dissociation Diffusion Recombination Porous support
stainless steel, ceramic
 PEM Fuel Cells are poisioned by: CO > 10 ppm, and Sulphur at ~1 ppb
« Combined hydrocarbon reformation / separation reactors
(1) Novel Pd-Y-based alloys (2) Non-Pd amorphous alloys wetaliurgy & Materials

(3) Thin-film / PSS composites constructed UNIVERSITYOF
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Molecular flow Atomic diffusion through
through pinholes Pd-Y & molecular flow
through PSS

e, - L _——
E ‘: : /SOOnmSS

—— Laser Weld

5 um Pd-Y

L Surface-treated
layer

Cu gasket
Porous SS
Magnetron Sputterer W
- TSB HYPNOMEM project
- Sean Fletcher, PhD Thesis, University of Birmingham (2010) Metallurgy & Materials
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Weight of energy storage systems to take a car 500 km

46 L
7L

“Chemical and Physical Solutions for Hydrogen Storage”, U. Eberle, M. Felderhoff, F. Schuth,
Angew. Chem. Int. Ed. 48, pp.2 — 25, 2009




(3) Hydrogen Storage

4 kg hydrogen

Louis Schlapbach &

Andreas Ziittel, ‘
NATURE, 414, p.353, 1 : -
(2001) S| ~. .
Mg,FeHq LaNizH, H,, (liquid) H, (200 bar)
0.21 nm westi: 0.36 nm 0.54 nm
10.7 x 1022 4.2 x10%? 1.3x 102
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compressed hydrogen
tanks can be greatly
reduced by using
metal hydride powders
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Observed H, Capacity, weight %
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Hydrogen Storage Research

Metal Hydrides

— V-Mn alloys — high pressure (M&M)
— Metal hydride store & compressor design

Magnesium Alloys

— Ball-milling & catalysis
— Thin-film multilayers

*— Rapid solidification

— Borohydride surface treatment (Chemistry)

000 - °
0\010‘ 3™

"00000000000

Figures from: Ned Stetson, 2010 DOE Annual Merit Review,
Washington, 8/6/10)

— TEM of MgH, = Mg transition (M&m Mlcroscopy)

Complex Hydrides

*— Novel Amide-borohydrides (Chemistry)
— Novel TM borohydrides
k- In situ characterisation techniques

Nanocarbons - ball-milling

Porous Materials

— Synthesis of zeolites & MOFs (Chemistry)
— Variable temp H, sorption measurements
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3 Examples: (i) Novel Complex Hydrides

In Chemistry, work is centred on
crystal engineering of light metal

complex hydrides

LiINH, and LiBH, powders
ground together under Ar, then
heated to 190°C.

=» Adding BH4 into the amide

structure, changes the primary
decomposition pathway away

from NH; in favour of H,

Heating this compound to
250-300°C gives ~6 wt% H,

» Other new compounds:
Na,BH,NH,, MgBH,NH,,
Li(NH3)BH;NH,BH; and
NaBH;NH,BH,

Dr Paul Anderson (p.a.anderson@bham.ac.uk )

Li,BH,(NH,), LiNH,

PhilChater, Bill David, Paul Ander§on ;

ey —— Y

Lithium amide—borohydride Lithium amide

Chemistry
UNIVERSITYOF
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(1) In situ characterisation of hydrides

* XRD, Raman, FTIR (Chemistry), DSC, TGA-TPD, Confocal Microscopy
e.g. In situ Raman spectroscopy of the decomposition of lithium borohydride:
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Able to identify in situ intermediate amorphous phases.

—> could help design complex hydrides that re-absorb H, more easily wmetallurgy & Materials
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(i) Nano-Magnesium Alloys

Magnesium can store 7.6 wt% hydrogen, but
needs to be heated to ~300°C and H,
sorption is slow

Mg alloys produced by a range of techniques:
 Ball-milling (below & right)

* Doping with PGMs (JM) or borohydrides
(Chemistry)

 Thin-film multilayers

* Rapid Solidification

7

6 TEM (60 hrs milled)
B. Paik et al, PhD Thesis, Univ Birmingham (2008)
5 .
5 — As-recieved  — 5 hours
f&: 4 —15 hours — 60 hours Hyd rogen
<3 absorption
S 2 .
300°C,10 bar
1
0 .
0 10 20 30 Metallurgy & Materials
A. Walton et al, Presentation at MH2004 UNIVERSITYOF

Time (min)
BIRMINGHAM



Biohydrogen reactor Metal hydride storage Hydrogen fuel cell vehicle

Hydrogen energy R&D (& postgraduate teaching) at Birmingham, involves
research groups from across the campus, including: Engineering &
Physical Sciences; Life & Environmental Sciences; and Social Sciences.

www.hydrogen.bham.ac.uk www.fuelcells.oham.ac.uk www.ierp.bham.ac.uk
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