

Shell Global Solutions

SCIENCE CITY RESEARCH ALLIANCE UNIVERSITY OF BIRMINGHAM WARWICK

Y. Li, Prof H.M. Xu

Experimental Investigation into Biofuel Spray Characteristics

Driving Innovation

Objective

- Study physiochemical properties effect on spray characteristics with different biofuel
- •Provide the information of spray characteristics of modern injection system for validation of CFD code
- •Fundamental study on laminar flame mechanism used to develop numerical combustion model

Experimental Setup

- •Composed of high pressure vessel, fuel injection system, and image acquisition system
- Working pressure up to 110 Bar, highest initial gas temperature > 500°C
- •Camera speed up to 1,000,000 fps with high resolution
- Multiple injector holders for different optical diagnostics

HPV2

Window layout

Different injector holders

Methods

Fuel Spray Structure

Nozzle

hole

- •Fuel spray development at different conditions
- Spray structure of initial injection from diesel injector

DMF multi-spray Evolution (Pinj=100bar atmospheric pressure)

Initial Structure of Fuel Spray (Pinj=20MPa)

Diesel Spray Evolution (Pback_5MPa,Pinj_ 80MPa, images captured from 23mm downstream the nozzle)

Droplet Velocity and Sizing

SMD along with the axial distance (Pinj: 120MPa, Pback: 0.1MPa)

Droplet distribution 40mm downstream (Pinj:120MPa, Pback: 0.1MPa)

Publications

- 1. Tian, G., et al., Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer. SAE International Journal of Passenger Cars - Mechanical Systems. 3(1): p. 948-958.
- **2.** Li, Y. et al., Comparative Experimental Study on Microscopic Spray Characteristics of RME, GTL and Diesel, 2010, SAE paper 2010-01-2284
- 3. Tian, G., et al., Laminar Burning Velocities of 2,5-Dimethylfuran Compared with Ethanol and Gasoline. Energy & Fuels. 24(7): p. 3898-3905.