Permanent magnet machines and actuators

Geraint Jewell

The University of Sheffield

Symposium on Materials for a Sustainable Future 11/09/09

Key PM Properties for Electro-Mechanical Devices

●High remanence ⇒ High airgap flux density

●High coercivity
⇒ Demagnetisation withstand

■ <u>High temperature capability</u> ⇒ Demagnetisation withstand

Environmental capability

Corrosion resistance

ullet High mechanical strength \Longrightarrow High speed operation

•Low electrical conductivity \Rightarrow Rotor loss

●Formability ⇒ Ease of manufacture

Scope for product integration

ullet Ease of magnetisation \Longrightarrow Ease of manufacture

COST

Brushless PM machines

- Also called electronically commutated
- So-called brushless DC or AC operation
- Always used in conjunction with a power electronic converter
- Electronically commutated as a function of rotor position
- Can operate as motors and generator switch between two modes very rapidly
- Arguably more competitive as motors than generators in most 'standard' speed applications

Radial field

Axial field

Key features of performance

- High efficiency can be >95% even at modest powers
- High power density compared to competing technologies
- Capable of high speed operation
- Reasonably good short-term overload capability
- Well suited to very high pole numbers
 - Important feature for high torque / low-speed applications

Efficiency in Electrical Machines

Can be traded off against machine volume up to a point where machine becomes thermally limited

Higher airgap flux densities generally give higher efficiencies – particularly in low to medium speed applications

Highly influenced by size (larger machines tend to be more efficient)

Tends to vary over operating range of the machine

Can be >98% in some cases

High Performance PM Traction Drive

10,000 rpm maximum speed 35kW continuous rating (70 kW peak) 0.7kW / Kg continuous (2kW/kg peak) Total weight of motor 42kg (incl 3.5kg of NdFeB)

Power density of electrical machines

1MW range PM machines

- •Several impressive demonstrator machines with ratings in the 0.5-1.0 MW range
- •Many aimed at military vehicles
- Very competitive power and torque densities

DRS PA44-5W

Canopy Technologies
LLC HA57-100

DRS 370kW CR32-50 OSSA Powerlite 597kW

Key performance indicators and design parameters of a series of intermediate speed PM machines

	DRS axial field [20]	Canopy Technologies HA44-45 [21]	Canopy Technologies HA57-100 [21]	DRS CR32- 50	OSSA Powerlite 597KW model
Rated power (MW)	0.97	0.34	0.74	0.37	0.60
Rated torque (Nm)*	1287	1120	2712	1761	5179
Maximum speed (rpm)	6000	3600	4000	3600	1100
Topology	Axial-field	Axial-field	Axial-field	Radial- field	Radial-field
Number of poles	Not known	28	36	20	Not known
Total weight (kg)	160	195	354	227	791 (incl. converter)
Machine diameter (m)	0.61	0.65	0.78	0.48	0.55
Axial length (m)	0.16	0.22	0.26	0.44	0.60
Torque density (Nm/kg)	8.0	5.7	7.5	7.7	6.5
Torque density (kNm/m ³)	27.5	15.1	19.0	22.1	35.5 (excl. converter)
Power density (kW/kg)	6.1	1.74	2.10	1.62	0.75
Power density (MW/m³)	20.7	4.55	7.9	4.64	4.1
Peak efficiency	96%	95%	95%	95%	98.9%

^{*} rated torque is not necessarily at maximum speed

Active Vehicle Suspension

Peak force capability	5kN		
Rms force capability	2kN		
Nominal stroke	+/- 50mm		
Maximum stroke	+/-100mm		
Average output power	50W		
Peak/Rms velocity	1.5/1.0m/s		

Integrated active suspension unit

Project partners:

Loughborough University Jaguar Land Rover Research UK Ltd

Toyota Prius

Introduced in 1997 Sales to 2006 (all models): 552,657

Most detailed information available for 2004 model

Two excellent and comprehensive public-domain reports from: Oak Ridge National Laboratory

'Report on Toyota / Prius Motor Design and Manufacturing' (ORNL/TM-2004/137) 'Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report' (ORNL/TM-2004/247)

Electric Motor

Permanent magnet brushless AC synchronous motor (NdFeB magnets) Torque Output 50kW THSII 400Nm THSII Torque Output rpm rpm 1200 1200 Liquid cooled (ethelyne/glycol) Total active mass = 36.3kg Power density = 1.37kW/kg Torque density = 11Nm/kg

Drive machine rotor

8-pole sintered NdFeB magnets (~1.8kg)

Rotor construction

- so-called 'inset magnet rotor'

Usually requires high tolerances

Magnet segments

2004

2003

Over-mould sintered NdFeB in a polymer carrier

- tolerance on width and lock-in is achieved by polymer

LP shaft generator

Air-cooled Direct drive

- Output power 250kW over speed range 1050rpm - 3100rpm
- Output voltage 350V DC
- High efficiency >95%
- Located within tail-cone

Finalised design

Stator core90kgStator winding52kgRotor magnets22kgRotor core19kg

TOTAL (active weight) 183kg

Power to weight ~ 1.36kW / kg of active mass

High temperature application of PM materials

Ultra high temperature actuator

Operates in 800°C ambient
Pure reluctance actuator
24% Cobalt Iron stator and armature
cores
Mica insulated wire (not viable long-term)

High temperature wires

- VonRoll Isola SK 650
 - Mica tape wound nickel-plated copper wire (500°C)

- CGP Cerafil 500
 - nickel-plated copper alloy wire with ceramic insulation (450°C)

- Fujikura Fujithermo A
 - nickel-plated copper wire with convertible ceramic insulation and protective layer (400°C)

Typical turbine tip clearance actuation system

Clearance Variation - Symmetrical

Figure 4: HPT tip clearance as a function of time over a given mission profile

Source: Lattime, S.B., and Steinetz, B.M., Turbine engine clearance control systems: current Practice and Future Directions, NASA TM-20020211794, July 2002.

Clearance Variation - Asymmetrical

Figure 6: (A) Engine mounts and load paths, (B) Closures due to aero loads, (C) Closures due to thrust loads

Source: Lattime, S.B., and Steinetz, B.M., Turbine engine clearance control systems: current Practice and Future Directions, NASA TM-20020211794, July 2002.

Features of application

- High temperature environment high temperature wire and modest current densities
- Modest strokes (up to a few mm) normal force actuators may be preferred
- Relatively slow response required (100s of ms)— solid cores
- Very precise positional control required hysteresis could be difficult to accommodate
- High forces (several kN) highly dependant on degree of pressure balancing employed
- Predictable and benign failure mode fail outwards in turbine
- Nominal force specification of 1kN at 2mm (part of a general study comparing different actuator technology specifications)

Permanent magnet polarised reluctance actuators

- High holding force with zero current
- •Fail to closed position with zero current
- Permanent magnet is located in stator

Basic operating principle

Current can aid or oppose PM flux

Typical form of characteristic (not this design study)

Electromagnetic design involves many trade-offs

Magnetic materials

49% Cobalt Iron stator core and armature Sm₂Co₁₇ magnets

Electromagnetic and thermal design optimisation

FLUX2D

ANSYS

2.84kg - 350N/kg

Fujithermo A – high temperature wire

Ceramic coated wire Continuous maximum temperature rating of 420°C

Experimental measurements

Characterised on an Instron load-frame with 300 °C heater stage
Eliminates the need for bearings in prototype

Experimental measurements at 225°C ambient

Experimental measurements at 225°C ambient

