A framework for developing, implementing and evaluating clinical prediction models in an individual participant data meta-analysis

Thomas Debray

Moons KGM, Ahmed I, Koffijberg H, Riley RD

Supported by Netherlands Organisation for Scientific Research (TOP 9120.8004, 918.10.615 and 916.11.126) and the MRC Midlands Hub for Trials Methodology Research (Medical Research Council Grant G0800808)
Prediction modeling and IPD meta-analysis

Opportunities

- Increase effective sample size
- Improve generalizability

Challenges

- Heterogeneity of IPD populations (e.g. baseline risk)
- Validation of aggregated model
- Implementation of aggregated model in new individuals
Assumptions

- Logistic regression models
- Homogeneity of predictor-outcome associations

Proposed framework

- Step 1: Estimation of predictor-outcome associations
- Step 2: Choosing an appropriate model intercept
- Step 3: Evaluation of model performance

Build upon previous research from Royston et al.
Step 1: Estimation of predictor-outcome associations

What β terms will be used in the final model?

- **Stacking**

 $$y_i \sim \text{Bernoulli}(\pi_i)$$

 $$\text{logit}(\pi_i) = \alpha + \beta'X_i$$

- **Random effects modeling of the intercept**

 $$\text{logit}(\pi_{ij}) = \alpha_j + \beta'X_{ij} \quad \text{with} \quad \alpha_j \sim \mathcal{N}(\alpha, \tau^2_\alpha)$$

- **Stratified estimation of the intercept**

 $$\text{logit}(\pi_{ij}) = \sum_{m=1}^{M} (\alpha_m l_{m=j}) + \beta'X_{ij}$$
Step 2: Choosing an appropriate model intercept

What \(\alpha \) term will be used in the final model?

- **Average intercept**
 - Stacking
 - Random effects

- **Intercept from an included study**
 - Random effects
 - Stratified estimation
 - Select intercept by similarity in outcome frequency

- **New intercept**
 - Estimate from outcome prevalence
 (requires mean-centering of predictor variables)
 - Estimate from new IPD
Step 3: Evaluation of model performance

Evaluate entire strategy of model development and intercept choice

- Internal-external cross-validation (IECV, by Royston et al.)
- Iteratively use M-1 studies for derivation and the remaining study for validation
- Distinguish between discrimination and calibration
- Interpret model performance across M validation rotations
- Develop final model
Extension to count and time-to-event data

- **Count data**
 \[y_i \sim \text{Poisson} (\lambda_i) \]
 \[\ln (\lambda_i) = \alpha + \beta' X_i \]

- **Time-to-event (constant baseline hazard)**
 \[y_i \sim \text{Poisson} (\lambda_i) \]
 \[\ln (\lambda_i) = \ln (t_i) + \alpha + \beta' X_i \]

- **Time-to-event**
 \[h(t|X_{ij}) = \zeta_j \lambda e^{\beta' X_{ij}} \text{ with } \zeta_j \sim \Gamma (1, \theta_0) \]
Illustrative example

- Diagnosis of Deep Venous Thrombosis
- IPD from 12 studies \((N = 153 – 1768)\)

- Method
 - Step 1: Stratified estimation of the intercept
 - Step 2: Estimate intercept from outcome prevalence
 - Step 3: Internal-external cross-validation
Illustrative example

- (Nearly) homogeneous predictor-outcome associations
 - $\hat{\alpha} = -1.80 \ (\hat{\tau} = 0.47)$
 - $\hat{\beta}_{\text{sex}} = 0.47 \ (\hat{\tau} = 0.03)$
 - $\hat{\beta}_{\text{surg}} = 0.67 \ (\hat{\tau} = 0.05)$

- AUC between 0.55 and 0.65 in the IECV
Illustrative example

- Heterogeneous predictor-outcome associations
 - $\hat{\alpha} = -3.98$ ($\hat{\tau} = 0.31$)
 - $\hat{\beta}_{\text{malign}} = 0.38$ ($\hat{\tau} = 0.35$)
 - $\hat{\beta}_{\text{caldif3}} = 1.05$ ($\hat{\tau} = 0.16$)
 - $\hat{\beta}_{\text{surg}} = 0.25$ ($\hat{\tau} = 0.09$)
 - $\hat{\beta}_{\text{ddimdich}} = 2.76$ ($\hat{\tau} = 0.41$)

- AUC between 0.73 and 0.92 in the IECV
Illustrative example

- Weakly heterogeneous predictor-outcome associations
 - $\hat{\alpha} = -2.25$ ($\hat{\tau} = 0.47$)
 - $\hat{\beta}_{\text{sex}} = 0.37$ ($\hat{\tau} = 0.06$)
 - $\hat{\beta}_{\text{surg}} = 0.56$ ($\hat{\tau} = 0.15$)
 - $\hat{\beta}_{\text{calfdif3}} = 1.28$ ($\hat{\tau} = 0.19$)
- AUC between 0.64 and 0.76 in the IECV
Discussion

- Stratified estimation helps to improve generalizability
 - Final intercept estimated from outcome frequency
 - Final intercept selected based on outcome frequency
 - Average final intercept
 - Requires reporting of estimated intercepts!

- Internal-external cross-validation
 - Appraise model fit and its predictive ability
 - Identify heterogeneous populations
 - Ascertain the best strategy for choosing an intercept

- Avoid heterogeneity
 - Focus on (nearly) homogeneous predictor-outcome associations
 - Investigate non-linear or interaction terms
 - Discard heterogeneous studies from the meta-analysis