## 8th Network Conference on POPs

8th and 9th May, 2014 University of Birmingham

# CLASSICAL versus EMERGING FLAME RETARDANTS

# Dr. Ethel Eljarrat

Scientific Researcher
Environmental Chemistry Department
Institute of Environmental Assessment and Water Research (IDAEA)
Spanish Council of Scientific Research (CSIC)

Barcelona, Spain

e-Mail: eeeqam@cid.csic.es







# Agustina de la Cal Rodríguez Paula Guerra Gómez Mariana Batha Alonso Enrique Barón González Cayo Corcellas Carramiñana Giselle Santín Guerrero









Environmental Department IDAEA-CSIC, Barcelona

#### FLAME RETARDANT Research: Collaboration with ...

Bart Koelmans Wageningen University (The Netherlands)

**Tim Grotenhuis** Wageningen University (The Netherlands)

Walter Vetter Universität Hohenheim (Germany)

Mehran Alaee Environment Canada (Canada)

Kim Fernie Environment Canada (Canada)

Eric Reiner University of Toronto (Canada)

Diana Aga University of Buffalo (USA)

Jochen Mueller National Research Centre for Environ. Toxicol. (Australia)

Ricardo Barra University of Concepción (Chile)

Joao Torres Federal University of Rio de Janeiro (Brazil)

William Ocampo Pontificia Universidad Javeriana (Colombia)

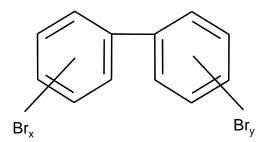
#### CLASSICAL versus EMERGING FLAME RETARDANTS

- 1 Introduction to Flame Retardants
- PBDEs: Penta-, Octa- and Deca-BDE
- 3 HBCD: Isomers and Enantiomers
- 4 Halogenated Norbornenes
- 5 Conclusions

#### **Introduction to Flame Retardants**

**FLAME RETARDANTS**: Materials added or applied to a material to increase the fire resistance of that product

- Inorganic (50%)
- Brominated (25%)
- Organophosphorous (20%)
- Nitrogen-based (5%)




#### **BFR Applications:**

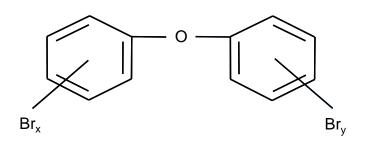
- Electronic circuitry
- Plastics
- Paper
- Wood
- Textiles
- Building materials

# **Chemical Structures of major BFRs**

# Polybrominated biphenyls (PBBs) 209 congeners



$$x + y = 1-10$$

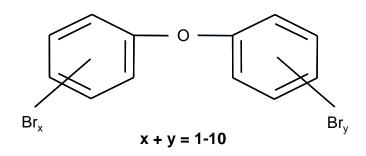

# Hexabromocyclododecane (HBCD) 3 isomers

α-HBCD

β-HBCD

γ-HBCD

# Polybrominated diphenylethers (PBDEs) 209 congeners




$$x + y = 1-10$$

#### **Tetrabromobisphenol A (TBBPA)**

#### **Technical mixtures of PBDEs**

PBDEs 209 congeners



#### **PentaBDE Mixture**

<0,2 % tri-BDEs (17,28)

24-37% tetra-BDEs (47)

50-60% penta-BDEs (99,100)

4-8% hexa-BDEs (153,154)

#### **OctaBDE Mixture**

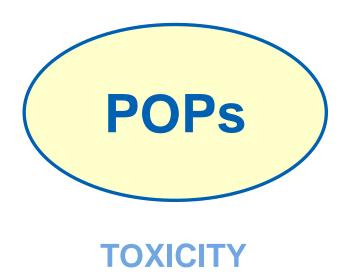
10-12% hexa-BDEs

44% hepta-BDEs (183)

31-35% octa-BDEs

10-11% nona-BDEs

#### **DecaBDE Mixture**

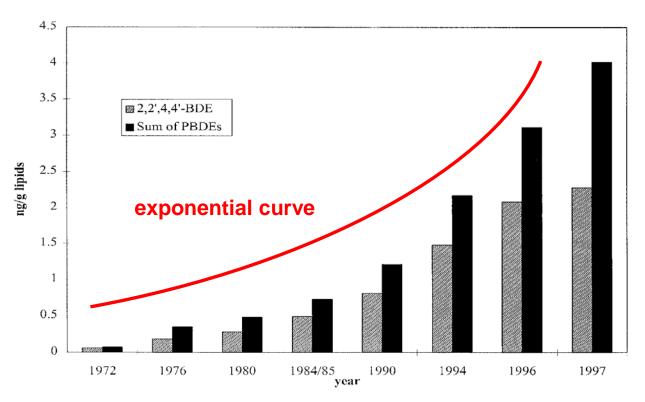

97% deca-BDE (209)

# **Properties of PBDEs**

- high chemical stability
  - high lipophilicity



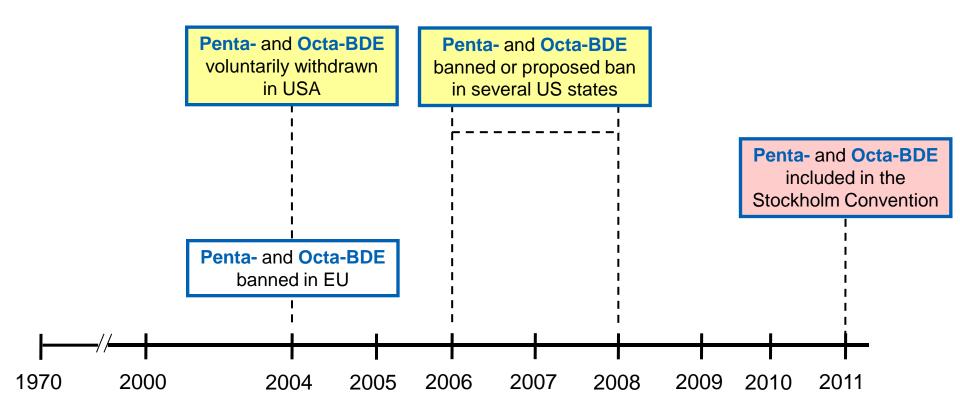
# PERSISTENCY BIOACCUMULATIVE POTENCY




# **Environmental issues of PBDEs: Chronology**

| <b>+</b> 1970 | Introduction of BFRs in consumer products                                                        |
|---------------|--------------------------------------------------------------------------------------------------|
| + 1973        | Poisoning accident in the USA – PBBs                                                             |
| <b>1979</b>   | PBDEs first detected in environment (soil and sludge) (USA)                                      |
| + 1981        | <b>PBDEs</b> first discovered in fish river downstream from textile industries (Sweden)          |
| <b>- 1987</b> | First indication of <b>PBDE</b> presence in remote areas - ubiquitous environmental contaminants |
| <b>+</b> 1999 | Significant increase of <b>PBDEs</b> in human breast milk (10 times every 5 years)               |

## **Environmental issues of PBDEs: Chronology**


Concentrations of BDE-47 and ΣPBDEs in Swedish human milk collected in different periods



1999 Significant increase of **PBDEs** in human breast milk (10 times every 5 years)

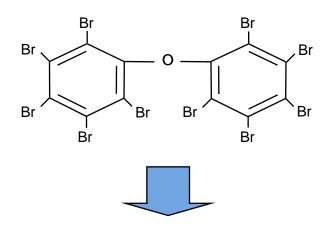
D. Meironyté, K. Norén, A. Bergman. J. of Toxicol. and Environ. Health, Part A, 1999, 58, 329-341

## **Regulatory history of PBDEs**



Stricter legal restrictions in Europe than in USA

# 2 BFR Production


#### Usage of selected BFRs in different areas of the world in 2001 (in tonnes)

|           | America | Europe | Asia   | Rest of the world | Total  | % of total world usage |
|-----------|---------|--------|--------|-------------------|--------|------------------------|
| ТВВРА     | 18000   | 11600  | 89400  | 600               | 119700 | 59                     |
| HBCD      | 2800    | 9500   | 3900   | 500               | 16700  | 8                      |
| Deca-BDE  | 24500   | 7600   | 23000  | 1050              | 56100  | 27                     |
| Octa-BDE  | 1500    | 610    | 1500   | 180               | 3790   | 2                      |
| Penta-BDE | 7100    | 150    | 150    | 100               | 7500   | 4                      |
| Total     | 53900   | 29460  | 117950 | 2430              | 203790 |                        |

Penta-BDE and Octa-BDE mixtures have been banned in Europe. Then, their consumption has dropped in Europe, and a shift in production towards other BFRs like <a href="Deca-BDE">Deca-BDE</a> and <a href="HBCD">HBCD</a> took place.

# Deca-BDE: Environmental questions (... 2004)

#### **Decabrominated diphenyl ether (BDE-209)**



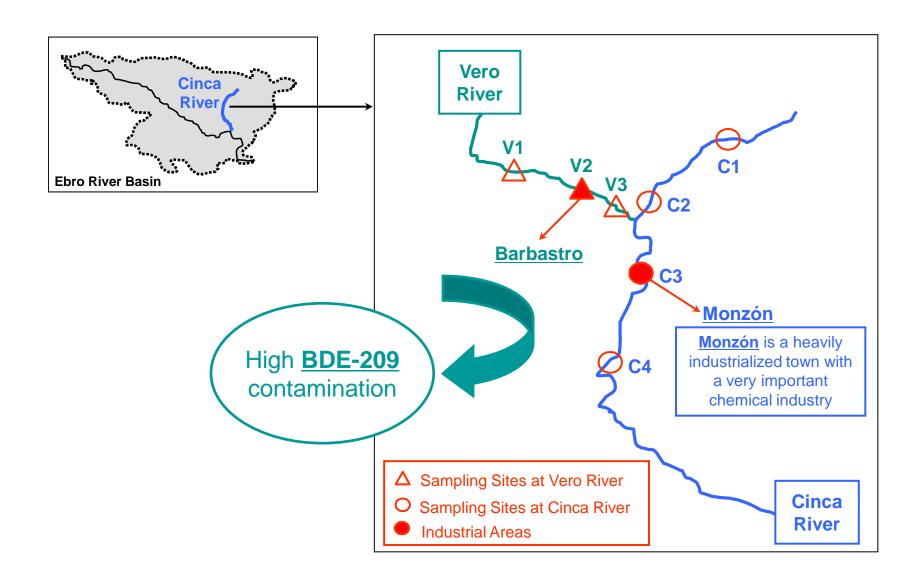
Experiments with caged fish (Rainbow trout and Juvenile carp) following dietary exposure showed a slow but measurable uptake of BDE-209 and the presence of lower brominated PBDEs (i.e. hexa-BDE-154)

- It may debrominate in the environment to form less-brominated BDE congeners, which are more bioavailable?
- It is bioavailable? Due to their large molecular size, their uptake rates decreased? Or, a rapid biotransformation increases their degradation rates?

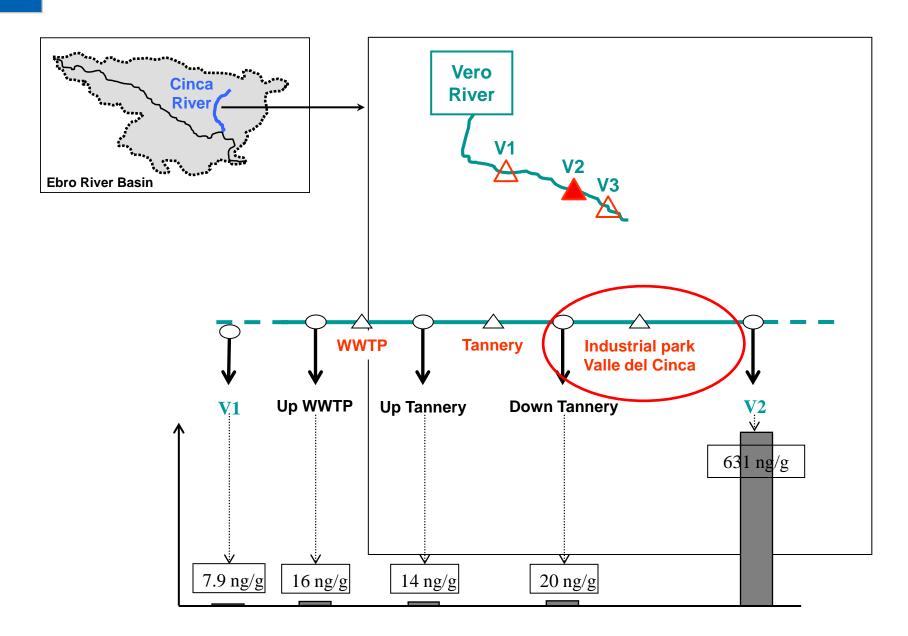
#### Deca-BDE: CASE STUDY I



Integrated modelling of the river-sediment-soilgroundwater system; advanced tools for the management of catchment areas and river basins in the context of global change.







#### **EBRO River Basin – RISK ZONES**



# **CASE STUDY I – Sampling Sites**



# **CASE STUDY I – Identification of Sources of Contamination**



# **CASE STUDY I – Collected Samples**

# Identification of Sources of Contamination Analysis of Industrial effluents

#### Three Industries:

- Textile Industry
   (Production of polyester fibers treated with flame retardants)
- Production of epoxy resins
- Polyamide polimerization





|                             | BDE-209 (ng/L) |
|-----------------------------|----------------|
| Polyester fibers production | 5              |
| Epoxy resins production     | 45             |
| Polyamide polymerization    | 2600           |

# **CASE STUDY I – Collected Samples**

|      | V1         | V2         | V3         |
|------|------------|------------|------------|
|      | 1 Sediment | 1 Sediment | 1 Sediment |
| 2004 | 6 Barbel   | -          | 8 Barbel   |
|      | -          | -          | 2 Carp     |
|      | 1 Sediment | 1 Sediment | 1 Sediment |
| 2005 | 8 Barbel   | -          | 5 Barbel   |





# Sediment concentrations (expressed in ng/g dw)

|             | 2004 |      |      |      |       |      |
|-------------|------|------|------|------|-------|------|
|             | V1   | V2   | V3   | V1   | V2    | V3   |
| BDE-209     | 7.46 | 5395 | 1911 | 26.9 | 12459 | 7454 |
| Total PBDEs | 11.1 | 5531 | 1930 | 29.5 | 14395 | 7767 |

#### **CASE STUDY I – Deca-BDE in Biota**

#### Biota concentrations (expressed in ng/g lw)

#### Sampling: 2004

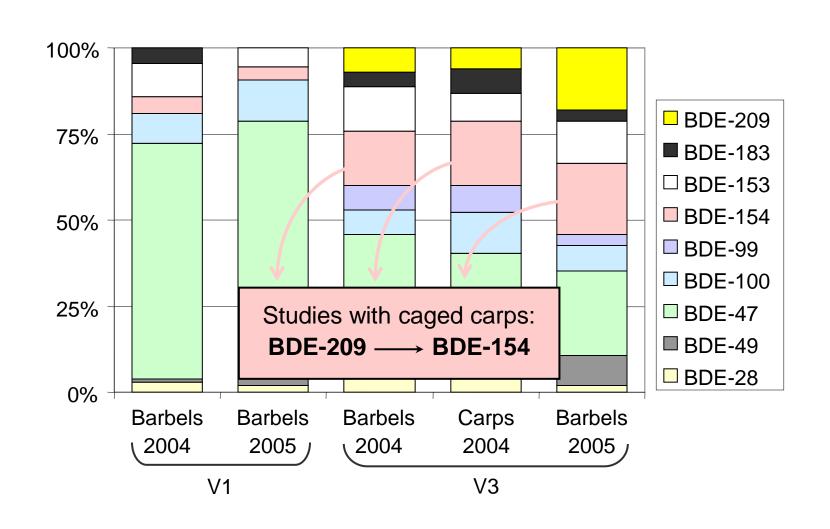
biota samples collected
downstream an industrial park,
at concentration levels ranging from
20 to 267 ng/g lipid weight,
whereas it was not detected
in samples collected upstream

#### Sampling: 2005

biota samples collected
downstream an industrial park,
at concentration levels ranging from
69 to 773 ng/g lipid weight,
whereas it was not detected
in samples collected upstream

Mean Value
67 ng/g lipid weight

Median Value
32 ng/g lipid weight


Increase of contamination with time

Mean Value
195 ng/g lipid weight

Median Value
86 ng/g lipid weight

## **CASE STUDY I – Deca-BDE in Biota**

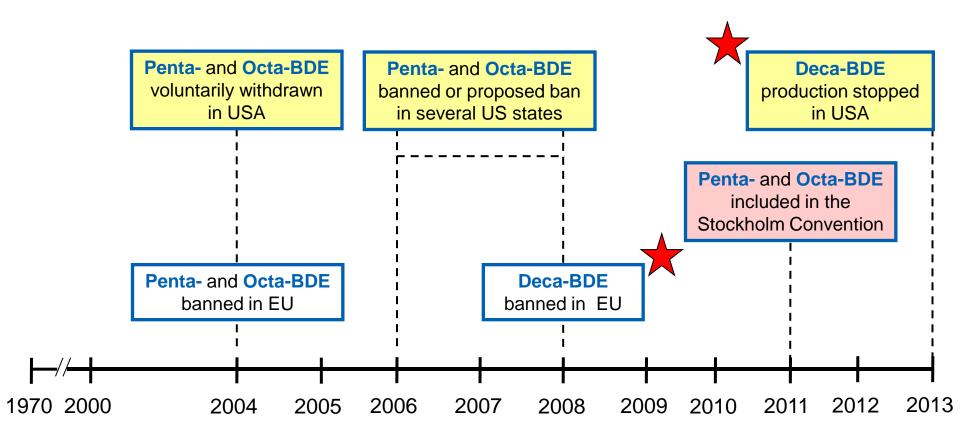
#### Percentage contribution of PBDE congeners to the ΣPBDEs



## **CASE STUDY I – Deca-BDE in Biota**

#### **Fish to Sediment ratios**

Ratios between concentrations of PBDEs in <u>barbels (ng/g lw)</u> and concentrations in <u>sediments (ng/g organic carbon)</u>


|               | V1   |      | V      | /3     |
|---------------|------|------|--------|--------|
|               | 2004 | 2005 | 2004   | 2005   |
| Tetra-BDE-47  | 3.83 | 1.82 | 4.91   | 0.67   |
| Hepta-BDE-183 | 0.05 | 1    | 0.09   | 0.13   |
| Deca-BDE-209  | -    | ı    | 0.0013 | 0.0011 |

Fish to sediment ratios very much lower for BDE-209.

Potential indication of recent release of BDE-209 from the industrial park, that contaminated the sediment but not yet take up by fish

# 2

## **Regulatory history of PBDEs**



Stricter legal restrictions in Europe than in USA

# **Temporal trends of PBDEs**

#### **Bird eggs from Spain**

White stork Ciconia Ciconia



1999 2011-12



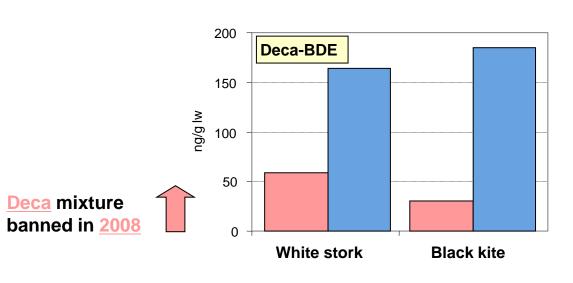
10 samples7 samples

1999 2011-12

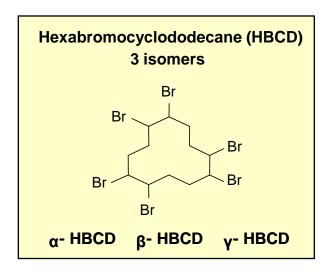
Penta-BDE

100

Penta mixture
banned in 2004


Black kite Milvus Migrans



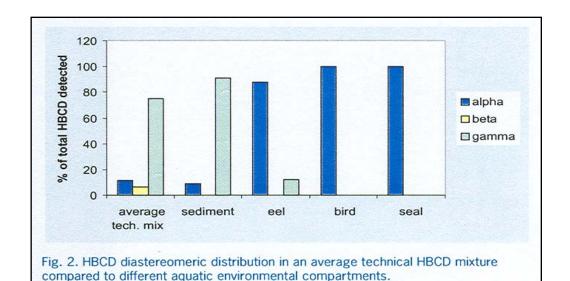

1999 2011-12



10 samples8 samples

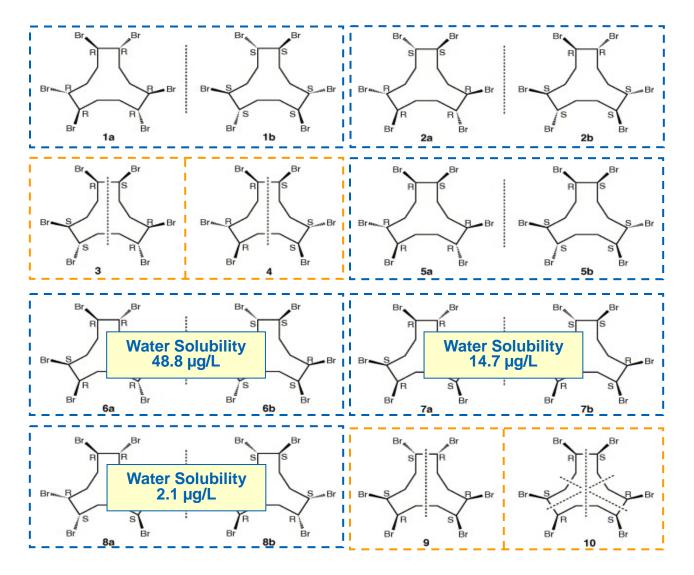


# Hexabromocyclododecane: HBCD Environmental questions (... 2004)




#### **Technical Mixture**

α- HBCD 10-13%


β- HBCD 1-12%

y- HBCD 75-89%



Alpha is more bioavailable than gamma? Or, their bioaccumulation factor is greater? Or, biotransformation occur from gamma to alpha?

# Hexabromocyclododecane: HBCD



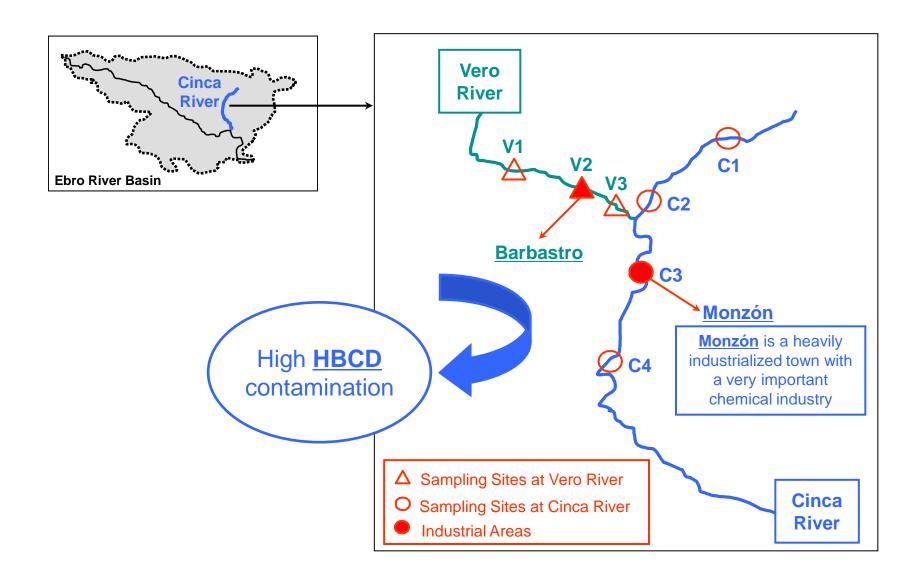
16 possible stereoisomers: six pairs of enantiomers and four meso forms

#### **HBCD: CASE STUDY I**



Integrated modelling of the river-sediment-soilgroundwater system; advanced tools for the management of catchment areas and river basins in the context of global change.






#### **EBRO River Basin – RISK ZONES**



E. Eljarrat, A.de la Cal, D.Raldúa, C.Duran, D.Barceló. Environ. Sci. Technol., 2004, 38, 2603-2608
E.Eljarrat, A.de la Cal, D.Raldúa, C.Duran, D.Barceló. Environ. Pollut., 2005, 133, 501-508
P. Guerra, A. de la Cal, G. Marsh, E. Eljarrat, D.Barceló. J. of Hydrol., 2009, 369, 360-367

# **CASE STUDY I – Sampling Sites**



# **CASE STUDY I – Collected Samples**

# Identification of Sources of Contamination Analysis of Industrial effluents

#### Two Industries:

- Production of EPS (Expandable polystyrene) treated with flame retardants and ABS (Acrylonitrile -butadiene-styrene)
- Production of PVC

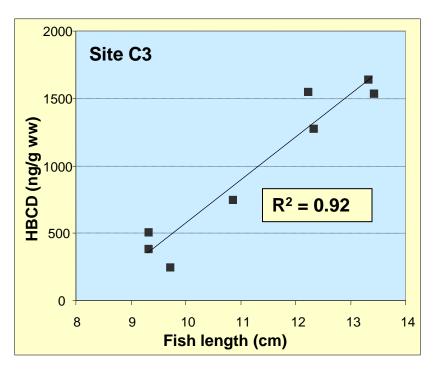


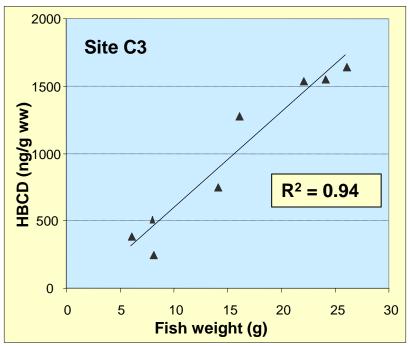


|                        | HBCD (ng/L) |
|------------------------|-------------|
| EPS and ABS production | 4980        |
| PVC production         | nd          |

# **CASE STUDY I – HBCD in Sediment and Biota**

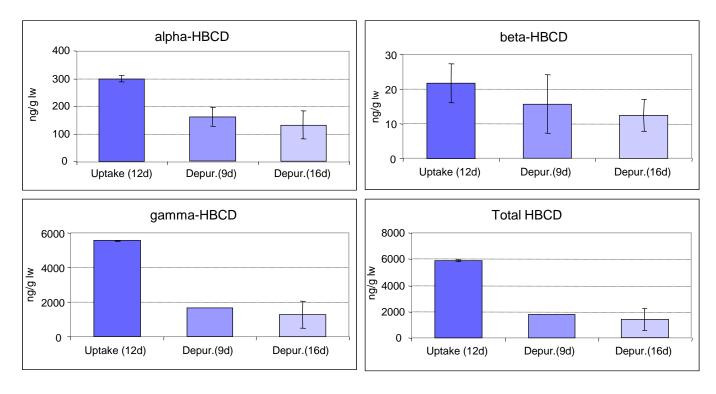
|          | 2002 |    |                 |                  |    | 2004 |              |                |  |
|----------|------|----|-----------------|------------------|----|------|--------------|----------------|--|
|          | C1   | C2 | С3              | C4               | C1 | C2   | C3           | C4             |  |
| Sediment | nd   | nd | 514 ng/g dw     | 90 ng/g dw       | nd | nd   | 1613 ng/g dw | 866 ng/g dw    |  |
| Fish     | nd   | nd | 0.2-1.6 μg/g ww | 0.02-1.1 μg/g ww | nd | nd   | - (          | 52-104 μg/g lw |  |





104 μg/g lw = = 12 μg/g ww

## **CASE STUDY I – HBCD Bioaccumulation**

Fish length and weight are directly related to fish age


**Length and Weight versus [HBCD]** 

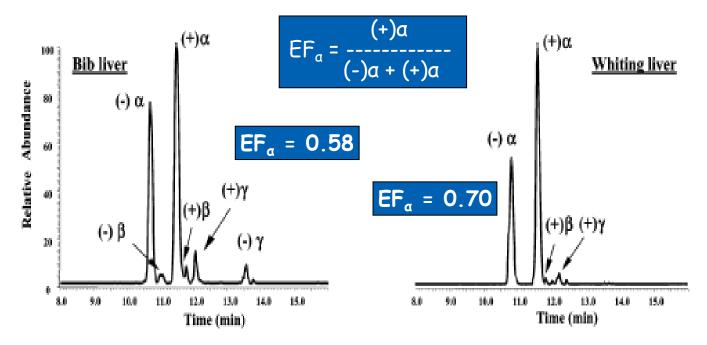




## **CASE STUDY I – HBCD Depuration**

Zebrafish (*Danio rerio*) were exposed to an industrial effluent (diluted 1:500) for 12 days. Then, depuration was studied after 9 and 16 days

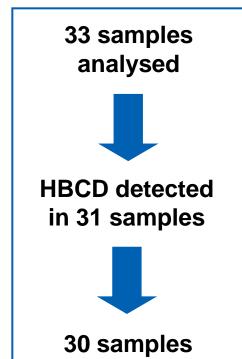



Depuration rates for alpha and beta isomers (46 and 27% after 9 days, respectively) were lower than that of gamma isomer (70% after 9 days)

# **ENANTIOMERIC ACCUMULATION Enantiomeric Fraction (EF)**

$$EF = \frac{(+) A}{(-) A + (+) A}$$

where A+ and A- correspond to the peak areas of eluting enantiomers

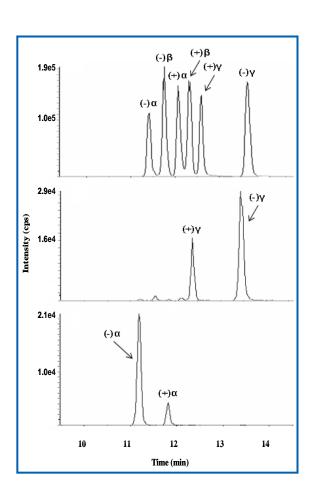

#### HBCD in marine species

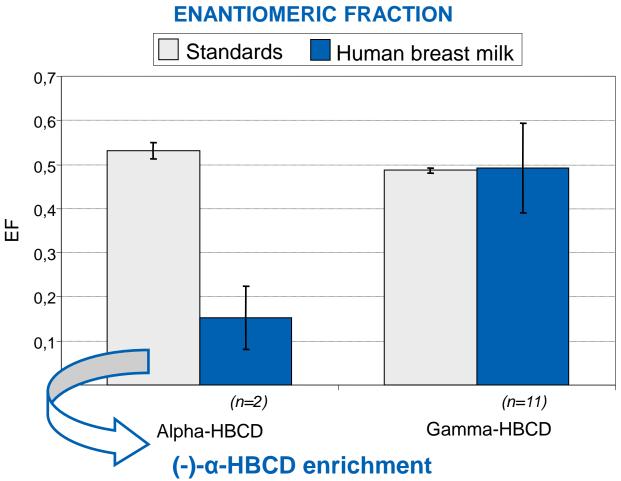


E. Eljarrat et al. Environ. Sci. Technol., 2009, 43, 1940-1946

**Samples from Spain** 

**Concentration levels (ng/g lw)** 





quantified

| Sample |        |        |        | Total |
|--------|--------|--------|--------|-------|
| Code   | α-HBCD | β-HBCD | γ-HBCD | HBCDs |
| L-1    | 12     | nd     | 176    | 188   |
| L-2    | 1.59   | nd     | 141    | 143   |
| L-3    | nq     | nq     | 67     | 67    |
| L-4    | 0.13   | nq     | 69     | 69    |
| L-5    | 0.3    | nd     | 7.8    | 8.1   |
| L-6    | 5.35   | nd     | 22.6   | 28.0  |
| L-7    | nq     | nq     | 27     | 27    |
| L-8    | 2.2    | nd     | 16     | 18    |
| L-9    | 2.82   | nd     | 13.7   | 16.5  |
| L-10   | nq     | nd     | 7.9    | 7.9   |
| L-11   | 2.21   | nd     | 23.1   | 25.3  |
| L-13   | nq     | nd     | 21.7   | 21.7  |
| L-14   | nd     | nd     | nd     | nd    |
| L-16   | nd     | nd     | nd     | nd    |
| L-18   | 71.5   | nq     | nq     | 71.5  |
| L-19   | 7.5    | nd     | 29     | 37    |
| L-20   | 18     | nd     | 54     | 71    |
| L-21   | 10     | nd     | 25     | 35    |
| L-22   | 19     | nd     | 23     | 42    |
| L-23   | 3.9    | nd     | 9.5    | 13    |
| L-24   | 1.1    | nd     | 62     | 63    |
| L-25   | 14     | nd     | 9.1    | 23    |
| L-26   | 1.8    | nd     | 1.0    | 2.8   |
| L-27   | 4.9    | nd     | 61     | 65    |
| L-28   | 14.7   | nd     | 134    | 148   |
| L-29   | 3.6    | nd     | nq     | 3.6   |
| L-30   | 9.5    | nd     | 18     | 28    |
| L-31   | 2.1    | nd     | 23     | 26    |
| L-32   | nq     | nd     | 13     | 13    |
| L-33   | 0.80   | nd     | 5.4    | 6.2   |
| L-34   | nq     | nd     | nq     | nq    |
| L-35   | 2.8    | nd     | nq     | 2.8   |
| L-36   | 122    | nd     | 14.2   | 136   |

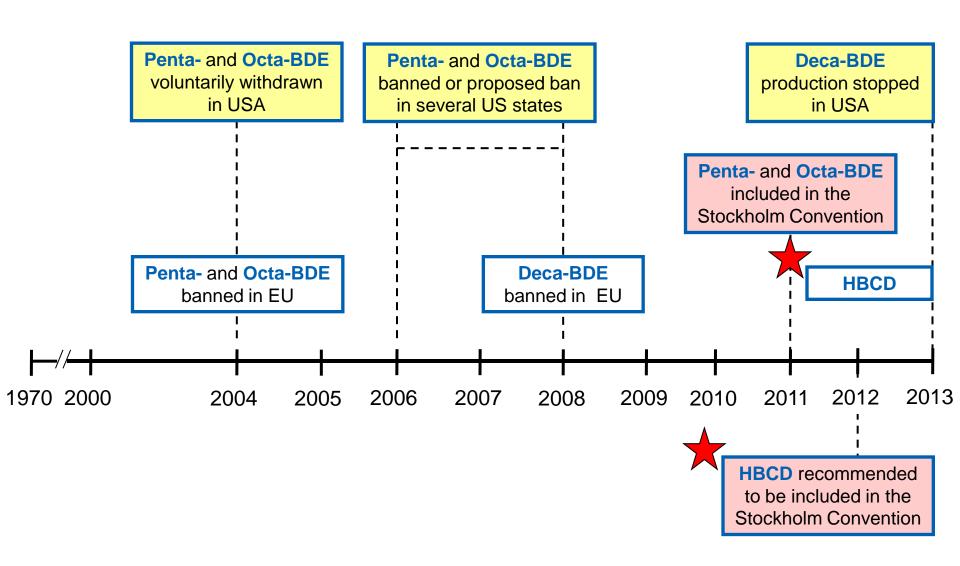
# HBCD concentrations in human breast milk from different countries Results expressed in ng/g of lipid weight

| Country     | Year      | α-HBCD   | β-HBCD | ү-HBCD | Total HBCD | Positive (n) |
|-------------|-----------|----------|--------|--------|------------|--------------|
| Coura da is | 2001      | nr       | nr     | nr     | ND-2.4     | 12 (33)      |
| Sweden      | 2002-2003 | nr       | nr     | nr     | ND-1.5     | 24 (30)      |
| Norway      | 2001      | nr       | nr     | nr     | 0.25-2.0   | nr (9)       |
| Norway      | 1993-2001 | nr       | nr     | nr     | 0.4-20     | 49 (85)      |
| Mexico      | nr        | nr       | nr     | nr     | 0.8-5.4    | 7(7)         |
| Canada      | 2002-2003 | 3.8      | nr     | nr     | 0.4-19     | nr (8)       |
| USA         | 2002      | 0.5      | nr     | nr     | 0.2-0.9    | nr (9)       |
| lonon       | 1973-1988 | ND       | ND     | ND     | ND         | nr           |
| Japan       | 1988-2006 | 0.43-1.9 | ND     | ND-2.6 | 0.43-4.0   | 11 (11)      |
| Russia      | 2000-2002 | nr       | nr     | nr     | ND-1.67    | 11 (37)      |
| France      | 2005      | ND-5     | ND     | ND     | ND-5       | 7 (23)       |
| Spain       | 2006-2007 | ND-122   | ND     | ND-176 | ND-188     | 30 (33)      |






Selective enantiomeric enrichment in human body


## Temporal trends: PBDEs versus HBCD

Temporal trend of BDE-47, BDE-153 and HBCD in milk samples from Sweden



B. Fängström, I. Athanassiadis, T. Odsjö, K. Norén, A. Bergman. Mol. Nutr. Food Res. 2008, 52, 187-193

## **Regulatory history of BFRs**



## **Halogenated Norbornenes (HNs)**

# 

#### **Mirex**

Widely used as a pesticide and as FR to its ban in 1976.

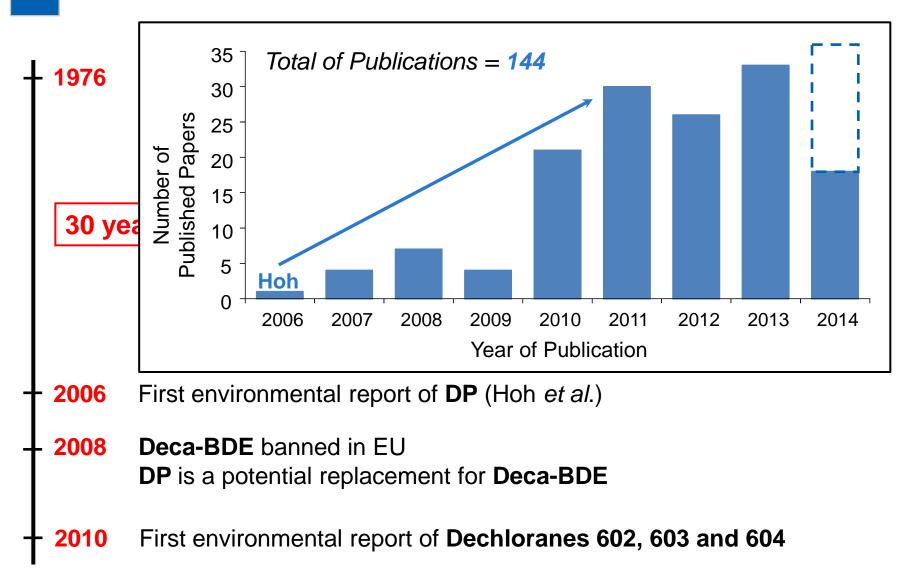
#### **Dechloranes**

2 steroisomers: **syn-** and **anti-DP** 

#### **Dechlorane Plus (DP)**

**Dechlorane 602** 

**Dechlorane 603** 


**Dechlorane 604** 

## **Halogenated Norbornenes (HNs)**

## **Physico-Chemical properties of Dechloranes**

|         | Molecular Formula                                 | Nominal mass<br>(g/mol)  | LogK <sub>ow</sub> | Water solubility<br>25°C, mg/l | LC <sub>50</sub><br>µg/L |
|---------|---------------------------------------------------|--------------------------|--------------------|--------------------------------|--------------------------|
| Dec 602 | C <sub>14</sub> H <sub>4</sub> CI <sub>18</sub> O | 614                      | 8.05               | 1.75e <sup>-5</sup>            | n/a                      |
| Dec 603 | High chemi<br>High lipoph                         | cal stability<br>ilicity | 11.2               | 2.45e <sup>-8</sup>            | n/a                      |
| Dec 604 | C <sub>13</sub> H <sub>4</sub> Br <sub>4</sub> C  | PERSISTE<br>BIOACCU      |                    | 75e <sup>-8</sup><br><b>VE</b> | n/a                      |
| DP      | C <sub>18</sub> H <sub>12</sub> CI <sub>12</sub>  | 654                      | 11.3               | 1.68e <sup>-8</sup>            | >1e <sup>5</sup>         |

## **Environmental issues of Dechloranes: Chronology**





## **Halogenated Norbornenes (HNs)**

#### **Dechlorane plus (DP)**

- **DP** is classified as a high production volume chemical in USA, but low production volume chemical in EU. Worldwide annual production volume is estimated at about 5000 t.
- **DP** applications: electrical hard plastic connectors, wire coatings and furniture.
- Manufacturers of DP include Oxychem (Buffalo, USA) and Anpon Electrochemical Co., Ltd (Jiangsu, China).

#### Dec 602, Dec 603, Dec 604

- Dec 602 and 604 are listed in the Canada's non domestic substance list and in the European Chemical Substances Information System.
- Dec 602 is usually used in nylon and
   Dec 604 in electro-mechanical products.
- Dec 603 is patented as FR but is also an impurity of the pesticides Aldrin and Dieldrin.
- Dec 603 is usually used when the legal restrictions do not allow the use of DP.

#### **Dechlorane Plus: State of the Art**

- ◆ DP was first identified in the environment in 2006 (Hoh et al.). After that, some research has been performed on the occurrence and behavior of DP:
  - DP was detected in environment, biota and humans
  - Long-range atmospheric transportation of DP has been observed in remote areas
  - Behavior of the two isomers is not the same in the environment and in biota
- The main DP studies are focused near the two production facilities in China and USA. Very few studies in other regions of the world (Korea, Spain ...)



#### **Dechlorane Plus: Concentration Levels**

Data on **Dec 602**, **603** and **604** concentration levels are even scarcer

**Sverko** *et al.,* Env. Sci. Technol **2011**, 45:5088-5098

**Xian** *et al.,* Env. Int. **2011**, 37:1273-1284

|                             | Near production facilities                            | Other regions of the world      |
|-----------------------------|-------------------------------------------------------|---------------------------------|
| Air                         | 7300 – 26000 pg/m <sup>3</sup><br>(China)             | Up to 15 pg/m <sup>3</sup>      |
| Indoor dust                 | 2.3 – 5683 ng/g<br>(Canada)                           |                                 |
| Sediment                    | Up to 300 ng/g dw (Lake Ontario) 7000 ng/g dw (China) | Up to 8 ng/g dw                 |
| Soil                        | Up to 13400 ng/g dw (China)                           | Up to 5 ng/g                    |
| Sludge                      | 45 – 194 ng/g dw                                      | 2 – 94 ng/g dw                  |
| Aquatic organisms           | 20 – 2000 ng/g lw<br>(China)                          | Up to 11 ng/g lw                |
| Terrestrial biota<br>(Eggs) | 38 – 65 ng/g lw<br>(Great Lakes region)               | Up to 2.5 ng/g lw               |
| Humans                      | 43 ng/g lw ( <b>Blood</b> )<br>(China)                | Up to 8 ng/g lw ( <b>Milk</b> ) |



#### Franciscana (Pontoporia blainvillei)

Is the most impacted cetacean of the eastern coast of South America:

- included in the Brazilian government threatened species list (IBAMA, 2003)
- included in the Index II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)
- included in the Red List of Threatened species (IUCN, 2008) as "Vulnerable"

Franciscana needs measures of conservation due to:

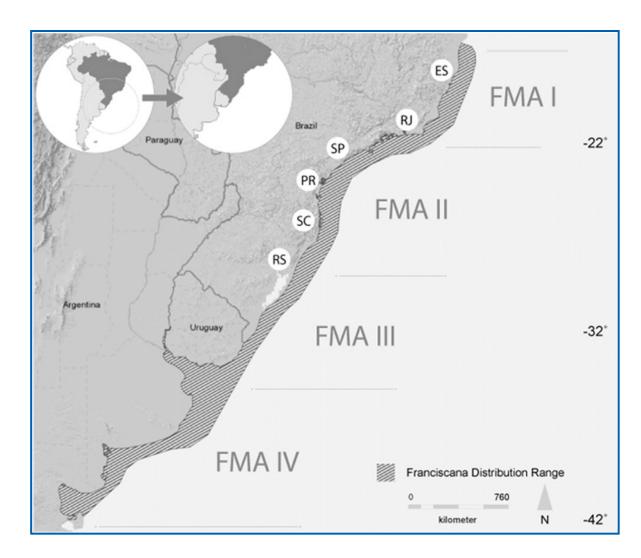
- its vulnerability to incidental capture
- habitat degradation (anthropogenic contaminants)





Sampling location, distributted within the Franciscana Management Areas (FMA), at the States of:

ES - Espírito Santo


RJ - Rio de Janeiro

SP - São Paulo

PR – Paraná

SC - Santa Catarina

RS - Rio Grande do Sul



#### Franciscana

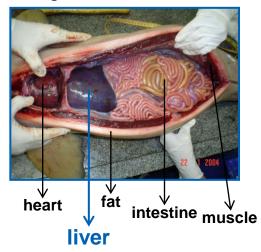
20 samples were either obtained from animals caught in drift nets or found stranded along the southeastern coast of Brazil between 1994 and 2008.



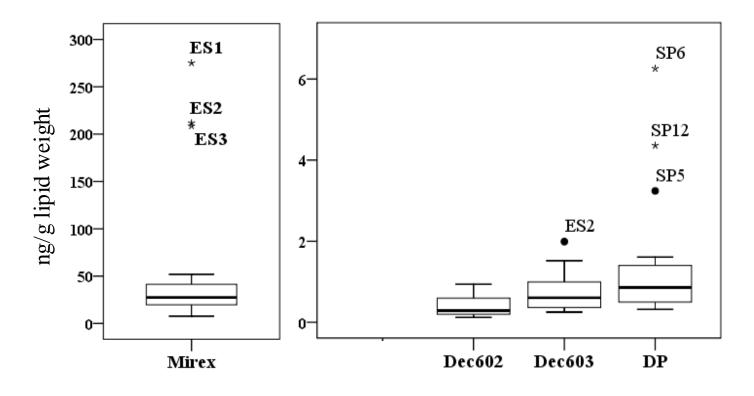




at the Lab.


length measurement




counting teeth



obtaining different organs and tissues



| Mirex   | 20 out 20 | [7.63 – 275 ng/g lw]  | Mean = 64.7 ng/g lw |
|---------|-----------|-----------------------|---------------------|
| DP      | 16 out 20 | [0.32 – 6.26 ng/g lw] | Mean = 1.53 ng/g lw |
| Dec 603 | 20 out 20 | [0.25 – 1.99 ng/g lw] | Mean = 0.75 ng/g lw |
| Dec 602 | 19 out 20 | [0.12 – 0.94 ng/g lw] | Mean = 0.38 ng/g lw |



Concentration levels expressed in ng/g lw, with the exception of PCDDs/Fs + DL-PCBs, expressed in pg TEQ/g lw

| DDTs                | 11.4 - 14908 |
|---------------------|--------------|
| HCHs                | 38.8 - 1537  |
| PCBs                | 4.28 - 27741 |
| PCDDs/Fs + DL-PCBs* | 34 - 276     |
| PBDEs               | 7.91 - 1797  |
| Mirex               | 7.63 - 275   |
| DP                  | 0.32 - 6.26  |



PCBs > DDTs > PBDEs > HCHs > Mirex > DP



## HNs: CASE STUDY IV – HNs in Dolphins from Spain

28 blubber samples collected during February 2012

- 8 samples of *Delphinus delphis*
- 20 samples of *Tursiops Truncatus*

#### **Biopsy Sampling**

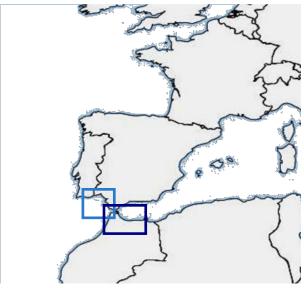
- Minimal damage
- Small sample amount
- Without individual information (age, sex ...)

#### **Gulf of Cádiz**

#### **Strait of Gibraltar**



Tursiop Truncatus




Delphinus Delphis











## HNs: CASE STUDY IV – HNs in Dolphins from Spain

#### Concentration levels of HNs (ng/g lw)

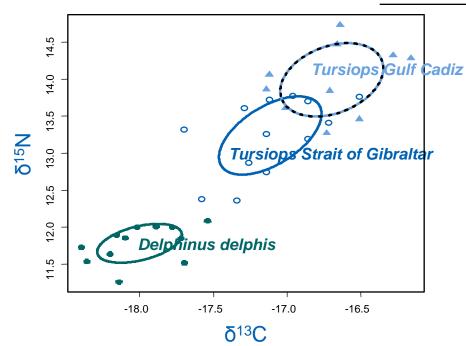
|                            | Mirex    | Dec602    | Dec603    | syn-DP  | <i>anti</i> -DP | Total DP |
|----------------------------|----------|-----------|-----------|---------|-----------------|----------|
| Dd (Gulf)                  | nq-53.3  | nd-2.83   | nq-3.30   | nd-14.2 | nd-12.9         | nd-27.1  |
| Tt (Gulf)                  | nq-157   | 1.22-16.6 | 0.84-15.2 | nd-11.4 | nd-9.68         | nd-21.1  |
| Tt (Strait)                | 18.9-501 | 2.14-13.7 | 0.11-5.63 | nd-5.44 | nd-5.00         | nd-5.00  |
| Frequency of detection (%) |          | 74        | 96        | 8       | 7               |          |

In general, HN levels in *Delphinus Delphis* are lower than those of *Tursiop Truncatus*.

In general, levels in **Strait of Gibraltar** are lower than those of **Gulf of Cádiz**.



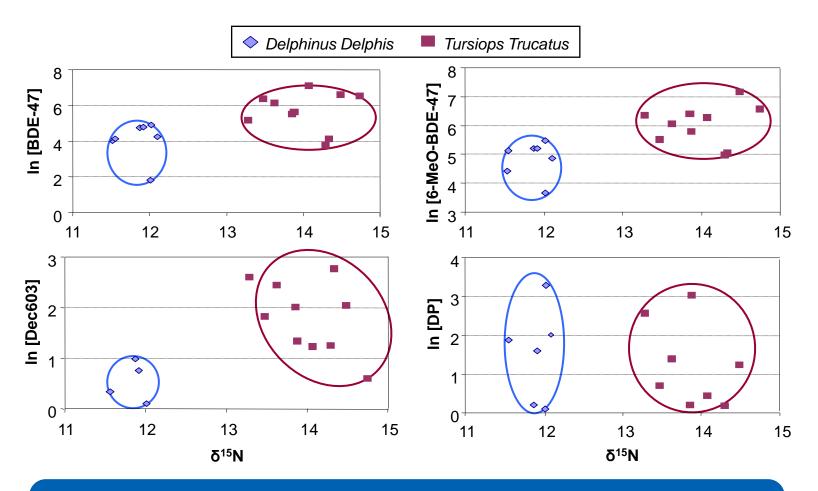
## HNs: CASE STUDY IV – HNs in Dolphins from Spain


Analysis of Stable Isotopes of Nitrogen: to characterize the food chain.

The  $\delta^{15}N$  is the ratio between  $^{15}N/^{14}N$ . This ratio increases with the trophic level, due to a preferential excretion of the lighter isotope,  $^{14}N$ .

13C/12C: Related to diet

<sup>15</sup>N/<sup>14</sup>N: Related to the trophic position


|                    | 013C             | O <sub>19</sub> N |
|--------------------|------------------|-------------------|
| Delphinus delhpis  | -17.54 to -18.40 | 11.52 to 12.09    |
| Tursiops truncatus | -16.16 to -17.70 | 12.74 to 14.28    |



Significant differences in the isotopic nitches of *Delphinus delphis* and *Tursiops truncatus* were found (Permutation test (*Turner 2010*), p<0.01)

## HNs: CASE STUDY IV - HNs in Dolphins from Spain

**Stable Nitrogen Relationship with Concentration Level** 



PBDEs (BDE-47) and MeO-PBDEs (6-MeO-47) showed biomagnification capacity (Consistent with literature)

Dec 603 showed biomagnification capacity, in contrast with DP



#### **Bird Eggs from Doñana National Park (Spain)**

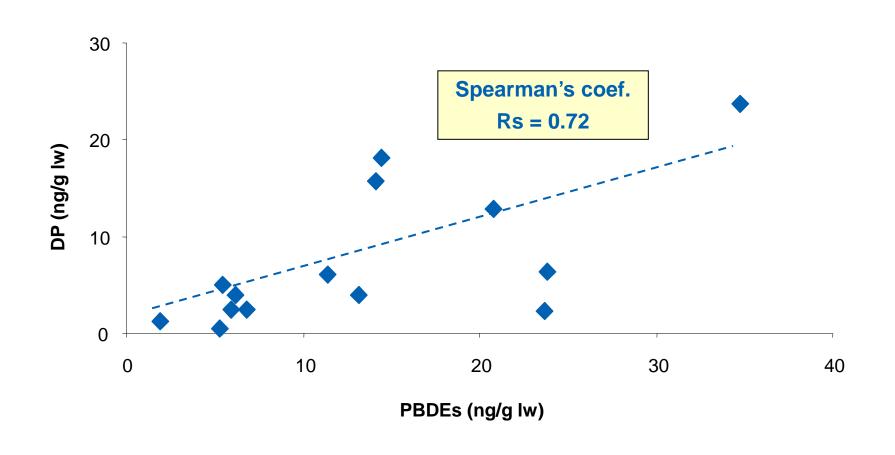
**Doñana National Park** has a unique biodiversity in Europe. Mainly emphasizes the marsh, of extraordinary importance as a transit, breeding and wintering **birds for thousands of European and African species**. Many of these species, especially those who are at higher levels within the food chain, are especially sensitive to the harmful effects of environmental pollution.



#### Bird Eggs from Doñana National Park (Spain)

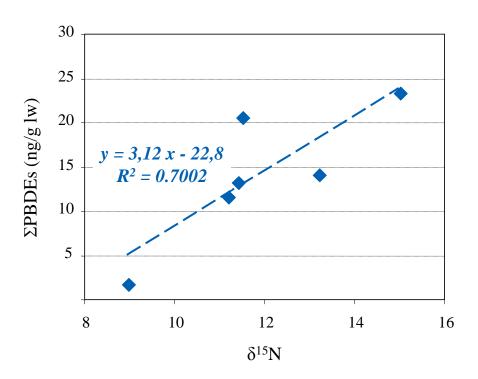
| Order           | Species               | Scientific name            | N  |
|-----------------|-----------------------|----------------------------|----|
|                 | Black kite            | Milvus migrans             | 22 |
|                 | Red kite              | Milvus milvus              | 2  |
| Falconiformes   | Western marsh harrier | Circus aeruginosus         | 1  |
| raiconitormes   | Booted eagle          | Áquila pennata             | 6  |
|                 | Common kestrel        | Falco tinnunculus          | 13 |
|                 | Black-winged kite     | Elanus caeruleus           | 1  |
|                 | Glossy ibis           | Plegadis falcinellus       | 4  |
| Ciconiiformes   | Purple heron          | Ardea purpurea             | 3  |
|                 | White stork           | Ciconia ciconia            | 34 |
| Strigiformes    | Barn owl              | Tyto alba                  | 1  |
|                 | Slender-billed gull   | Chroicocephalus genei      | 3  |
| Charadriiformes | Black-headed gull     | Chroicocephalus ridibundus | 7  |
|                 | Gull-billed tern      | Gelochelidon nilotica      | 8  |
| Anseriformes    | Gadwall               | Anas strepera              | 10 |

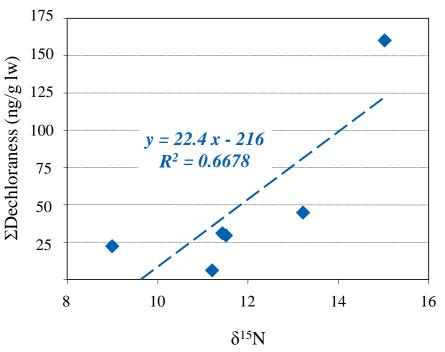
115 unhatched egg samples from 14 bird species


Different feeding and migratory behavior

#### Concentration Levels (mean values) expressed in ng/g lw

| Order           | Specie                | ΣPBDEs | ΣDechloranes |
|-----------------|-----------------------|--------|--------------|
| Falconiformes   | Black kite            | 13.6   | 30.9         |
|                 | Red kite              | 14.2   | 45.9         |
|                 | Western marsh harrier | 23.4   | 161          |
|                 | Booted eagle          | 18.3   | 29.9         |
|                 | Common kestrel        | 12.7   | 8.88         |
|                 | Black-winged kite     | 1.72   | 22.6         |
| Ciconiiformes   | Glossy ibis           | 11.1   | 11.8         |
|                 | Purple heron          | 23.6   | 14.9         |
|                 | White stork           | 34.5   | 66.1         |
| Strigiformes    | Barn owl              | 5.20   | 7.25         |
| Charadriiformes | Slender-billed gull   | 5.03   | 39.4         |
|                 | Black-headed gull     | 5.98   | 63.4         |
|                 | Gull-billed tern      | 6.62   | 23.6         |
| Anseriformes    | Gadwall               | 5.66   | 5.93         |


HN levels **similar or higher** than those of PBDEs

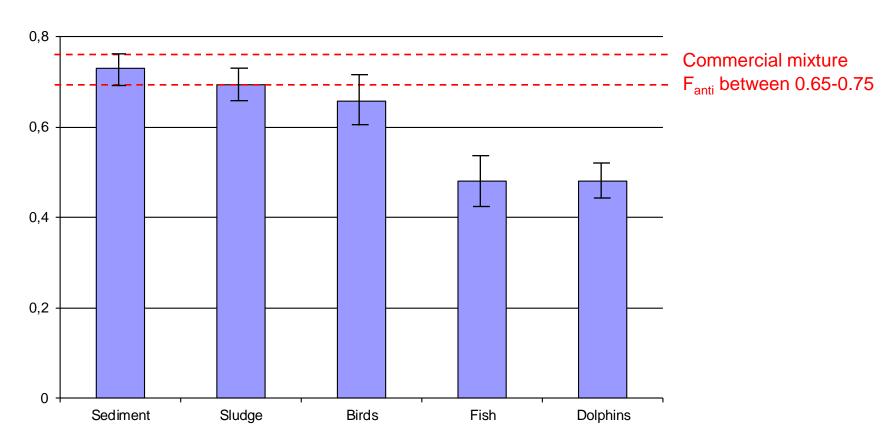

#### **PBDE** and **HN** Correlation



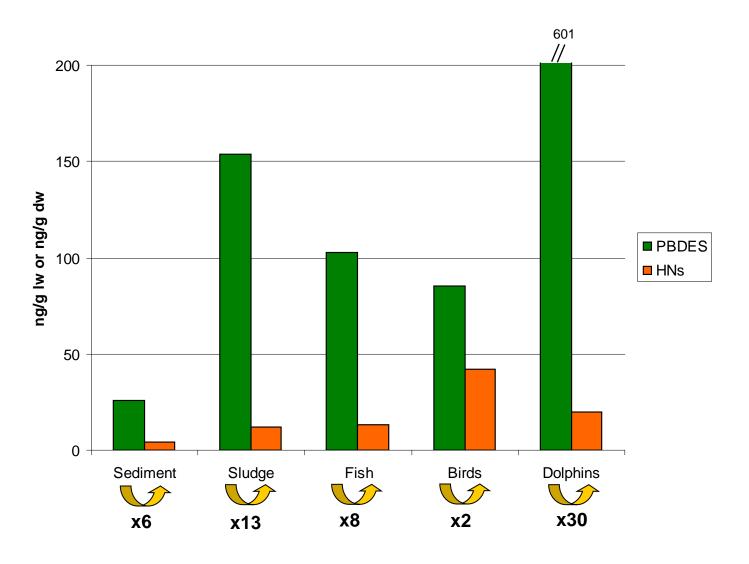
## Biomagnification Study FALCONIFORMES








Like **PBDEs**, **HNs** BIOMAGNIFY

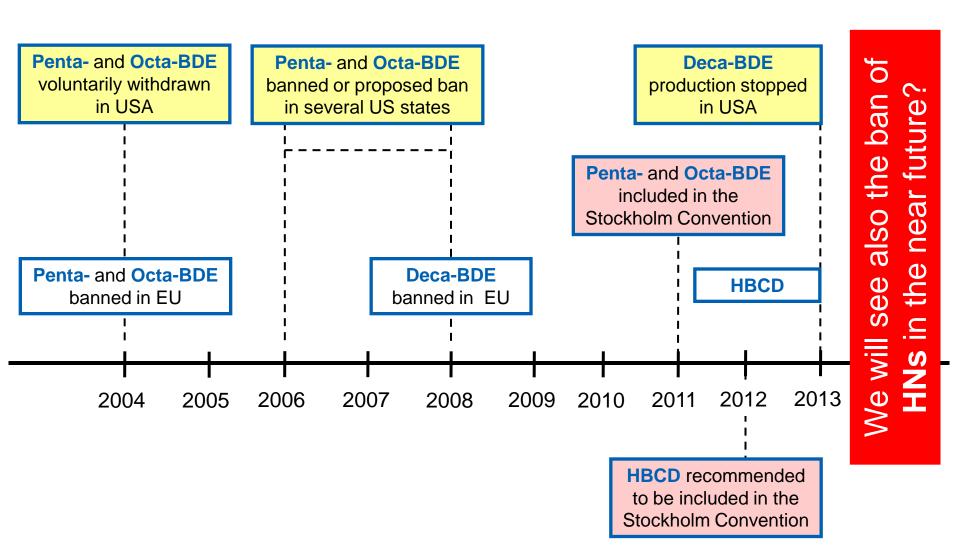

## **HNs: Dechlorane Plus: F**anti

#### **Dechlorane plus isomer ratio (Fanti)**

$$F_{anti} = \frac{[anti-DP]}{[syn-DP]+[anti-DP]}$$



#### HNs: PBDE versus HN levels




PBDE levels still higher than HN levels in all matrices, but HNs present in all matrices!

# What happens with HALOGENATED NORBORNENES?



It's the same old story?

