

Manufacturing

Mark Jolly

Energy at Birmingham
July 8th 2011

Process Modelling

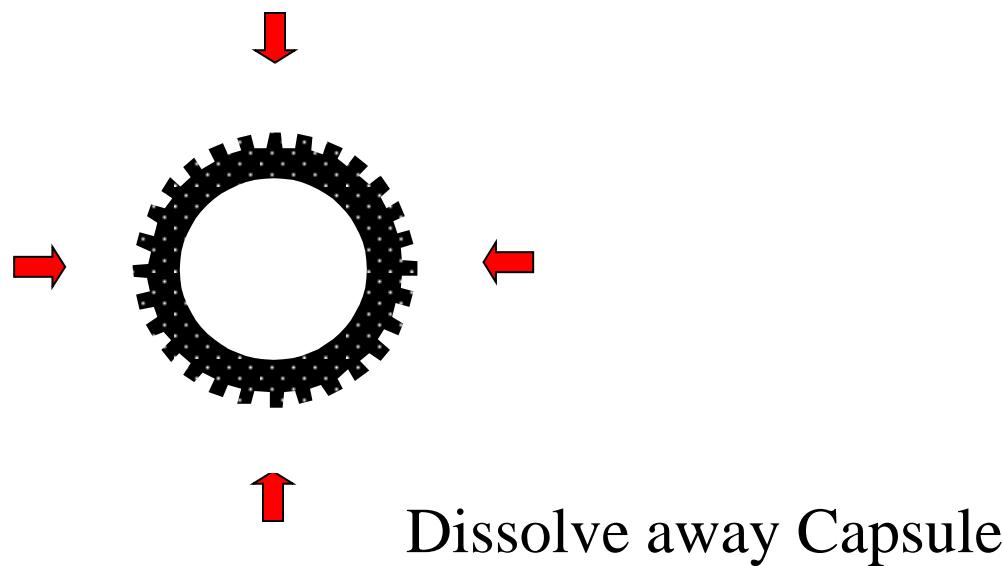
MTC

Casting

Welding

Energy in
Manufacturing
@ B'ham

Ceramics


Nett
Shape
HIP

Additive

Process heat recovery

Net Shape HIPping

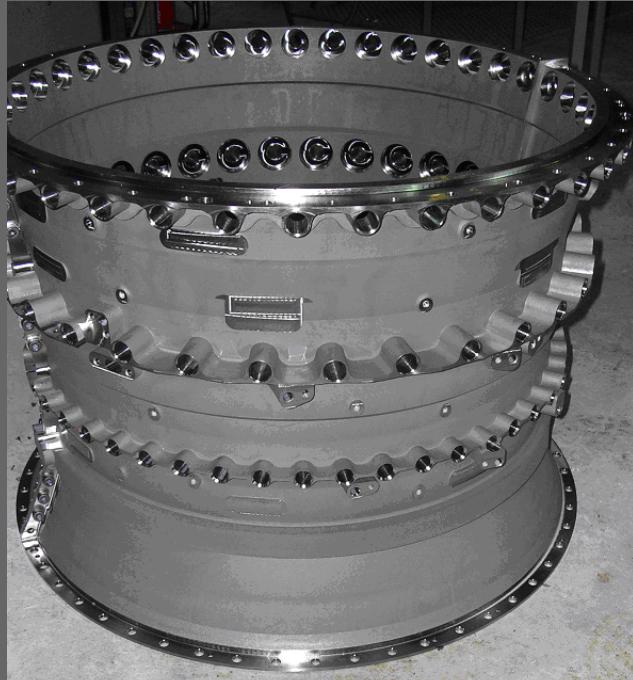
Energy saving through reduced materials wastage

T = 950 °C

P = 100 MPa (1000 bar)

Application in Aerospace

50kg Casing


machined

500kg ring-rolled ingot (10%)

HIPped

54kg powder (93%)

Process Modelling

MTC

Casting

Welding

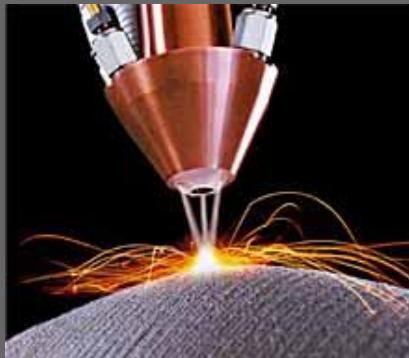
Energy in
Manufacturing
@ B'ham

Ceramics

Nett
Shape
HIP


Additive

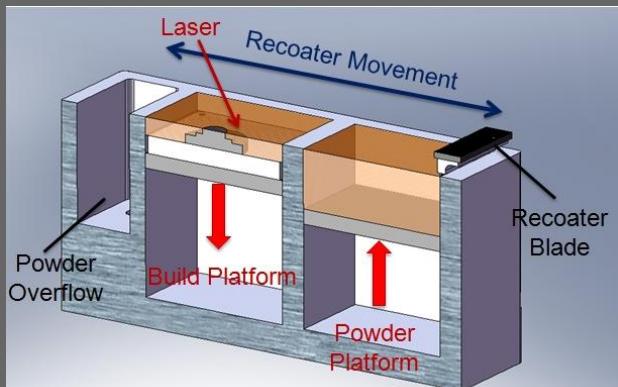
Process heat recovery


UNIVERSITY OF
BIRMINGHAM

Direct Laser Fabrication (DLF)

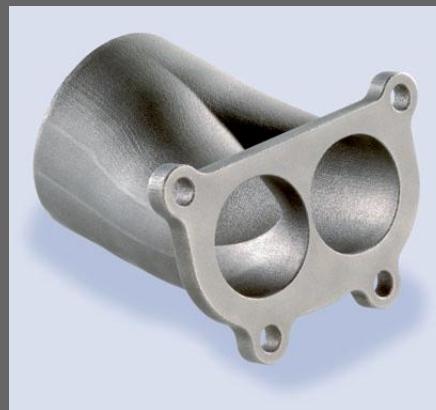
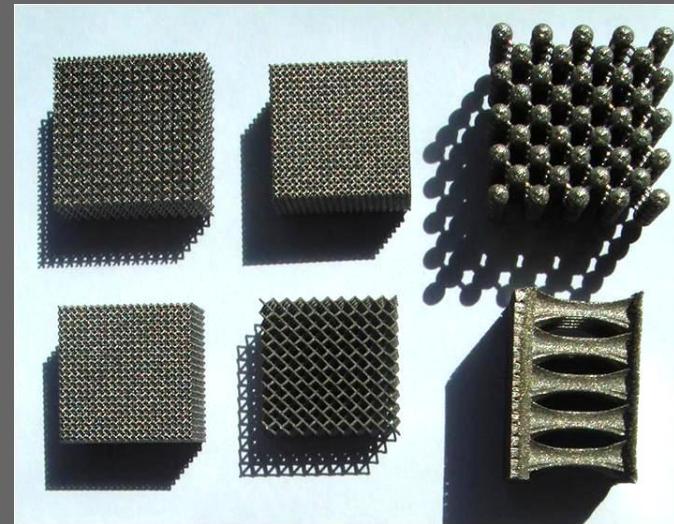
Use off-shelf powder: Ti, Ni, Steel

Direct Laser Fabrication (DLF)



Multi axis Blown Powder DLF

- 4 kW disc laser
- also 3 kW & 1 kW lasers
- Build cabinet 1.5x1.0x3.0 m
- Auto-change laser capability
- Spot size from 0.2 to 6 mm
- Powder and wire feeder
- Additional laser for in-situ heat treatment



Selective Laser Melting/Sintering (Rapid manufacturing)

- Precise fibre laser powder selectively fused layer by layer
- Un-fused material acts as supports
- Components near to 0% porosity

Selective laser melting – powder bed

Build envelope 250 x 250 x 280 mm
Production speed 2 – 20 cm³/hr
Laser system Fibre laser 200W cw

UNIVERSITY OF
BIRMINGHAM

Additive manufacturing

Energy benefits

- Better material utilisation, compared to subtractive methods like machining
- No tooling → a rapid manufacturing approach
- Repair technology → materials and energy savings

Projects

□ SAMULET3

- TSB-funded project (with Rolls-Royce plc, started December 2010):
- utilisation of laser powder-bed net-shape processing for titanium aerospace components
- competition between centrifugal casting and laser powder-bed processing

Projects

□ SAMULET4

- TBS-funded project (Rolls-Royce plc & BAE systems)
- use of net-shape HIPing (with R-R) and Direct Laser Deposition (blown powder) (with BAE).

□ MicroTurbo

- Industry funded project (Feb 2011)
- various structures in Ni Superalloys, Al & SiAlONS.

Projects

- Accelerated Metallurgy
 - (FP7 project, June 2011), 31 collaborators
 - 9 universities, 16 companies, 2 synchrotron light sources and 4 research centres
 - DLF work to be done in Birmingham
 - Accelerated Discovery of Alloy Formulations using combinatorial principles
 - DLF to make compositions of different alloy systems not previously studied

Process Modelling

MTC

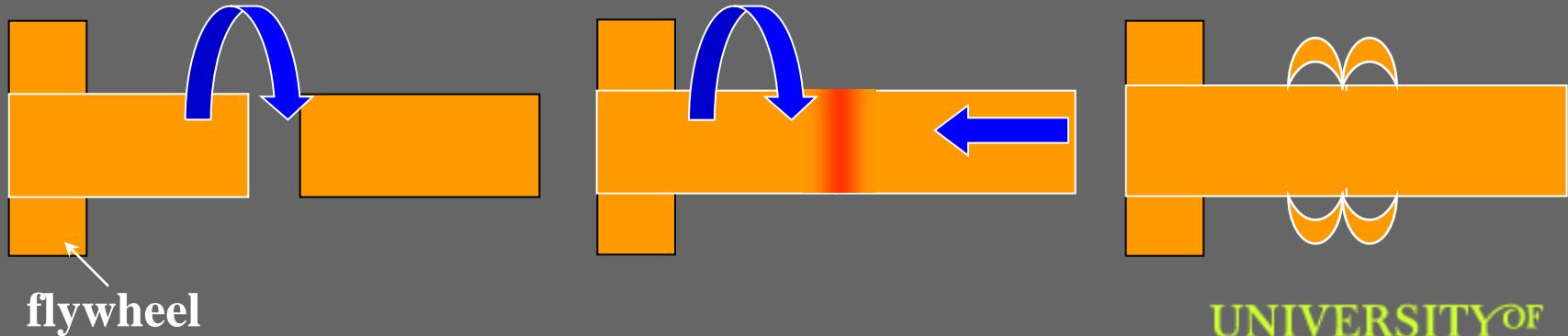
Casting

Welding

Energy in
Manufacturing
@ B'ham

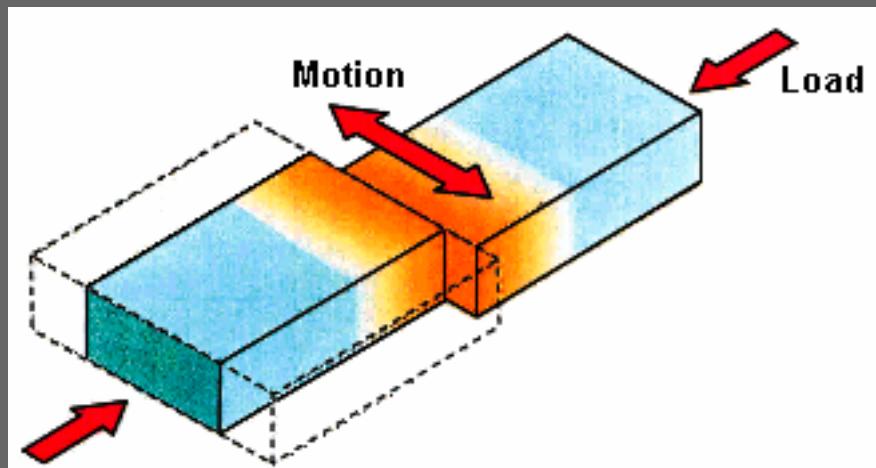
Ceramics

Nett
Shape
HIP


Additive

Process heat recovery

UNIVERSITY OF
BIRMINGHAM


Inertia Friction Welding

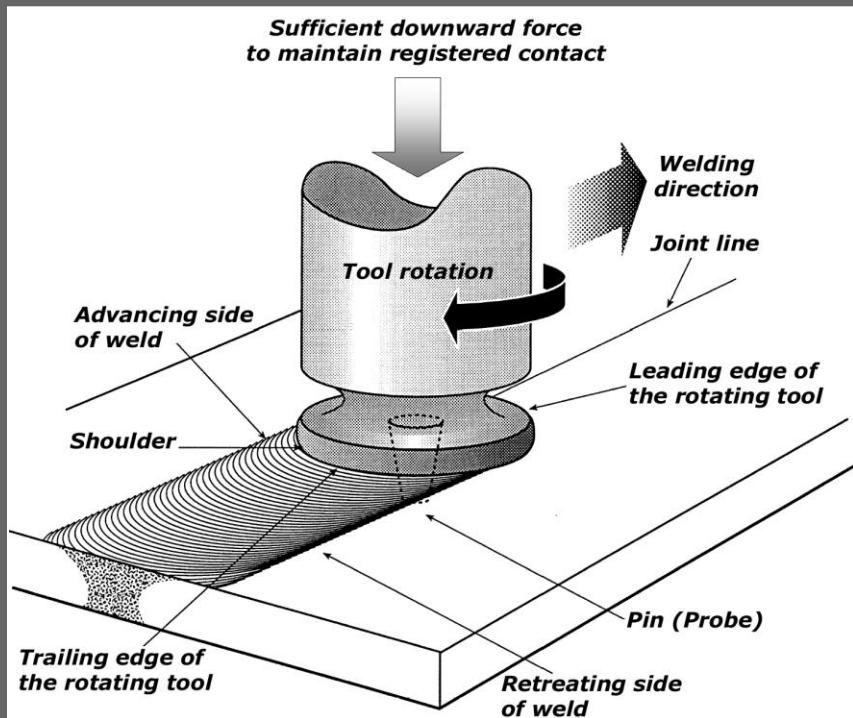
- solid-state joining process
- energy of a rotating flywheel is conserved into frictional heating to join cylindrical components
 - rotating part attached to the flywheel
 - axial pressure applied to stationary cylinder
 - weld formed

Linear Friction Welding

- A solid-state joining process
- frictional heat generated is utilised to join two rubbing components under an axial pressure, one of which is rigidly clamped, while the other moves in a reciprocating manner while in contact.

Linear Friction Welding

- More efficient material usage cf machining.
- No melting, fewer oxides cf fusion welding
- Reduce weight → lighter engine structures


Conventional
blades & disk

BLISK
30% reduction

Friction Stir Welding

- solid-state joining technique
- applicability for Ti is being investigated

Process Modelling

MTC

Casting

Welding

Energy in
Manufacturing
@ B'ham

Ceramics

Nett
Shape
HIP

Additive

Process heat recovery

input

Energy Input
To raise to $T_m + 100^\circ\text{C}$
 $\text{Al \& Mg} \approx 1.1$
 GJ/tonne
 $\text{Cu} \approx 0.7 \text{ GJ/tonne}$

metal flow

output

Charge Ingot or DC cast billet In-house returns from scrap and machining	Melting Furnace Tower Bale out* Crucible* Induction (Oil, gas or electricity)	Holding Furnace Bale out* Crucible* Induction (*Gas or electricity)	Metal cleaning Degassing Drossing off	Casting process Gravity Counter- gravity Pressurised Mould material Sand Ceramic	Finishing Fettling Grinding Machining	Finished Casting Quality Inspection
--	---	--	--	---	--	---

losses

Oxidation
(2% by wt)
Conduction
Radiation
(50% Furnace
efficiency
claimed)

Oxidation
(2% by wt)
Conduction
Radiation
(55% Furnace
Efficiency)

Oxidation
(2% by wt)
Conduction
Radiation

Fettling
(up to 60% by
wt)
Grinding and
machining
(up to 25% by
wt)

Scrap
(up to 20% by
wt)

Aggregated
Energy required
to produce 1
tonne Al castings
(GJ)

2.20 Efficiency
2.25 Losses

42.0 Holding
42.8 Losses

43.7 Degassing

109 Fettling
146 Machining

182 Scrap

UNIVERSITY OF
BIRMINGHAM

CRIMSON: Aim and Objectives

To quantify and model the energy savings achieved by a novel single shot casting process and compare with traditional foundry process routes.

- Heat in bulk metal melting, holding and transfer
- Energy in post-casting processes
- Comparison of: scrap, quality and yield

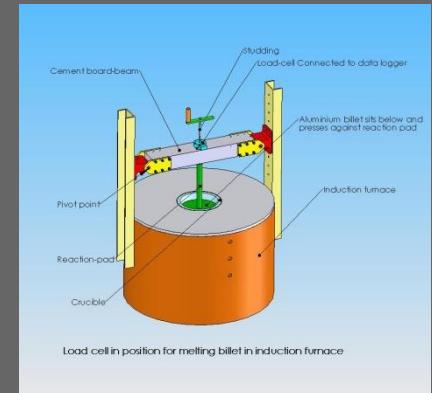
CRIMSON: the process

Constrained Rapid Induction Melting

- 10 kg in 90 s
- 33 kg in 300 s

Reduced melt losses

No holding losses


Reduced H₂ absorption

Single shot net-shape casting

Counter-gravity filling

Significantly improved yields

No mould material restrictions

Deliverables

- Understanding that could deliver 30% savings in energy
- Software tools that will help foundries achieve energy savings

Crimson with added benefits

- No holding losses
- No degassing losses
- Box yield of 70%
- Internal scrap down to 10%

- OME 47%

Comparisons of Crimson to traditional processes

Process/Sector	Energy burden input AI (GJ/t)	OME (%)	Energy burden output AI (GJ/t)
Aerospace no recycling	55.1	5.5	1001
Aerospace with recycling	14.4	5.5	258
Automotive/General	25.0	27	93
Crimson no added benefits	18.8	30	63
Crimson with added benefits	18.8	47	40

Process Modelling

MTC

Casting

Welding

Energy in
Manufacturing
@ B'ham

Ceramics

Nett
Shape
HIP

Additive

Process heat recovery

UNIVERSITY OF
BIRMINGHAM

Numerical process modelling

- Wide range of software
- Mech Eng and Met & Mat
- Experience in
 - Metal casting (all processes)
 - Extrusion
 - Forging/forming
 - Machining
 - Vacuum Arc Re-melting
 - Welding
 - Polymer injection moulding
 - Ceramic extrusion
- Developing expertise in DLF

Examples

- Aerospace casting
 - Investment cast Al alloy
 - Current yield 5-10%
 - Improved yield to 55%
 - Concomitant energy savings
- Medical Prosthetic Casting
 - Investment cast CoCr Mo alloy
 - reduced oxide formation crucible
 - reduced inclusions from 45% to below 20%
 - Saving of order of €100k
 - ↓ rework ↑ productivity → + €150K
 - Concomitant energy savings

Examples

- Glass making industry
 - KTP redesign charging equipment
 - Model thermal and mass flows
 - Objectives
 - Reduce water usage
 - Reduce energy consumption
 - Improve life of components

Summary

- **UoB Academics**
 - Expertise in a wide range of processes
 - Support with Process and Materials Modelling
 - Links through networks to wider expertise
- **UoB facilities**
 - Wide range of process capabilities
 - Edgbaston
 - Manufacturing Technology Centre (Ansty)

Philosophy (1)

Improve material efficiency

Reduce scrap

Improve quality

Reduce losses

**Direct reduction in energy of manufacture
without loss of integrity of product**

Philosophy (2)

Energy recovery
Waste heat recycling

Direct reduction bought-in energy

The academics

- Dr Nick Adkins
- Dr Moataz Attallah
- Dr Brian Connolly
- Dr Mike Ward
- Prof. Nick Green
- Dr Bill Griffiths
- Prof Stuart Blackburn
- Dr Jean-Christophe Gebelin
- Dr Leung Soo
- Prof Trevor Dean

Manufacturing

@ Birmingham

Process Modelling

MTC

Casting

Welding

Energy in
Manufacturing
@ B'ham

Ceramics

Nett
Shape
HIP

Additive

Process heat recovery

UNIVERSITY OF
BIRMINGHAM