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Abstract

For over 150 years computers have been considered capable of representing mental
processes through the manipulation of symbols, but conventional artificial
intelligence models do not account for brain physiology. Connectionist models are
networks of artificial neurons and synapses which seek to simulate low-level
processing in the brain, characterised by patterns of electro-chemical activity which
may be expressed mathematically.

Models which reflect the diversity of brain physiology have been constructed and
used to simulate limited aspects of language acquisition, including past tense
morphology, and semantic and syntactic categorization. This has led to controversial
claims that connectionist models can account for language acquisition without
recourse to traditional notions of rules, innate or otherwise.

In this project a model is constructed which simulates individual word morphology. It
is particularly successful at capturing infix morphology of the form common in
Semitic languages such as Arabic. However, it is not able to simulate word
morphology when presented with multiple patterns in the manner described in
connectionist literature and known to occur in the brain.
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1 Introduction

How do children learn their first language? There is agreement among linguists that they
do so in stages (Fromkin et al 2007: 322) (Aitchison 2008: 80), but there is disagreement
about the mental mechanisms involved. Some scholars propose that language is like sight:
anatomically localised and physiologically modular (Smith 1999: 17). It is further claimed
that one such language module contains a specification, called universal grammar (UG),
from which all human languages are acquired rather than learned (Smith 1999: 45).
However, although brain imaging studies provide some support for language modularity,
there seems to be no neurological evidence for a universal grammar module (Ward 2006:
211).

Some scholars, who deny the existence of UG, propose that language learning is a
consequence of two general cognitive skills: the ability to understand that others have
intentions which may be manipulated; and the ability of the child to find patterns in the
language he hears (Tomasello 2003: 3-4). Language learning is thus an interactive process
whereby input from the child's environment is processed by general cognitive skills.

To determine which of these hypotheses is true, or nearer to the truth, it is useful to
investigate the functioning of the brain. If there is a UG module it may be possible to
isolate and experiment upon it. Such invasive procedures on people are, however, severely
restricted for legal and ethical reasons. Computer models, based on what is known about
brain function are therefore a useful alternative. Fortunately , the lower ethical boundary
on invasive procedures on non-human species, and advances in non-invasive imaging
techniques have led to a substantial increase in our understanding of brain function (Ward
2006: 34, 57). Moreover, computer models, which may be ethically experimented upon,
may complement the results of imaging technology (Ward 2006: 75) .

This project seeks to to investigate computational models of language acquisition and in
particular connectionist models which are based on what is known about the low level
functioning of the brain. The research element of the project is the construction of a
connectionist model and its testing using linguistic and non-linguistic data. A central
theme of the project is that, notwithstanding the need for simplification, models of
language acquisition should be based on physiologically adequate representations of brain
behaviour.

The project begins with an overview of the development of computer models of mind and
brain: the top-down symbolic or artificial intelligence approach and the bottom-up
connectionist or artificial neural network (ANN) approach. In section 3 the workings of
connectionist models are described, including the principal expressions used and the types
of models constructed. The major research in which connectionist models were applied to
linguistic phenomena, including the ground breaking work of Rumelhart and McClelland,
are summarised in section 4.
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Section 5 describes the construction of the model which was used for the research
component of this project and the benefits of the Object Oriented approach for models of
the brain. This is followed by the description and analysis of the testing of the model in
section 6. The conclusions in section 7 suggest development of the model, and other
research, and some possible further developments of connectionism within the framework
of cognitive linguistics.



July 2008 Geoff Cockayne MA Applied Linguistics

2 Computational models of cognition

Attempts to model human cognition on computers fall into two categories: the symbolic
approach, and the connectionist approach. The former views cognition as a form of
behaviour per se, and seeks to build models which replicate that behaviour. The latter
sees cognition as the product of brain physiology and tries to build models based on
interconnected networks of artificial neurons (Artificial Intelligence 2008).

2.1 The symbolic approach

The symbolic approach represents a core concept in computer science and linguistics. A
computer is more than a calculator because it can manipulate symbols by representing
them as numbers (Forouzan and Mosharraf 2008: 43). For linguists, language is more
than communication because its users are able to manipulate symbols, in the form of
phonemes, combining them to represent an infinity of meanings, which are somehow
stored as concepts in the mind (Evans and Green 2006: 476).

2.1.1 Early artificial intelligence

Computer science is said to have been born when Ada Lovelace wrote, in 1843, that
Babbage's proposed Analytical Engine established:

alink . . between between the operations of matter and the abstract mental
processes of the most abstract branch of mathematical science.

(Lovelace 2008)

The Analytical Engine, is perhaps the first example of artificial intelligence (AI) because it
could make decisions and it was able to 'learn'. Its decision making ability was that of
conditional branching: transferring execution to a different part of the program depending
on the value of a particular variable. The Engine learned in the sense that it could modify
the program which controlled it (Analytical Engine 2008). Had it been built it could have
carried out most morphological operations by distinguishing between regular and
irregular forms using the 'words and rules' hypothesis (Pinker 1999: 18-19), as shown in
figure 1.

if rootForm isStored // irregular is stored as
get irregularForm // paired data with root

else // rule is explicitly
applyRule // coded

Figure 1: Word and rules, psuedocode 3
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Such an algorithm cannot be regarded as intelligent, since all new words and rules must be
explicitly coded. However, the ability of the Engine to modify its program allows the coding
of 'meta-rules' which would write new rules based on patterns of input and error
correction. Figure 2, a hypothetical exchange between the program and a user, shows how
this might work:

program > the past tense of cry 1is cryed.
program > Is this correct?

user > No

program > Please enter the correct past form.
user > cried

program > Is the rule delete 'y' and append 'ied'?
user > yes

program > the past tense of try 1is tried
program > is this correct

user > yes

program > New rule coded.

Figure 2: Inducing past tense rules

It is thus possible to hypothesise a self-modifying computer program capable of inducing
all the rules of all languages by interaction with native speakers, and thus, given sufficient
time and memory, perfectly emulating native speaker language production. The only
limitation to such a program is the proposition that language 'makes infinite use of finite
media' (Pinker 1994: 84). That is, if the program were asked to produce every possible
sentence in a given language, it would never stop.

2.1.2 The universal Turing machine and the Turing test

The foregoing hypothesis is a linguistics rendering of two computer science hypotheses:
the Universal Turing Machine (UTM) and the Turing Test. The first proposes essentially
that all solvable mathematical problems may be encoded and executed on a UTM, and that
unsolvable problems will cause the program to run indefinitely (Turing Machine 2008a,
2008b) (Penrose 1989: 67-75). The UTM, given concrete form as the von Neumann
machine, is the basis of all modern computers (Forouzan and Mosharraf 2008: 2-4).

The Turing Test proposes that it is possible to construct a computer program which can
communicate with a human user such that it is indistinguishable from another person. A
program which passes the Turing Test is claimed actually to think (Penrose 1989: 6-8).
Such claims are of obvious interest to linguists, however no program has yet come
anywhere near passing the test (Turing Test 2008). Nevertheless, proponents of 'strong
AI' hold that to the extent that a program, or any other device, can simulate human
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cognitive behaviour, it is by definition intelligent (Artificial intelligence 2008) (Boden
1988: 7-8). This leads to the proposition that any information processing device, such as a
thermometer, is intelligent.

However, the thermometer and the computer program lack a property which distinguishes
them from the mind: intentionality; the proposition that actions are not merely consequent
upon physical states but are done for purposes which are linked to values and ideas
(Thompson 2003: 78-79). In the case of all computer programs, the intentionality is
contained within the programmer; intentionality can only be demonstrated to exist in
biological systems (Searle 1980: 14). Thus a computer program may duplicate syntax and
morphology, but it can only simulate meaning since this is dependent on intentionality
(Searle 1980: 11), and in particular on understanding the intentions of others (Tomasello
2003: 23). Those programs, such as ELIZA, which come closest to passing the Turing Test,
operate on the basis of manipulating syntax in order to simulate intentionality and
intentionality reading (Fromkin et al 2007: 389).

2.1.3 Symbols and semantics

Cognitive linguists hold that language is represented in the mind as a collection of
symbolic assemblies, each assembly consisting of two parts. For example the phonetic
form [keet] is likely, for native English speakers raised in the West, to be paired with a
mental image of the domestic cat. Such concepts are derived from our perceptions of the
real world (Evans and Green 2006: 6). Other symbolic assemblies link the concept of the
domestic cat to its various characteristics. This type of linking is understood in computer
science and represented in what are known as semantic networks, which use the classical
notion of a shared set of semantic primitives to categorise objects (Forouzan and
Mosharraf 2008: 468).

Unfortunately, this type of categorisation is inadequate, since language categories are
characterised not by necessary and sufficient properties but by exemplar prototypes which
have fuzzy boundaries (Taylor 1989: 40-41) and are subject to exceptions (Evans and
Green 2006: 253). For example, the same object may be considered to be a bowl if it is
intended to contain rice, or a cup if it is intended to contain tea. And a cup which has lost
its handle is unlikely to be reclassified as a bowl. Such aspects of cognition do not sit well
with the conventional algorithmic approach of computer science, although given enough
programming time and computer memory it would be possible to encode all symbolic
assemblies for a given language. Such an enterprise would, however, not be sufficient to
pass the Turing Test, much less provide an adequate model of language, for the reasons
outlined in the preceding section, and the following paragraph.

Computer programs store and access information by reference, as shown in figures 1 and 2
above. This approach corresponds with the referential theory of linguistic meaning, which
is the view that words and phrases represent labels to things and states in the real world
(Lycan 2000: 5). This view is common sense since we define words and phrases in
dictionaries and suppose that we make meaning by syntactic and morphological
manipulation. The referential theory, however fails to adequately explain how we actually
use language. For example the following statement:
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these walls are rather thin (1)

may be uttered ironically in an open-plan office where there are no walls to be thin, or by a
visitor to a medieval castle which has walls which are 5 metres thick. Even non ironic
meanings are problematic: utterance (1) may be a polite request to a neighbour to turn his
music down, or a husband's attempt to avoid putting up a shelf. Such utterances are
understood because language meaning is a function of the context in which it is used
(Lycan 200: 189). Language users develop a vast encyclopaedic knowledge to which
particular words, phrases and texts are contextualised 'access-points' (Evans and Green
2006: 221). Moreover, these access points are developed through language use and depend
on an understanding of others' intentions (Tomasello 2003: 23).

2.2 From Al to connectionism — what can be simulated

The use of the top down, symbolic approach to construct software which attempts to
simulate natural language, seems to have failed because conventional algorithms cannot
simulate either the intentionality of language users or the context in which utterances are
made. Connectionism seeks to construct highly simplified models of the brain starting
from its basic components, the neuron and the synapse. Connectionist models are models,
albeit simplified, of biological systems. The question thus arises as to whether such models
may be able, in addition to simulating particular aspects of linguistic and other behaviour,
to simulate intentionality and thereby give access to the higher cognitive skills, including
discourse, which are predicated on intentionality.

A computer simulation is a mathematical model of some phenomenon represented in the
form of an information processing computer program. A simulation of a hurricane is
clearly not a hurricane, and a simulation of the brain is not a brain. Thus the presence of
information processing does not imply a relationship between the program and the brain
(Searle 1980: 6). However, if the outputs of a computer model of a hurricane were
connected to a very large wind generator, it would be reasonable to suggest that the
system, taken as a whole, represents something closer to a real hurricane than the
computer alone. It could be described as an artificial hurricane.

Connectionist models manipulate electro-numeric patterns in a manner which is
substantially closer to the electro-chemical pattern manipulation of the brain than
conventional computer programs, which are in turn closer than mechanical automata.

if thought processes consist in the manipulations of patterns of

substances, then we only need to build a system capable of creating

these identical patterns through its physical organization, without

requiring the same set of substances. [Italics are in the original]
(Dyer 1990: 8).
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Dyer is directly contradicting Searle's assertion above that thought may only arise in
biological systems. However, it seems reasonable to suggest that the closer a model comes
to resembling that which it models, the more realistically it will be able to simulate the
original. Thus if conventional Al is considered to be the 'wrong architecture', connectionist
models are perhaps a move towards the right architecture (Churchland and Churchland

1990: 35).

Connectionist models have been designed for example, which, to a limited degree, simulate
linguistic categorisation (Marcus 2001: 93). As such models come to resemble actual brain
operation more closely, and, since intentionality either arises from the physical operations
of the brain or it is externally ordained, it is possible that a system without explicit rules
may give rise to simulated intentionality. Nevertheless, it remains a simulation: actual
intentionality can only arise from something which is biological and embodied.

For cognitive linguistics the wider architecture within which processing occurs, the human
body, is fundamental to linguistic analysis (Evans and Green 2006: 44-45). Thus a
connectionist model interfaced to an artificial body, that is a robot with appropriate
sensory devices, spatial awareness and the ability to move, might be considered closer to a
real person than the model alone. It could perhaps be described as an artificial person.

2.3 The connectionist approach

Where the symbolic approach is goal directed and represents top-down design, the
connectionist approach is pattern oriented and represents bottom-up design (McLeod et al
1998: 11-12). All connectionist models seek to simulate the functioning of the brain
starting from its basic component, the neuron. But since the human brain has at least 100
billion neurons, each of which may connect to 10,000 other neurons, no current model
comes close to representing the brain's connective complexity (Ward 2006:17).

2.3.1 The physiological basis of connectionism

Although neurons show considerable physiological variability, they share a number of
common features which may be described mathematically and thus represented in a
computer model. Neurons typically have multiple inputs, called dendrites, which transmit
electro-chemical signals from other neurons, see figure 3. If the signals arriving at the
neuron from its dendrites are sufficient to overcome the neuron's resistance, known as the
axon hillock, the neuron will 'fire": that is, generate a signal called an action potential. The
action potential is transmitted along a single output known as the axon (Ward 2006: 18-
19).



July 2008 Geoff Cockayne MA Applied Linguistics

NEURON

s Dendrites [ e
W% Axon Terminals (receiUEFS)

(tramsmitters)

Schwann's

Cells
‘ (they make
the rmyelin)
Node of
IIu"Ranl.l'ier

Axon )
{the conducting Myelin Sheath
fiber) {insulating fatty layer that

speeds transmission) EnchantedLearning.com

Figure 3: A typical neuron with multiple dendrites and single axon (Enchanted
Learnina)

The axon has multiple terminals which connect its output to the dendrites of other neurons
via a synapse, as shown in figure 4. The signal migrates across the synaptic cleft, in the
form of chemical neurotransmitters, to the connected dendrite and thus on to the next
neuron (Gurney 1997: 10). The strength of the neurotransmitters changes with use, which
influences the probability that the post-synaptic neuron will fire (McLeod et al 1998: 14).
This influence may be positive (excitatory) or negative (inhibitory). If no signal is present
at the pre-synaptic connection the synapse is inactive and no signal is transmitted (Ward
2006: 70). Learning is represented by the changing strengths of synapses in response to

stimulation by the pre-synaptic signal (McLeod 1998: 14).
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Figure 4: Synaptic connections (www.mult-sclerosis.org)

In general, information processing in the brain is achieved through patterns of responses
(or patterns of activity) in groups of neurons (Ward 2006: 35). These patterns are
transmitted in parallel through layers of neurons and thus through the different regions of
the brain (McLeod 1998: 12). The common sense notion, which underpins the symbolic
approach, that the brain stores chunks of knowledge in the manner of a dictionary, or a
computer's memory, is not reflected in the low-level physiology of the brain. Knowledge at
this level is a distributed set of pattern activations and no item of knowledge can be said to
be stored in a particular location (McLeod et al 1998: 31). This form of distributed storage
gives rise both to the brain's ability to overcome physical damage and, perhaps, the higher
cognitive skills (Ward 2006: 37).

2.3.2 Symbolic and connectionist representations at neuronal level

If processing in the brain were symbolic, we might expect to see a neuronal organisation of
the type shown in figure 5 with each neuron representing, for example, a phoneme.
Generating the regular past tense of 'work' simply requires strengthening one synapse,
shown as a blue diamond, to achieve a representation of the phoneme \t\. Repeated
presentations of similar patterns leads to the discovery of the rule using UG, or its
emergence using pattern finding skills.
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Figure 5: Representation of a 'symbolic' neural network

The values shown are based on the IPA codes used in the Headway course books
(Soars & Soars 2003: 159).

10
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However, the brain does not work this way. Neurons have multiple connections to each
other as shown in figure 6.

w17 17 WA

‘ory 236 36 ol

kv 05 05 kv
00 03 W&\

Figure 6: A connectionist neural network

In such a network, where the initial strengths are the same and the values shown are
presented, the output values are all the same because each neuron in the output layer is
being presented with the same values?. In order to achieve the desired output it is
necessary to 'train' the network many times, comparing the desired output with the actual
output and making small adjustments to the individual synapse strengths (McLeod et al
1998: 19). Thus learning is characterised by progressive and interrelated changes to
network connections, and not by any individual change.

1 Inthis case f (58), the sum of the input values, where fis the product of the synapse strength and the
activation function as described in the following section.

11
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3 How Connectionist models work

An Artificial Neural Network (ANN or connectionist model) consists of two or more layers
of neurons with each neuron connected to all those in the preceding layer; as shown in
figure 6 above. The artificial neurons are referred to as Threshold Logic Units (TLUs)
(Gurney 1997: 13-15), computational units or simply units (McLeod 1998: 11-12). It
appears that the TLU conflates the computational behaviour of both the neuron and the
synapse (Gurney 1997: 15). In this project the neuronal and synaptic computation have
been kept separate since this seems to represent more closely the brain's physiology.

3.1 The Threshold Logic Unit

The TLU simulates the behaviour of the real neuron and synapse by summating the input
values of the dendrites connected to it and comparing their value to that of a specified
threshold, representing the axon hillock described in section 2.3.1. The inputs consist of
the output of each neuron (TLU) in the preceding layer, multiplied by a weight, which
represents the synapse strength. This is expressed in figure 7.

n
a= E W; T,
i=1
Where:
a is the activity or net input of this neuron
w(i) Is the weight of the connection from neuron(i) in the

preceding layer to this neuron.
x(i) is the output or activity of neuron(i) in the preceding layer.

Figure 7: Net input to TLU (Gurney 1997: 15)

12
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3.2 Activation functions

'Activation' is used to describe the firing of a neuron: the generation of an action potential.
'Activity' describes a particular value at some place in the network. Net input is the sum of
the activities presented to neuron by its connected dendrites. "Threshold' represents the
axon hillock: the value which must be met, or exceeded, in order for the neuron to fire.
The output of a neuron (its activity) is determined by an activation function; the most
common in connectionist models being the binary threshold function and the sigmoid
function.

3.2.1 The binary threshold Function

If the net input is equal to or greater than the threshold, an activation is generated and the
neuronal activity is set to 1. Otherwise the activity is set to zero. This function seems to be a
simplification of neuron physiology (Ward 2006: 20), it is justified in order to explore the
principles of pattern association (McLeod et al 1998: 17-18). Firing of the neuron is
expressed by:

y=1ifa>=0
y=o0if a < 0 (Gurney1997:15)

Where,
y is the output (activity) of the neuron.

a is the net input to the neuron
0 is the threshold

3.2.2 The sigmoid function

This function is said to be a more physiologically valid representation of neuron behaviour
because changes in the net input at the lowest and highest input values have relatively little
effect on the output value (McLeod 1998: 103). It is also the function most commonly used
in connectionist models of language acquisition (McLeod 1998: 18 and Chp 9). The
sigmoid function is represented by the expression shown in figure 8, producing an output
of the form shown in figure 9.

13
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1
Y = 4 etaoln

Where,

is the output value passed to the axon.

is a mathematical constant (Euler's number), approximately, 2.71828183.

is the net input from the dendrites.

(theta) is the threshold

(rho) is a variable which may be used to change the shape of the function. Smaller
values 'squash’ the function, bringing it closer to the the binary threshold function
(Gurney 1997: 19).

™ D D

Figure 8: The Sigmoid function (Gurney 1997: 19)

(c) Sigmoid

1.0
activity
(@) g5
0.0 | J
-5 0 5
netinput;

Figure 9: Graphical representation of the Sigmoid
Function (McLeod et al 1998: 18)

3.3 Learning rules

The manner of learning in a connectionist model is critical to its success. The
strengthening of neurotransmitters at the synapse described in section 2.3.1 is represented
computationally by applying a learning rule in order to adjust the weights in the TLU. The
two most common rules are described below. The connectionist literature also describes a
bias node or bias unit which adjusts the threshold as if it were a weight (McLeod et al
1998: 20, Gurney 1997: 37). No physiological justification is provided for this operation;
neuroscience texts seem to suggest that the threshold (axon hillock) is actually constant,
firing at about -50mV (Ward 2006: 20).

14
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3.3.1 The Hebb rule

This is a simple rule used for pattern association. Typically, a model is presented with both
the input pattern and the desired output pattern, and the Hebb Rule is used to adjust the
synapse strengths (weights) across the network using the expression:

Awij = € aj aj (McLeod et al 1998: 54)

where
Awij is the change in strength for this synapse.
e is the learning rate.
aj is the desired output value (activity) of the post-synaptic neuron.
aj is the actual output of the pre-synaptic neuron.

Since the right hand side of the expression is constant for a given pair of patterns, the
Hebb Rule is also constant: either a positive value or 0. Its effect is to continually increase
the strength of active connections.

3.3.2 The delta rule

This rule seeks to adjust the synapse strengths in order to minimise the errors at the
output neurons. It does this by subtracting the output value obtained from the output
value desired:

Awij = [Qi(desired) - Qi(obtained)] a; € (McLeod et al 1998: 54)

Where,

Qi(obtained) is the actual value of the post-synaptic neuron on the
previous iteration.

The value of AWij may be positive or negative and changes on each iteration until the
actual output value is equal to the desired value.

15
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3.4 The development of connectionist modelling

The first connectionist network was based on the McCulloch and Pitts (MCP) neuron
devised in 1943. It was a logic-state device capable of simulating the Boolean functions
AND, OR and NOT and storing the result (McLeod et al 1998: 314). However the network
did not incorporate synaptic functionality and it was thus not possible for the MCP
network to simulate learning.

3.4.1 Hebb Learning and the perceptron

Psychologist Donald Hebb first proposed that learning was effected by the strengthening of
connections between neurons and and this idea was implemented in an electro-mechanical
device built by Edmonds and Minsky in 1951 (Rumelhart & McClelland 1986: 152-153) .
The tendency of the Hebb rule, noted in section 3.3.1, to increase synaptic strength without
limit led to a number of modifications, including setting an overall limit to synapse
strengthening in a network(McLeod et al 1998: 319). These modifications were based on
what was discovered about the brain's physiology (McLeod et al 1998: 320).

These modifications were incorporated into the perceptron, the first pattern association
model, developed by Rosenblatt in the late 1950s (Rumelhart & McClelland 1986: 156).
Pattern association models simulate a simple form of stimulus-response memory in which
the presentation of a particular pattern of input generates a single, regular output (Rolls
and Treves 1998: 23). A key insight of this development was neural operations are based
on probabilistic rather than logical processing (McLeod et al 1998: 320).

Although the perceptron model had some success in classifying patterns according to
similarity of shape (Rumelhart & McClelland 1986: 155) Minsky & Papert were able to
show that it was unable to discriminate patterns requiring, ironically, XOR logic, where 0
& 1 =1, but both 0 & 0 and 1 & 1 = 0 (McLeod et al 1986: 323-325).

Rosenblatts's perceptron model contained only two layers, input and output, and it soon
became clear that the solution to the XOR problem was the addition of intervening hidden
layers. However there was no known way of training such models. A solution was found
with the backpropagation method in which the learning rule is applied backwards through
the network (McLeod et al 1986: 325). Although successful, it was used in Rumelhart and
McClelland's work on past tense verbs (McClelland and Rumelhart 1986: 225),
backpropagation is considered physiologically implausible (Gluck and Myers 2001: 109).

16
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3.5 Modelling memory

Developments during the 1980s, particularly the work of Hinton and Anderson on auto-
association and competitive networks, and McClelland on content addressable memory,
led to the ability to model more sophisticated forms of memory, and thus, it is claimed, the
prospect of simulating higher cognitive functions (McLeod et al 1998: 326).

3.5.1 Auto-association models

Auto-association models are similar to pattern association networks, with the addition of a
connection back to each source neuron, referred to as a recurrent connection, as shown in
figure 10. These models have the ability to store multiple stimulus-response type patterns
(McLeod et al 1998: 73). They are also able to generate a complete pattern from partial
input, by looking for pattern similarities, and produce a correct pattern when the network
has been lesioned (Rolls and Treves 1998: 46-47).

Figure 10: An auto-associative network with recurrent connections (McLeod et al 1998: 141)
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3.5.2 Competitive models

In a competitive network, of the type shown in figure 11, outputs are connected to an
inhibitory cluster: a set of neurons each of which inhibits those in the same layer when
activated. Thus the neuron which receives the greater number of activations will eventually
suppress the activation of its neighbours and win the competition. This competitive
behaviour leads to the clustering of similar patterns of input (McLeod et al 1998: 127-128)
and was used by Elman in his work on syntactic and semantic clustering (see 4.3.1 below).

inhikitory cluster

Figure 11: A competitive network with inhibitory cluster (McLeod et al
1998: 128)
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3.5.3 Content addressable memory

Computers and dictionaries store information by reference: a dictionary cannot handle
questions such as, “what's that word beginning with 't' that means boring?” It would be
necessary to search every entry under 't', a somewhat tedious process. A computer
database faces the same problem but is able to iterate through its contents quickly. Yet the
brain handles such questions with ease because information is stored by content rather
than reference (McLeod et al 1998: 34).

McClelland built a connectionist model which was similarly content addressable, by
combining the auto-associative model and the competitive model described above
(McLeod et al 1998: 35) (Rolls and Treves 1998: 42). Figure 12 shows how this works.

nation ality

occupation

leader

Figure 12: content addressable memory (from McLeod et al 1998: 40)
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The clusters labelled name, occupation, and nationality represent knowledge about a
group of people. Each unit in the cluster is mutually inhibitory with respect to each of the
others (shown only for 'name' in the figure). The central cluster connects particular
instances of knowledge representing what one knows about a specific individual; these
connections are excitatory (McLeod 1998: 41).

If one asks the question 'Who is that Burmese leader . . . ?' the nationality and occupation
clusters are activated for 'Burmese' and 'leader’, which suppress the other units in the
respective clusters. This combination excites unit i in the central cluster, which in turn
excites the name 'Su Kyi' in the name cluster (McLeod et al 1998: 41).

3.6 Recent developments

There are two important criticisms of connectionism: that it does not adequately represent
brain behaviour and that it does not account for higher cognitive functions. Recent
attention has been given to these areas, as described in the next two sections.

3.6.1 Development of physiologically adequate networks

The output from neurons is characterised by spiking (Ward 2006: 20) and expressions
which model this behaviour, for example the Hodgkin-Huxley equations (Trappenberg
2002: 24) have been incorporated into ANNs. Signals in dendrites deteriorate with
distance and the signals of some axons are boosted by a being sheathed with a fatty
material called myelin (Ward 2006: 19, 21). Expressions known as cable equations have
been developed which capture this behaviour (Trappenberg 2002: 29).

Models which account for brain modularity have also been developed including: the pre-
frontal cortex and hippocampus associated with episodic memory (Rolls and Treves 1998:
97) (Trappenberg 2002: 270); the amygdala and orbiofrontal cortex associated with
emotion and motivation (Rolls and Treves 1998: 137); and the cerebellum and basal
ganglia associated with motor functions (Rolls and Treves 1998: 190-191).

The proposition that computers themselves may be the 'wrong architecture' (Searle: 1980
passim) has led to work on constructing a machine which more closely resembles the
architecture of the brain. (Furber et al 2006). The machine, known as SpiNNaker, is based
on a large array of neuron-like components, which will, it is claimed, simulate networks of
up to a billion neurons.

3.6.2 Accounting for higher cognitive functions

Connectionist models have also been criticised for failing to account for higher cognitive
functions, in particular that they 'do not provide an account that includes communicative
function or meaning' (Tomasello 2003: 191). Connectionists might argue that, in contrast
with Al research, their goal is to explore cognition at low level particularly with respect to
the innateness proposition mentioned in the introduction. Nevertheless, models have been
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built which are moving toward an explanation of the higher mental processes.

Models have been constructed which learn to specialise on different cognitive aspects of a
particular phenomenon. They are modular in design, consisting of a network of
competitive networks (Jacobs et al 1991: 227-228). A model has been trained to recognise
both what an object is and where it is, with the modules competing for these tasks. The
modules are not pre-assigned to either task. Moreover, it is found that different module
architectures are successful at different tasks (Jacobs et al 1991: 239).

Models which are capable of a limited form of prediction have also been built, by
incorporating into a recurrent network a context layer which accounts for previous
patterns of network activity (Elman et al 1996: 81). This temporal element allows the
network to predict, for example the correct third person form of the verb 'kick' in the
following:

boy who chases dogs kicks ball (2) (McLeod et al 1998: 197)

Child development, including language development, is observed to occur in stages rather
than continuously. (Gross 1996: 631). This might seem to present a particular problem for
connectionism since its learning strategy is based on the gradual changes of synaptic
strengths. However, both models of language, and other forms of development, are able to
demonstrate staged behaviour (McClelland and Rumelhart 1986: 252) (McLeod et al 1998:
217, 231). This behaviour is inherent to the nature of processing within connectionist
networks. Learning in the form of the delta rule is error minimising and represents a
multi-dimensional gradient as shown in figure 13. The consequence of this is that small
changes in weights can produce large changes, up or down, in overall error.

Error

Figure 13: error gradient during learning (McLeod et al 1998: 235)
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4 Connectionist research in linguistics

Connectionist models simulate learning and so their application to linguistics implies
claims about the nature of language acquisition in children (McLeod et al 1998: 178). Such
models have generated considerable controversy since Rumelhart and McClelland first
trained a model which simulated the learning of past tense verbs (McClelland and
Rumelhart 1986: chapter 18).

4.1 Learning the past tense of English verbs

Learning of the past tense is characterised by 'U' shaped behaviour in which children
having learned a correct irregular such as 'went' are observed to produce utterances such
as:

the alligator goed kerplunk (3) (Pinker 1999: 17)

Some scholars propose that this is evidence of UG: the effect of identifying the regular "-ed'
rule being so powerful that the child over-uses it until at a later stage she learns to 'block’
the rule for irregulars (Pinker 1999: 19) . Other scholars observe that such errors are
relatively rare; occur with irregular as well as regular forms, and are inversely related to
the frequency with which the child hears them (Tomasello 2003: 233). Such data supports
a single, rather than dual, learning process in which words are clustered according to
phonological similarity and token frequency; errors occur where words are placed in the
wrong cluster (Tomasello 2003: 238).

4.1.1 Rumelhart and McClelland 1986

Rumelhart and McClelland entered the fray, building a model which consisted of a two
layer competitive pattern associator (McClelland and Rumelhart 1986: 222). This was
connected to phonological encoder/decoder which employed wickelfeatures, whereby the
encoding of a phoneme accounted for its adjacent phonemes as well as its own phonemic
properties (McClelland and Rumelhart 1986: 234). The model used the sigmoid activation
function, and a variation of the delta rule (McClelland and Rumelhart 1986: 224, 225).

The model was presented with a total of 506 verbs, divided into three sets of 10, 410 and
86, based on frequency of use by young children. The first set was presented and trained
and then the second group added to the first and trained. The final group of verbs was
presented without training (McClelland and Rumelhart 1986: 240-241).

During training the model demonstrated 'U' shaped behaviour and achieved a success rate
of over 95% after 200 trials (McClelland and Rumelhart 1986: 242). When the final group
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of 86 verbs was presented, without training, the success rate was 92% for regulars and 84%
for irregulars (McClelland and Rumelhart 1986: 261). Rumelhart and McClelland
concluded that they had :

shown that a reasonable account of the acquisition of past tense can
be provided without recourse to the notion of a “rule” as anything
more than a description of the language. [quotes and italics are
original]

(Rumelhart and McClelland 1986: 267)

The model was subsequently criticised on an number of grounds. (1) The onset of 'U’
shaped behaviour was attributed to the timing of the presentation of the second set of
verbs which contained a far greater proportion of regulars than the first set (Pinker and
Prince 1988: 138). (2) The use of competitive networks in the decoder tended to obscure
the actual output “chosen” by the model (Pinker and Prince 1988: 94, 123). (3) The model
failed to account for the syntactic behaviour of the past tense in utterances such as 'I
helped her leave' versus 'T know she left' (Pinker and Prince 1988: 85). (4) The model did
no more than could be done more easily by a symbolic, rule following, model (Pinker and
Prince 1988: 81).

The first three criticisms were answered in subsequent research described below. The
fourth criticism is certainly true and is demonstrated in figure 1. However, it rather misses
the point that in a Universal Turing Machine correct results are always generated provided
the rules are correctly encoded by the programmer; such models reveal nothing about how
language arises in the brain. Connectionist models are claimed to demonstrate that a rule-
like behaviour is an emergent property of a simple brain-like pattern finding mechanism
(Elman et al 1998: 110-115).

4.1.2 Plunkett and Marchman 1993

In a revision of the Rumelhart and McClelland model, Plunkett and Marchman sought to
answer the specific criticisms of Pinker and Price. Their model included hidden units,
which sit between the input and output units (Plunkett and Marchman 1993: 29), and a
phonological encoding system which does not appear to use wickelfeatures (Plunkett and
Marchman 1993: 31). Most importantly an initial training set of ten verbs stems was
increased one verb at a time rather than in bulk (see criticism (1) above), (Plunkett and
Marchman 1993: 33).

The model demonstrated 'U' shaped behaviour for both regular and irregular verbs, though
at different stages (Plunkett and Marchman 1993: 39). A number of irregular verbs, having
been correctly mapped to their past form correctly during early training, were latter
regularised; for example 'comed’, 'seed’, 'blowed' (Plunkett and Marchman 1993: 47). The
model began to generalise once the proportion of regulars in the set exceeded 50%; prior to
this generalisation was 'blocked' (Plunket and Marchman 1993: 55). Furthermore, the
onset of regularisation was 'relatively sudden' (Plunkett and Marchman 1993: 52).

Plunkett and Marchman concluded that their model suggested:
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a single mechanism learning system may offer an alternative account
of the transition from rote-learning processes to system building in
children's acquisition of English verb morphology. [italics in original]

Plunkett and Marchman 1993: 58

4.2 Semantic categorization and prototype formation

Categorization is a core cognitive skill which contributes to the ability of the human mind
to form concepts from phenomena we observe in the world. The concept which defines a
category is constructed, not by a set of defined properties but as an abstract, flexible and
multi-feature prototype. The prototype is then used as a measure of category membership
(Evans and Green 2006: 249). The sophisticated quality of prototypes enables us, for
example, to easily recognise a cross-bred labrador-poodle, or a bull-terrier with no tail, as
belonging to the category 'dog'. This sophistication causes problems for children during
their early lexical development (McLeod et al 1998: 189). They are observed to both over-
extend and under-extend their use of words: calling all animals 'dog' or calling only the
family pet 'dog' (Crystal 2003: 246-247).

4.2.1 Plunkett (1992)

Plunkett constructed a model which sought to simulate early lexical development. It
consisted of a multi-layer auto-associative network with inputs and outputs separately
assigned to images and labels, as shown in figure 14.

Image (output) Label (ouiput)

Soaesm e  Compressed interna

e representation
w& Label

OND representation

X

Image {input) Label {input)

Image
representation

Figure 14: auto-associative network with dual inputs and outputs (McLeod et al 1998: 190)
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The model is trained in three stages: (1) an image is presented until trained to the image
output; (2) its label is similarly presented; (3) both are presented until trained to both
outputs (McLeod et al: 1998: 190-191) . The images consist of groups of dot patterns based
on a prototype, using a method previously tested on human subjects. Out of nine dots in
each pattern, only two are in common with the prototype; the others are randomised. The
labels are represented as a single active bit within a 32 bit pattern as shown below
(Plunkett et al 1998: 189). It is not clear from the original article why this method was
chosen.

00000000000000000000000000000100

During training the prototype is not presented to the model nor is the model trained to
produce an image output given a label input, or a label output given an image input
(McLeod et al 1998: 191). During training the model is tested for comprehension: the
ability to correctly generate an image when a label is presented; and production: the ability
to correctly generate a label when an image is presented. The model demonstrated over-
extension and under-extension for both comprehension and production (McLeod et al

1998: 191-192).

For cognitive linguists this model may appear to be of greater importance than the past
tense models described above, since it appears to include a claim to simulate the higher
cognitive skill of categorisation, including prototyping. It may seem surprising therefore
that it does not appear to have sparked the type of controversy which followed Rumelhart
and McClelland's work. Moreover no reference is made to this model in standard texts
such as Evans & Green (2006), Croft and Cruse (2004) or Tomasello (2003). The model
appears to fall short of the cognitive linguists' view of prototypes since it does not appear
to be capable of simulating their taxonomic characteristics, whereby a category such as
'dog' may be regarded as more cognitively 'rich' than those such as 'mammal’ or 'spaniel’
(Croft and Cruse 2004: 83).

4.3 Learning word boundaries and syntactic
classification

Linguistic input is temporal but comprehension seems to necessitate its 'chunking' into
meaningful symbols. When one first hears an unfamiliar language it can seem to be a
meaningless stream of sound. The same problem must face children learning their first
language: just how they learn to mark the boundaries of words is a puzzle for linguists. A
similar temporal problem must also occur with syntax acquisition: how is it that a native
speaker of English recognises the following sentence as 'grammatical' though meaningless?

Colorless green ideas sleep furiously. (Chomsky 1957: 15)

Some scholars suggest that because syntactical relationships are characterised by 'long-
distance dependencies', it is impossible for word classes to be acquired by merely analysing
the temporal input stream. (Pinker 1994: 97). They thus propose an innate, tree-like,
phrase structure grammar in which sentences are analysed and hierarchically de-
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constructed into their constituent parts (Pinker 1994: 98).

Connectionists reject this approach and seek to show that syntax can be acquired directly
from the child's linear, temporal input.

4.3.1 Elman 1990, 1993

Elman built an auto-associative model with additional context units which served as a
form of dynamic short-term memory, as shown in figure 15 (Elman 1990: 182).

Qutput units

Input units Context units

Figure 15: auto-associative network with context units (McLeod et
al 1998: 197)

The model was first presented with a 1000 unit string consisting of randomised
consonant/vowels combinations constructed from the units 'ba, dii, guu'. As the string was
presented the network was asked to predict the next character in the sequence.
Unsurprisingly, its ability to predict vowels following consonants was significantly higher
than for consonants themselves . However, it was this very disparity that allowed the
boundary between the 'words' to be established, as shown in figure 16.
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Figure 16: root mean squared error rate in letter prediction (Elman 1990: 189)

The model was then re-run using sample English sentences. It produced a similar pattern,
except that it was able to partition words beginning with both consonants and vowels, as
shown below:

many/years/ago/aboy/and/girl/lived/by/the/sea/they/played/happily
(Elman 1990: 194)

A larger version of the same model was then presented with an input stream consisting of
two and three word sequences in the form:

man eat food book break woman destroy plate (Elman 1990: 194)

Although the input words were bounded, the sentences were not, and no information was
given concerning word classes. The model was required to cluster the input words
hierarchically (Elman 1990: 196). The results are shown in figure 17. The added labels
indicate that the model is able to distinguish word classes to some detail: 'like' and 'chase'
require a direct object. It is simultaneously capable of semantic classification: 'monster’,
'lion', and 'dragon are [+animate] [-human] [+large] (Elman 1990: 200)
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Fiqure 17: Syntactic clustering of hidden unit activation vectors (Elman 1990: 200)

4.4 The auxiliary inversion question

One of the strongest arguments for an innate universal grammar is the 'poverty of
stimulus' proposition in which children are claimed to 'know more than they learn' (Smith
1991: 40). One example of this is the manner in which children are able to generate the
correct question form in an utterance containing two auxiliaries such as:

the man who is exiled from Tibet is the Dalai Lama (1)
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Given previous encounters with simpler question forms, children would be expected
sometimes to invert the first auxiliary and produce:

is the man who exiled from Tibet is the Dalai Lama? *(2)

However, research shows that they rarely make such mistakes and thus it is claimed that
children must have innate grammatical knowledge which recognises 'the man who is exiled
from Tibet' as a noun phrase thus requiring the inversion of the second rather than the
first auxiliary when forming the question (Pinker 1994: 41-42). A Connectionist account by
contrast claims that a neural network could generate the correct form without prior

knowledge of phrase structures.

4.4.1 Lewis and Elman 2001

A model similar to that described in 4.3.1 above was presented with increasingly complex
sentences from CHILDES, a corpus of child directed speech. Each word in an utterance
was supplied sequentially and the model was required to predict the class of the next word
(Lewis and Elman 2001: 554). A sample prediction is shown in figure 18; the vertical bars

show the strength of prediction.
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Figure 18: strength of predictions for next word (Lewis and
Elman 2001: 554)

The model correctly predicts a singular auxiliary following the relative pronoun 'who' and
an adjective — rather than an auxiliary - following the participle 'smoking' . At no time does

the model predict a form corresponding to the ungrammatical utterance (2) above (Lewis
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and Elman 2001: 554).
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5 Building a connectionist model

To build a connectionist model requires programming skills. Since linguists do not
generally have such skills it is usually necessary to make use of software, such as 'tlearn’,
which is supplied on disk by McLeod et al (1998). Such models are 'black-boxes': their
internal workings are not available to investigation by the researcher. For researchers with
some programming skills it is possible to copy code supplied by programmers, for example
Rogers (1997). This allows the researcher to investigate the code; nevertheless, one is
reliant on the design and implementation methodology of the programmer. For this
research it was decided to design and construct a new model, because it was thereby
possible to:

e Construct a model based on classes which aim to be physiologically adequate; in
particular separating the functionality of neurons, synapses and the network which
connects them.

e Test the model progressively as it is developed; in particular the mathematical
expressions on which it relies.

5.1 OOP and classes

Object Oriented Programming (OOP) is a computer science paradigm in which objects
and concepts from the real world are defined as such in software. A class is a blueprint
containing properties and behaviour. An object is created as an instance of a class. A key
concept of OOP is encapsulation: objects may communicate only by sending messages to
each other. An object may not directly interfere with the properties or behaviour of an
other object (Troelsen 2007: 147).

Two other important concepts in OOP are inheritance and polymorphism. Inheritance
allows the creation of child classes which extend the properties and behaviour of the parent
class, whereas polymorphism permits their modification or restriction (Troelsen 2007:
145-146). This approach seems suitable for modelling the brain since one may begin with a
simple set of classes based on the neuron and the synapse, and subsequently extend the
classes to capture brain diversity and modularity.

In any OOP project, great care must be taken to establish the appropriate classes. With an
engineered system such as car this relatively straightforward, since it consists of a set of
discrete components. A biological system is more problematic because it may not be clear
where one object ends and other begins; moreover, the properties and behaviour of the
system's components may not be perfectly understood.

For this project three classes were constructed:
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1. The neuron class, encapsulating the summation of the dendrites values and the
generation of an action potential at the axon hillock.

2. The synapse class, calculating and storing the strength of the connection between its
source and target neurons.

3. The network, organising the creation and management of a network of neurons and
synapses, in accordance with values passed from the user.

The decision to define these classes was taken in answer to the question 'where does the
main functionality of the system lie?' Thus there is no class for dendrites or axons because,
in this simplified model, they merely transmit values: they do not modify them. In the
brain signals may in fact be affected by the anatomical features of particular dendrites and
axons (Ward 2006: 19). Also, although the axon hillock is often described in the literature
as anatomically separate from the neuron (Alberts et al 1989: 1087), it seemed unnecessary
to it define as separate class since its behaviour is computationally integral with the
neuron.

Each class is described below; the full code is listed and documented in appendixes A and
B.

5.2 The neuron class

The function of the neuron class is to receive inputs from its connected dendrites,
summate them, apply the appropriate activation function and pass the output to its axon,
as shown in figure 19.
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inDendrite[n] outAxon

id
layer

netlnput
thresheold

Summate()

BinaryFunction()

SigmoidFunction()

Figure 19: Schematic representation of the Neuron class

Neuron properties

id. Each neuron has a unique id number, assigned when the neuron object is
created.

layer. Each neuron is in a layer, assigned when the object is created (McLeod et al
1998: 12-13).

inDendrite[n]: The neuron may have any number of input dendrites. They are
represented as an array (Gurney 1997: 8). The values may be positive (excitatory) or
negative (inhibitory) (McLeod 1998: 11). Each dendrite is connected to the output
of a synapse object.

threshold. A constant value passed from the Network class (Gurney 1997: 11, 14).

outAxon: Each neuron has one axon, the value of which is determined by the
summation of the input dendrites and the application of the binary or sigmoid
function described below (McLeod et al 1998: 11) (Gurney 1997: 14-15).

Neuron behaviour

Summate(). Adds the values of the the input dendrites, to the variable netInput,
which is then passed to the appropriate activation function (McLeod et al 1998: 17) .

binaryFunction(). Described in section 3.2.1 above. The value of the output variable
outAxonis O or 1.
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e sigmoidFunction(). Described in section 3.22. The value of outAxon is always >0
and <1.

5.3 The synapse class

The function of the Synapse class is to receive an input from a pre-synaptic neuron,
multiply it by the synapse strength and output the result to the post-synaptic neuron, as
shown in figure 20. During learning the synapse strength is adjusted in accordance with
the Hebb rule or the delta rule.

idSrceNeuron
idTrgtNeurcn
inAxon

_ =

outDendrite

A4

strength
learnRate

HebbRule()
DeltaRule()

Figure 20: Schematic representation of Synapse class

Synapse properties
e id. A unique id number assigned when the synapse is created.

e idSrceNeuron. The id number of the source neuron from which the input value in
inAxon is passed. Assigned by the Network class when the synapse object is created.

e idTrgtNeuron. The id number of the post-synaptic neuron to which the output value
outDendrite is passed.

e inAxon. The value of the input from the pre-synaptic neuron.
e outDendrite. The value passed by the synapse to the post-synaptic neuron.

e strength. The value by which the value of inAxon is multiplied and then passed to
outDendrite (McLeod et al 1998: 17). This value is adjusted during learning
(McLeod et al 1998: 18-19).
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e learnRate. A constant assigned by the Network class when the synapse object is
created. It determines the rate at which the synapse strength is adjusted during
learning (Gurney 1997: 43).

Synapse behaviour
e Hebb Rule(). Implemented as described in section 3.4.1 above, using the code:

strengthChange = learnRate * inAxon * targetActivity

e Delta Rule(). Implemented as described in See section 3.4.2 above, using the code:

strengthChange = (targetActivity - obtainedActivity) *
sourceActivity * learnRate;

5.4 The network class

The Network class creates and runs a network object consisting of neurons and synapses
using specification input from the user via the handler form, MakeANNie shown in figure
21. The design adopted permits the creation of multiple network objects of varying size.
This would enable the simulation of brain modularity through the creation of a network of
connected networks. Moreover, through the creation of subclasses, it would be possible to
incorporate auto-association, recurrent and other network designs into a single modular
‘super’ network.

MakeANNieForm 1= E3
— Make netwark
Netwark name IANNie laver ¢ neuron Synapse / source / target
Mum neurans IB Hum input neurans Id oo 004 -
01 114
|2 H tput |4 0z 224
Num layers urn output neurons i it
14 405
15 518
16 625
Network created Make AMNNie i 735
Check connections 808 ;I

i Run network.

Threshaold |1 Start strength |01 Learn rate IU.S Murn iterations {100 tha I'I.U

Activation function Leammle ——— Presentation method ————————
= Binary " Hebb ' Each value once per iteration
£ Sigmoid & Delta " Each value * iterations

 Mone

¥ Presert after learming

Enter input values separated by a space

17360500,1732 0500, 03320500 ;I
E
Enter required output values separated by a space
17360603,17320503. 03320503 ;I
E
ANMie says | Stiow values |
=
LI message Run &NMie |

Figure 21: MakeANNie handler form
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Functionally, the class consists of two parts: 'Make network' and 'Run network’,
representing respectively, anatomy and physiology. There is a case to split the Network
class along these lines but they have been kept together for the moment for the
convenience of passing variables to the instantiated network object.

5.4.1. The make network function

The 'make network' function of the Network class is shown schematically in figure 22.

Neuron class

MakeANNie form Network class
name 1. Pass numsynapses
user
numMeurons variables numMeuronsThisLayer(]
numLayers firstheuranThisLayer]] 2 Create netrons
numinputNeurons arf nputvalues(] and synapses
numOutputMeurons arTarget¥alues(]
|

3. Create network
SetlayersAndPointers()

SetMeurons()
SetSynapses()
SetConnections()

Synapse class

Figure 22: Make network function of Network class

It creates a network consisting of the number of neurons specified by the user. If the
number of layers is greater than two, the number of neurons per hidden layer is calculated.
The number of synapses is calculated according to the expression:

ns = X nn; * NNj.y

Where:
ns is the total number of synapses
nn; is the number of neurons in the current layer
NN+ is the number of neurons in the next layer

36



July 2008 Geoff Cockayne MA Applied Linguistics

5.4.2 Creating neurons, synapses and connections

Neurons are instantiated with the appropriate layer number and number of dendrites. The
number of dendrites per neuron is calculated according to the number of neurons in the
preceding layer. Synapses are instantiated having calculated the number required as
described above.

Making the connections requires iterating through each neuron in each layer and then
connecting through a synapse to each neuron in the following layer. Each synapse stores
the id number for its source and target neuron. This is done using the SetConnections()
method as outlined in the following psuedocode:

thisSynapse = 0;
for each targetLayer[i]
for each targetNeuron[j] in targetLayer[i]
for each sourceNeuron[k] in sourceLayer[i-1]
thisSynapse.sourceNeuron = k;
thisSynapse.targetNeuron = j;
increment thisSynapse;

Figure 23: Set connections psuedocode

5.4.3 The run network function

The run function of the Network class receives the runtime values from the MakeANNie
form and runs the network object using the methods shown in figure 24, under the control
of methods in the MakeANNie form.
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MakeANNie form Network class Network object
threshold
startStrength - -
learnRate
numiterations
rho
activatonFunction \
learnRule SetMeuronThresholds()
inputyalues SetSynapseStrengthAndLeamnRule()
targetvalues SetActivationFunction()
SetleamnFunction()
SetlnputAndTargetArrays()
SetHebbRuleStrengthChange()
SetDeltaStrengthChange()

Setlnputdendrites()
SetMetinputs()

ApplyBinary()
ApplySigmoid])
ApplMNotLearning()
ApplyHebb()
ApplkyDeltal)
SetMeuronDendrites()

Figure 24: 'Run network' function of Network class

The running of the network object is outlined below. The code is listed and documented in
Appendix B.

1. Set the user specified neuron thresholds, synapse start strengths and synapse learn rates.
These values remain constant during the run.

2. Assign the user specified activation function (binary or sigmoid) and learning rule (Hebb or
delta).

3. For each iteration:
3.1 For each input word:

3.1.1 If Hebb learning, set synapse strength change (constant for each
character).

3.1.2 present each character of the input word to the dendrites of the input
layer.

3.1.3 For each layer:
Set the net inputs of the neurons in the layer.

Apply the activation function and pass output values to neuron axons.
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Pass axon values to synapses and apply learning function .
Pass synapse output values to dendrites of next layer.
3.1.4 Process output layer and display output values.

3.1.5 Ifdelta learning, set synapse strength change for next word/iteration.
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6 Testing the model

The objective of testing the model is to determine if it can simulate aspects of language
acquisition. However, it is first necessary to determine if the network components, the
neurons and synapses, behave in accordance with their specifications.

6.1 Testing a single neuron

A handler form was created, shown in figure 25 below, which instantiated a single neuron,
shown schematically in figure 26. The number of dendrites (and thus instantiated
synapses), the threshold, iterations and activation function are user determined. The input
values were entered in the source code, though it would have been better to include these
in the user input.

Granny neuron !EI E
Mo, dendrites IE Threshald |1 [berations IEU &ctivation Function € BEinary
= Sigmoid
Synapse inpuk [rendrite inputs to newuran Met input Mevron autput

Action patentials [netlnput > = threshald) I Fire my neuran

Fiqure 25: Handler form for single neuron and synapse testing
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axon input synapse dendrites heuron axon output

Figure 26: Testing a single neuron

Four sets of inputs were presented to the neuron as shown in table 1 below. Detailed
results are shown in appendix C.

The Hebb rule (strengthchange = TearnRate * inAxon * targetActivity)was used,
with the learn rate fixed at 0.25 and the target value fixed at 1.0. This rule continuously
increases the synapse strength providing all values in the expression are greater than zero.
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Table1: Neuron testing; dendrites=3, threshold=1, iterations=100/150, binary
function
Inputs Predicted Reason for prediction Actual outputs
outputs
All=0 Always = 0 The synapses are never As predicted
strengthened since the Hebb
Rule is multiplicative; thus
the threshold is never
achieved.
Sum >=1 Always =1 The threshold is always As predicted
achieved.
All = 0.1 Initially = 0; then | Positive inputs to the As predicted
always = 1 synapses are gradually
strengthened until the
threshold is achieved.
Each >0.1<0.25 Initially=o0 As previous but random As predicted, but
then = o or 1; input implies a brief see comments in
then always = 1 intermediate period. text.

The fourth test result, where the input values are randomised with in a fairly narrow range,
is particularly interesting since it probably more closely models actual neural behaviour
than the others. Neurons are known to exhibit 'noise', that is, frequent changes in the
signal outputs at low value levels (McLeod et al 1998: 32-33, 44) (Ward 2006: 38, 42).

The output patterns during the intermediate period of test four varied surprisingly. The
details are shown in appendix C.

6.2 Testing the network with a single input pattern

The most basic operation of a neural network is pattern association: when one pattern is
presented as input another pattern is generated as output. This simple pattern association
is said to provide a cognitive mechanism for the psychological phenomenon of stimulus-
response (see sections 3.4.1 and 3.5 above and McLeod 1998: 52).

The model was first presented with a number of simple binary patterns and in each case
trained to generate a different pattern. The model was then presented with more complex
patterns representing a set of phonemes and trained to produce a modified phonemic
pattern representing an inflection of the original. In each case the original pattern was
presented after training to ensure that the association had been learned.

6.2.1 Binary pattern association

This stage of testing was carried out using the binary activation function and the Hebb rule
(Rolls and Treves 1998: 6-7). The model was two layer with four input and four output
neurons. The initial threshold was initially set to 1.0, with a start strength of 0.1, and a
learn rate of 0.5. Initial training was for 100 iterations. The results are summarised in table
2,
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Table 2: Binary pattern association
Input pattern Target pattern Actual output2

1.00 O 1.00 O

O 1.00 O 1.00

0.31 1.00 0.31 1.00

1.00 1.00 0 O

O O 1.00 1.00

0.33 0.33 1.00 1.00

1.00 0 0 O

1.00 O O 1.00

1.00 0.33 0.33 1.00

0 1.00 0 O

O 1.00 1.00 1.00

0.33 1.00 1.00 1.00

An examination of the intermediate output values showed that where the target value was
1.00, the corresponding actual output incremented rapidly to match. However, where the

target value was 0, the actual output remained constant. The intermediate values for the

first seven iterations of the first pattern are shown in table 3.

Table 3: Intermediate values for first pattern in table 2
Iteration Output value

0 0.31 0.55 0.31 0.55

1 0.31 0.77 0.31 0.77

2 0.31 0.90 0.31 0.90

3 0.31 0.96 0.31 0.96

4 0.31 0.99 0.31 0.99

5 0.31 0.99 0.31 0.99

6 0.31 1.00 0.31 1.00

The values of the threshold, start strength and learn rate were then individually adjusted to
determine their effect on the output pattern. The results are summarised in tables 4, 5 and

6.

Table 4: Binary pattern association: threshold=6, others as table 2

Input pattern

Target pattern

Actual output

1.00 O 1.00 O

O 1.00 O 1.00

O 1.00 O 1.00

1.00 1.00 0 O

O O 1.00 1.00

O O 1.00 1.00

1.00 00O

1.00 O O 1.00

1.00 O O 1.00

0 1.00 0 O

O 1.00 1.00 1.00

O 1.00 1.00 1.00

Adjusting the threshold to 6, had the effect of matching the actual output to the target
output. Examination of the intermediate values showed that on the first iteration where

2 Values are input with two decimal places, represented internally with 14 decimal places, and rounded

back to two decimal place for output
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the target value was 0 the actual output was also 0, but where the target value was 1.00 the
output was 0.01. However, in order to achieve this result it was necessary to run the model
with a threshold of 1. If the network was instantiated and immediately run with a threshold
of 6, all o results are returned.

Table 5: Binary pattern association: start strength=0.25, others as table 2
Input pattern Target pattern Actual output

1.00 0 1.00 O 0 1.00 O 1.00 0.45 1.00 0.45 1.00
1.00 1.00 0 O 0 0 1.00 1.00 0.45 0.45 1.00 1.00
1.00 0 0 O 1.00 0 O 1.00 1.00 0.45 0.45 1.00
0 1.00 0 O 0 1.00 1.00 1.00 0.45 1.00 1.00 1.00

Table 6: Binary pattern association: learn rate=1.0, others as table 2

Input pattern Target pattern Actual output

1.00 0 1.00 O 0 1.00 O 1.00 0.34 1.00 0.34 1.00
1.00 1.00 0 O 0 0 1.00 1.00 0.34 0.34 1.00 1.00
1.00 0 0 O 1.00 0 O 1.00 1.00 0.34 0.34 1.00
0 1.00 0 O 0 1.00 1.00 1.00 0.34 1.00 1.00 1.00

Adjusting the start strength or the learn rate increases the actual output value
corresponding to the o target value. Various other values of the start strength and learn
rate were tested: in each case the higher the variable value the higher the non 1.0 output
value.

6.2.2 Non-binary pattern association

In this section the same model is presented with the nine 'high frequency' verbs used by
McClelland and Rumelhart (1986: 240). The binary coded Wickelfeatures used by
McClelland and Rumelhart were avoided since they had been criticised for failing to give a
distinct, that is symbolic, representation to the phonemes being manipulated (Pinker and
Prince 1988: 175). The input and output values in this model are thus given distinct
symbolic form.

The phonetic forms were converted into numeric codes, shown in table 7, using a table in a
student course book (Soars and Soars 2003: 159). This coding was chosen because the
phonemes are grouped in a useful manner: codes 1 to 24 are consonants, 25 to 37 are
vowels and 38 to 45 are diphthongs. Voiced and unvoiced phonemes are adjacent, as are
short and long sounds. Thus if the model produces errors, the degree of error is to some
degree measurable according to its variance from the target value.
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Table 7: Verb codes presented to the model

Written IPA IPA code
come came /kam/ /keim/ 05 35 12 00 053812 00
get got /get/ /gpot/ 06280300 06310300
give gave /giv/ gewv 06260800 06380800
look looked /luk/ /lukt/ 11 33 05 00 11 33 05 03
take took [teik/ [tuk/ 03380500 03330500
g0 went /gau/ /went/ 06390000 17281303
have had /haev/ /heed/ 14 29 08 00 14 29 04 00
live lived /hv/ /hivd/ 11 26 09 00 11 26 09 04
feel felt [fizl/ /felt/ 07 25 11 00 07 28 11 03

The model was presented with the code for each verb individually, the synapse values
being reset to the value of startStrength between verbs: the model was tabula rasa for
each verb. Initially, the model was run for 100 learning iterations, using the sigmoid
function and delta learning rule. The phoneme values shown in bold are those that change
to form the past tense (for example, /a/ to /ei/ for come --> came).

Table 8: Finding the past tense of high frequency verbs.

Verb (present |Target value (past Value after100 | No of No of

tense) tense) iterations iterations to iterations to
capture past capture target
phoneme(s) value

come 05 38 12 00 08 38 13 05 70 1135

get 06 31 03 00 09 31 07 06 37 1202

give 06 38 08 00 09 38 10 05 73 1192

look 1133 05 03 13 33 08 07 374 374

take 03 33 05 00 0733 08 05 53 1153

g0 1728 13 03 18 28 14 07 376 376

have 14 29 04 00 1529 08 05 316 1145

live 11 26 09 04 1326 11 08 322 322

feel 0728 11 03 10 28 13 07 385 385

The model showed a tendency to quickly capture the past phoneme for the verbs 'come’,
'get’, 'give' and 'take'. In each case the phoneme change is a single vowel preceded by a
consonant. Also, in each case the changed phoneme was the second phoneme in the word.
This could indicate either some interesting pattern seeking behaviour or, a fault in the
design of model biasing it toward the second number in each value. The model was
therefore re-made with six input and six output neurons, thus shifting the position of the
change vowel from 2 to 3. The model was then re-run with the same data, as shown in
table 9.
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Table 9: Effect of shifting position of past phoneme

Verb (present Target value (past tense) | Value after 100 No of iterations to

tense) iterations capture past
phoneme(s)

come 00 05 38 12 00 00 04 07 38 13 04 04 47

get 00 06 31 03 00 00 04 08 31 06 04 04 6

give 00 06 38 08 00 00 04 08 38 09 04 04 49

look 00 11 33 05 03 00 04 12 33 07 06 04 265

take 00 03 33 05 00 00 04 06 33 07 04 04 29

g0 001728 13 03 00 041728 14 06 04 816

have 00 14 29 04 00 00 04 14 29 06 04 04 224

live 00 11 26 09 04 00 04 12 26 10 06 04 227

feel 00 07 28 11 03 00 04 08 28 12 06 04 270

The results were similar to those in table 8; with the exception of 'go' the past phonemes
were captured rather quicker than previously.

The verbs whose phoneme changes were quickly captured are examples of infix inflections,
in contrast with the suffix inflections of regular verbs in English. Infix inflexions are
common in Arabic: the root form ktb, for example, is infixed with vowels to form words
connected with writing (Fromkin et al 2008: 515). The model was therefore tested with a
sample of such infixes, and the results are shown in table 10. The input root form was
infixed with the weak vowel /a/. Only the first five are actual Arabic words: the rest were

assigned random vowels.

Table 10: Testing infix inflections on root /kstab/
Target word Target value .Value. after 100 No of ) No of )
1iterations iterations to iterations to
capture infix | capture
phoneme(s) |targetvalue
/keeteeb/ 05 29 03 29 02 0729062905 14 346
/kiteb/ 0526 03 29 02 07 26 06 29 05 44 346
/eektib/ 29 05 03 26 02 29 07 06 26 05 44 346
/Kkita:b/ 0526 03 30 02 07 26 06 30 05 44 346
/kutub/ 0533033302 0733063305 35 346
/kata:b/ 05 35 03 30 02 07 35 06 30 05 44 346
/ki:tob/ 05 25 03 31 02 07 25 06 31 05 49 346
/kstu:b/ 0537 03 34 02 0737063405 49 346
/Kketa:b/ 05 2703 36 02 07 2760 36 05 47 346
/ku:teb/ 0534 03 37 02 0734063705 49 346
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The infixes were captured very quickly, an average of 42 iterations, compared with an
average 223 iterations for the English verbs in table 8. In one case, the declension /aektib/
(I write), the vowel pattern is prefix + infix; nevertheless the past phonemes are captured
similarly quickly to the infix + infix pattern.

6.3 Testing the network with multiple input patterns

In the various models described in section 4, a single network is trained using a set of input
values. The network is subsequently presented with both trained and novel values. The
following section attempts to repeat these experimental results using binary and non-
binary values.

6.3.1 Binary pattern association

Sets of binary patterns were trained and then presented, using the Hebb rule and the
Binary activation function. The results are shown in table 11 below.

Table 11: Binary pattern association with multiple values
Input set Target set Output set

1.0 0 1.0 O, 01.0 0 1.0, 1.0 1.0 0 1.0,
01.01.00 1.01.000 1.01.00 1.0
1.01.0 0 O, 0 0 1.0 1.0, 1.0 0 1.0 1.0,
00100 1.0001.0 1.001.0 1.0
000 o0, 1.00 00, 1.01.01.0 0

1.0 1.0 1.0 1.0 1.01.01.0 0 1.01.01.0 0

In each case the output value was the same for each value presented, and, apart from the
second value in row three, the output set failed to match the target set.

6.3.2 Non-binary pattern association

The nine verb codes from table seven were presented as a set, using the delta rule and the
sigmoid activation function. The results are shown in table 12.
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Table 12: High frequency verbs presented as a set

Verb (present Target value (past Value after 10 Value after 100
tense) tense) iterations iterations
come 0538 12 00 113110 07 09 31 08 02
get 06 31 03 00 12 3111 07 09 31 08 02
give 06 38 08 00 12 3111 07 09 31 08 02
look 11 33 05 03 11 3111 07 09 3108 02
take 03 33 05 00 113111 07 09 3108 02
g0 1728 13 03 113111 07 09 31 08 02
have 14 29 04 00 113110 07 09 3108 02
live 11 26 09 04 12311107 09 31 08 02
feel 072811 03 12311107 09 3108 02

Again, the output values failed to match the target values. They showed some slight
variations in the early iterations but by 100 iterations were identical. The model was tested
with a reduced set of values, and various threshold, start strength, learn rate, and rho
values were used. However, the results in each case were similar.

6.4 Analysis and interpretation of results

In section 6.1 a single neuron was tested using the binary activation function and the Hebb
rule. The results from this testing was in accordance with predicted behaviour and suggests
that the expressions were coded correctly. Further tests with the sigmoid function, shown
in Appendix C.6, demonstrated similar behaviour.

In section 6.2.1 binary pattern matching with the Hebb rule was successful where the
threshold value was set to 6.0. At lower threshold values the initial neuron outputs were
always greater than zero and since the Hebb rule is positively cumulative, the output would
never match zero values. The effect of the higher threshold setting is to suppress all initial
output values to zero enabling the connections to the 1.0 target outputs to be incremented,
leaving the zero target outputs unchanged. This behaviour suggests that the connectivity of
the model was correctly coded. Whether it says anything about brain behaviour is
uncertain since it is not clear if the simplifications of the Hebb rule and binary function are
represented in actual neural behaviour.

In section 6.2.2 the model was presented with non-binary values representing English
present tense phoneme strings. The model always generated the appropriate past tense
form. The model generated the past tense more quickly where the morphological change
was a vowel change in the form consonant+vowel. When the position of the
consonant+vowel pair was shifted, similar results were obtained, suggesting that the
results were not the consequence of a fault in the model biasing the results to the second
neuron.

Testing the model with infix morphological changes of the type
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consonant+vowel+consonant+vowel+consonant, characteristic of Arabic and other
Semitic languages, produced the most interesting results. The past phoneme change was
in each case captured in less than 50 iterations and the full morphological change was
captured in exactly 346 iterations for each value. This compares with 374 and 322
iterations respectively to capture the past phoneme change in the English regulars 'look’
and 'live', although in these cases the past phonemes were the last to be captured. The
model demonstrates an ability to find infix + infix and prefix + infix patterns more quickly
than other morphological forms.

However, some caution is necessary in interpreting these results since the model failed to
capture multiple inputs in the manner of the McClelland and Rumelhart and other models
described in section 4. It is possible that there is some fault in the coding of the classes,
but this seems unlikely given the testing described above. It is more likely that this failure
is due to the symbolic rather than binary form in which the values were presented, which
may explain the use of binary input in several of the models described, including the
wickelfeatures used by Rumelhart and McClelland. Alternatively, the failure may be due to
the manner in which the delta rule was implemented. Figure 13 on page 24 shows an error
gradient which represents global rather than local minima (Gurney 1997: 69) and it may
be necessary to modify the expressions in the model to achieve this, using the linear
algebra methods described in Gurney (1997: chapter 3).
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7 Conclusions

7.1 The research model

The model constructed for this research produced some interesting results especially with
respect to infix morphology. It may be that this type of morphology is particularly suitable
to the pattern finding abilities of connectionist models, which implies that children may
acquire infixes more quickly than other morphology. However, no reference has been
found to such a phenomenon in the literature.

To research this possibility further it is first necessary to develop the model so that it
successfully captures multiple as well as single input patterns, as discussed in the previous
section. The model could then be presented with appropriate words, not restricted to
verbs, in a cross-linguistic study of English and Arabic, or of the Germanic and Semitic
families. If the results found in this study were confirmed, then a cross-linguistic study of
native English and native Arabic speaking children could be carried out to determine if
they acquire infix morphology more quickly than other forms.

The model uses Object Oriented design, which allows any number of network objects to be
constructed. Sub-classes may also be created incorporating the various network designs
described in section 3.5. Further, it permits the construction of a network of networks
which more closely simulates brain functionality, with the possibility of attempting to
simulate higher cognitive functions. It may even be possible to construct a network of
networks which is constrained by some kind of content addressable parameters (see
section 3.5.3), to provide a limited simulation of an innate language acquisition device.

7.2 The value of connectionist models

This research has shown that connectionist models may be of practical value to scholars in
the field of language acquisition, since they may generate hypotheses which can then be
used in child development studies. However, this proposition comes with two important
caveats. Firstly, the models themselves must be physiology adequate. Simplification is
justified on the grounds that it allows the most important characteristics of the model to be
observed clearly: in this case the behaviour of synapses during the learning process.
However, more complex models, which come closer to representing real brain behaviour,
are necessary if connectionism is to achieve more than the simulation of relatively narrow
aspects of language acquisition; and in particular to offer some account of higher cognitive
functions such as linguistic prototyping. Modelling techniques, perhaps including back-
propagation, which do not seem to be physiologically adequate, should be avoided.
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The second caveat is that the connectionist modelling of language acquisition should be
carried out by linguists who are competent in software development and have an adequate
understanding of physiology of the brain. It may well be that a dearth of such expertise,
combined with the particular challenges that language presents modellers, accounts for the
relative lack of research in the field since the work of Rumelhart and McClelland, Elman
and others in the 1980s and 1990s. It may also explain why connectionism is often
characterised as being in opposition to other branches of linguistics, including cognitive
linguistics.

Notwithstanding the bold assertion of McClelland and Rumelhart (section 4.1.1 above),
subsequent researchers appear to have been cautious about the claims they make for
connectionism. Linguistic rules may be characterised as emergent properties of models,
which is not to claim that the rules themselves do not exist. Connectionists seem to support
the general proposition of cognitive linguists, and usage theorists such as Tomasello, that
language acquisition is a function of general cognitive skills rather than any innate
language module such as UG.

One potential area of collaborative research between cognitive linguists and
connectionists, is that of simulated embodiment. A network of networks, based on the
auto-associative model described in section 4.2.1, could be connected to a number of
devices which simulate the human senses. Further, such a network, incorporating motor
function simulation described in section 3.6.1, could be connected to a device with spatial
awareness and movement functions: that is, a robot.

Connectionism, taken to the extreme, appears to represent a reductionist
epiphenomenalism in which all of human behaviour, including language, has a purely
physical cause: the complex combinations of the electro-chemical outputs of neurons. By
this account, mental events are a consequence, not a cause, of physical events. Such a
proposition seems to dismiss human conciousness as the mere froth of neuronal activity.
The spectre of epiphenomenalism may account for some of the hostility towards
connectionism. However, no connectionist model comes close to such an account and
theorists such as Elman (see section 4.1.1) seem content to describe connectionism as a
vehicle for the study of human development as conceptual emergence.

word count = 12,923
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Appendix A: The neuron and synapse
Classes

The documented code for the Neuron and Synapse classes is listed on the following pages.
The code was written in C# using the Microsoft Visual C# 2008 Express Edition.
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A.1 Neuron class code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ANNie
{
class Neuron
// The Neuron receives input via the array inbDendrite[], summates the values
// of the dendrites in SetNetInput(), processes them in BinaryFunction()
// or SigmoidFunction() and asigns the result to outAxon (and thus to Synapse).
// The Tayer property is calculated at run time
// The actionPotential property is set if netInput >= threshold (Gurney 1997: 11)
// The properties id, layer and threshold are assigned by the Network class
// when the ANN is created. Neurons in the input layer have one only one dendrite.

//

{
protected int _id; // each neuron has a unique id 0-n
protected int _layer; // the layer number of the neuron
protected int _numDendrites; // number of dendrites
protected internal double[] inDendrite = new double[] {}; // see notes 1 & 2 below
protected double _outAxon; // the output from the neuron
protected double _threshold; // the threshold at which the neuron activates
protected double _netInput; // sum of inDendrites[i], passed to activation function
protected int _actionPotential; // set to 1 if netInput >= threshold;
protected int _numActionPotentials; // number of activations 1in current run

protected double _rho; // used to change slope of sigmoid
// Get Set methods
public int id

{
get { return _id; }
set { _id = value; }
3
public int Tayer
{
get { return _layer; }
set { _layer = value; }
}
public int numDendrites
{
get { return _numDendrites; }
set { _numDendrites = value; }
}
public double this[int index]
{
get { return inDendrite[index] ; }
set { inbendrite[index] = value; }
3
public double outAxon
{
get { return _outAxon; }
set { _outAxon = value; }
3
public double threshold
{
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get { return _threshold; }
set { _threshold = value; }

3
pubTlic double netInput
{
get { return _netInput; }
set { _netInput = value; }
3
public int actionPotential
{
get { return _actionPotential; }
set { _actionPotential = value; }
3
public int numActionPotentials
{
get { return _numActionPotentials; }
set { _numActionPotentials = value; }
3
public double rho
{
get { return _rho; }
set { _rho = value; }
3
// Constructors
//

// This one 1is called from Network class

public Neuron(int idNum, int TayNum, int numConnections)

{
id = idNum;
Tayer = TayNum;
numDendrites = numConnections;
initDendrites();
outAxon = 0.0;
threshold = 0.0;
actionPotential = 0;
numActionPotentials = 0;

}

// This one 1is called from grannyForm

public Neuron(int idNum, int TayNum, int numConnections, double theta)

{
id = idNum;
layer = layNum;
numbendrites = numConnections;
initDendrites();
outAxon = 0.0;
threshold = theta;
actionPotential = 0;
numActionPotentials= 0;

3

// called from constructor

// Set the inDendrite[] array size to the number of dendrites
// and initialise the inDendrite[] array variables to zero

public void initDendrites()

{
Array.Resize(ref inDendrite, numDendrites);
foreach (int connection in inbendrite)

{inDendrite[connection] = 0.0;}

}

//

// Class methods

//

MA Applied Linguistics

57



July 2008 Geoff Cockayne MA Applied Linguistics

}

// Ssummates the input dendrites to netInput
pubTlic void SetNetInput()

{
netInput = 0.0;
for (int j = 0; j < numbDendrites; j++)
netInput += inDendrite[j];
3

// Set actionPotential and iterate numActionPotentials if netInput >= threshold

// Used for reporting purposes only.
pubTlic void SetActionPotential()

{
if (netInput >= threshold)
{
actionPotential = 1;
numActionPotentials++;
3
else
actionPotential = 0;
3

// Binary function. (McLeod et al 1998: 17-19) output is either 0 or 1

// .. ! else '0' produces permanent 0 output with Hebb Rule! Need to look at this.

// Hebb works OK with the sigmoid function
public void BinaryFunction()

{
if (netInput >= threshold)
outAxon = 1.0;
//else
// outAxon = 0.0;
}

// Sigmoid function (Gurney 1997: 19) An 'S' shaped function which

// accentuates input values around the threshold value, flattens values
// which are higher or Tower. Rho changes the slope of the sigmoid and is
// set by the user at runtime using the Network.SetSigmoidRho() method

//
public void SigmoidFunction()
{
//double rho = 1.0; // need to Set this from Network class
outAxon = 1.0 / (1.0 + Math.Exp(-(netInput - threshold) / rho));
}

//Note 1: inDendrite is an array of the inputs to the neuron.

/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7
/7

Dendrite, because the inputs to any neuron, apart from those in layer 0,
are via dendrites.

Note 2: protected internal int[] inDendrite = new int[] {};

C# does not permit the creation of an array field in the class definition

in the same way as for non-array variables. It must be created using

an 'indexer'. It does not permit the use of the protected keyword alone.

This means that inDendrite is exposed and directly accessible to code,

unTlike the other fields. It also does not permit the use of pointer addresing
in the field definitions. 0dd. I have decided to 1live with this for the time
being since I want the array inDendrite to be accessible in the same way as the
other properties (neuron.inDendrite[i]). The alternative, presumably, would be

to create the array outside the class, in the source code, which I'm not keen on.
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A.2 Synapse class code

using System;
using System.Collections.Generic;

using System.Linq;
using System.Text;

namespace ANNie

{

class Synapse

// Neurons are connected to each other via a synapse. The synapse knows which
// neurons it is connected to by the idSrceNeuron and idTrgtNeuron properties.
// Each synapse has a stored strength which is changed according to the Hebb or
// Delta Rule, when Tlearning 1is taking place. when no learning is taking place
// the strength property is unchanged.

// Data values arrive at the synapse inAxon property, from the source neuron

// are strengthened, and passed to outDendrite and on to the target neuron.

protected
protected
protected
protected
protected
protected
protected
protected
protected
protected

int _id; // unique id of the synapse object

int _idSrceNeuron; // unique id of source neuron

int _idTrgtNeuron; // unique id of target neuron

double _inAxon; // input value from axon of source neuron

double _outDendrite; // output value to dendrite of target neuron

double _learnRate; // Used in Hebb and Delta Rule

double _strength; // Strength of the synapse calculated by learning rule
double _strengthcChange; // Calculated by Hebb or Delta rule

double _targetActivity; // Used by the delta Rule.

double _obtainedActivity; // Delta Rule

// Get Set methods
public int id

{

get { return _id; }

set {
}

_id =

value; }

public int idSrceNeuron

{

get { return _idSrceNeuron; }
set { _idSrceNeuron = value; }

}

public int idTrgtNeuron

{

get { return _idTrgtNeuron; }
set { _idTrgtNeuron = value; }

}

public double inAxon

{

get { return _inAxon; }

set { _inAxon

}

= value; }

public double outDendrite

{

get { return _outDendrite; }
set { _outDendrite = value; }

}

public double learnRate

{

get { return _learnRate; }
set { _learnRate = value; }
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pubTlic double strength

{
get { return _strength; }
set { _strength = value; }
3
public double strengthcChange
{
get { return _strengthChange; }
set { _strengthChange = value; }
3
public double targetActivity
{
get { return _targetActivity; }
set { _targetActivity = value; }
3
public double obtainedActivity
{
get { return _obtainedActivity; }
set { _obtainedActivity = value; }
}
//
// Constructors
//

// This one is called from Network class

pubTlic Synapse()

{
id = 0;
jdsrceNeuron = 0;
idTrgtNeuron 0;
learnRate = 0.0;
inAxon = 0.0;
outDendrite = 0.0;
strength = 0.0;
strengthchange = 0.0;
targetActivity = 0.0;

3
// This one 1is called from grannyForm
public Synapse(double synapselLearnRate, double synapseStrength)

{
id = 0;
jdsrceNeuron = 0;
idTrgtNeuron = 0;
learnRate = synapseLearnRate;
inAxon = 0.0;
outDendrite = 0.0;
strength = synapseStrength;
strengthchange = 0.0;
}
//
// Class methods
//

// Not learning, McLeod(18-19). Since Tlearning is is represented by the Hebb or

// Delta rule, I assume that the during the non-learning phase no synapse

// strengthening takes place. Thus the output from the synapse is constant

// for a given input, changing only in response to changed input and the previously
// learned strength.

// I wonder about the physiological validity of simply turning Tearning on and off.
// I suspect it is not quite so simple in the brain.

//

pubTlic void NotLearning()

{

outDendrite = inAxon * strength;
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}

// Hebb Rule, McLeod (54). The synapse is strengthened on each iteration in
// accordance with the strengthChange property, which is constant for each run.
// StrengthChange is set by the Network method SetHebbRuleStrengthChange() and is
// described in more detail there. Here, on each iteration, the strength is
// incremented by the strength change, multiplied by the inAxon value and passed
// to the outDendrite.
//
public void HebbRule()
{

strength += strengthChange;

outDendrite = inAxon * strength;
3
// Delta Rule (McLeod: 19 expression 1.3) The required strength change is
// calculated here on each iteration in contrast with the Hebb Rule.
// The change in the synapse strength is the desired (target) activity minus the
// obtained activity, multiplied by the source activity (input) and the Tearning rate.
// This method is called from Network.SetDeltaStrengthChange() which determines
// the targetvalue, obtainedvalue and sourcevalue for each synapse. The actual
// synapse processing takes place here.

//
public void DeltaRule()
{
double sourceActivity = inAxon;
strengthChange = (targetActivity - obtainedActivity) * sourceActivity * TlearnRate;
strength += strengthcChange;
outDendrite = inAxon * strength;
3
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Appendix B: The network class

The documented code for the Network classes is listed on the following pages. The code
was written in C# using the Microsoft Visual C# 2008 Express Edition.
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B.1 Network class code

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ANNie
{
class Network
// Creates and runs a network of neurons and synapses. There is a case to split
// this class since creation 1is anatomy and the run functions are physiology.
// At creation time the first set of properties, before the comment marker,
// are passed directly from the MakeANNie Form to the Initialsie() method.
// The other properties are calculated as indicated by Network. methods as
// indicated.
//
// The four arrays have to be defined as 'indexers' rather than properties in C#
// and the Get/Set methods require the use of the 'this' keyword. Two indexers of
// the same value type are not permitted so I have used int/short and single/double
// to overcome this. I have checked the passing of values to and from these arrays
// and can find no i11 effects.

protected int _id;

protected string _name;

protected int _numNeurons;

protected int _numLayers;

protected int _numInputNeurons;

protected int _numOutputNeurons;

protected double _threshold;

protected double _rho; // used to adjust the slope of the sigmoid
//

protected int _numSynapses; // See SetSynapses()

protected int _activationFunction; // See SetActivationFunction()
protected int _learnFunction; // See SetLearnFunction()

protected internal int[] numNeuronsInThisLayer = new int[] { }; // See
SetLayersAndPointers()

protected internal short[] firstNeuronInThisLayer = new short[] { }; // See
SetLayersAndPointers()

protected internal Single[] arrInputvalues = new Single[] { }; // See
SetInputAndTargetArrays()

protected internal double[] arrTargetvalues = new double[] { }; // See
SetInputAndTargetArrays()

//

// Get Set methods

//

public int id

{
get { return _id; }
set { _id = value; }

3

public string name

{
get { return _name; }
set { _name = value; }

3

public int numNeurons

{
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get { return _numNeurons; }
set { _numNeurons = value; }

3
public int numSynapses
{
get { return _numSynapses; }
set { _numSynapses = value; }
3
pubTlic int numLayers
{
get { return _numLayers; }
set { _numLayers = value; }
3
pubTlic int numInputNeurons
{
get { return _numInputNeurons; }
set { _numInputNeurons = value; }
3
pubTlic int numOutputNeurons
{
get { return _numoutputNeurons; }
set { _numOutputNeurons = value; }
3
public double threshold
{
get { return _threshold; }
set { _threshold = value; }
3
public double rho
{
get { return _rho; }
set { _rho = value; }
}
pubTlic int activationFunction
{
get { return _activationFunction; }
set { _activationFunction = value; }
}
pubTlic int TearnFunction
{
get { return _learnFunction; }
set { _learnFunction = value; }
3
public int this[int indexNum]
{
get { return numNeuronsInThisLayer[indexNum]; }
set { numNeuronsInThisLayer[indexNum] = value; }
}
public short this[short indexFirst]
{
get { return firstNeuronInThisLayer[indexFirst]; }
set { firstNeuronInThisLayer[indexFirst] = value; }
}
public Single this[Single indexInp]
{
get { return arrInputvalues[Convert.ToIntl6(indexInp)]; }
set { arrInputvalues[Convert.ToIntl6(indexInp)] =value; }
3
public double this[double indexTrgt]
{

get { return arrTargetvalues [Convert.ToIntl6(indexTrgt)]; }
set { arrTargetvalues[Convert.ToIntl6(indexTrgt)] = value; }
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3
//
// constructor
// This doesn't do much since the Network object needs to be instantiated
// at the asame time as MakeANNie form in order to expose it to the MakeANNie form
// methods. See Initialise().
public Network(int netId)
{
id = netId;
3
//
// Class methods
// 1. Make Network methods
//
// Initialise Network object. called from MakeANNieForm.buttonl_C1ick
// label: "Make ANNie". Arrays containing Tayer values are initialsed by the
// the two sub methods.

//
pubTlic void Initialise(string netName, int netNumNeurons, int netNumLayers, 1int
netNumInputNeurons, int netNumOutputNeurons)

{
name = netName;
numNeurons = netNumNeurons;
numSynapses = 0;
numLayers = netNumLayers;
numInputNeurons = netNumInputNeurons;
numoutputNeurons = netNumOutputNeurons;
InitNumNeuronsInThisLayer(); // See below
InitFirstNeuronInThisLayer();

}

//

// Set the size of the arrays numNeuronsIn this layer[] and firstNeuronInThisLayer[]
// They are used when the network is run, to allow iteration through a layer.

// values are assigned to the arrays in SetLayersAndPointers

pubTlic void InitNumNeuronsInThisLayer()

{
Array.Resize(ref numNeuronsInThisLayer, numLayers);
for (int i=0; i<numNeuronsInThisLayer.Length; i++)
numNeuronsInThisLayer[i] = O;
}
pubTlic void InitFirstNeuronInThisLayer()
{
Array.Resize(ref firstNeuronInThisLayer, numLayers);
for (int i=0; i<firstNeuronInThisLayer.Length; i++)
firstNeuronInThisLayer[i] = 0;
3
// Assign values to numNeuronsInthisLayer[] and firstNeuronInThisLayer[]
//
public void SetLayersAndPointers()
{

// Input Tlayer
firstNeuronInThisLayer[0] = 0;
numNeuronsInThisLayer[0] = numInputNeurons;
// output layer
firstNeuronInThisLayer[numLayers - 1] = Convert.ToIntl6(numNeurons - numOutputNeurons);
numNeuronsInThisLayer[numLayers - 1] = numOutputNeurons;
// Hidden layers, if there are any
if (numLayers > 2)
{

// calculate number of neurons per hidden layer.

int numNeuronsPerHiddenLayer =

(numNeurons - (numInputNeurons + numOutputNeurons)) / (numLayers - 2);
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if next
//layer

// Assign number of neurons per layer and first neuron in layer

for (int i = 1; i < numLayers - 1; i++)

{ // each layer has the same number of neurons
numNeuronsInThisLayer[i] = numNeuronsPerHiddenLayer;

firstNeuronInThisLayer[i] = Convert.ToIntl6(firstNeuronInThisLayer[i - 1] +
numNeuronsPerHiddenLayer - 1);

// Create neuron objects. Set neuron id, layer number, number of dendrites
// and threshold.
public void SetNeurons(ref Neuron[] arrNeuron)

{
// Initialise neurons with id, Tayer, number of dendrites and threshold
//
int Tayer = 0; // set to input layer
int numbDendrites = 1; // neurons in the input layer have one dendrite
// Loop to instantiate neuron objects and initialise
for (int i = 0; i < numNeurons; i++)
{
// Increment the layer but don't overshoot array bound
// This seems a bit obscure. Simplify?
if (layer < numLayers - 1 & i == firstNeuronInThisLayer[layer + 1]) //increment
{
numbendrites = numNeuronsInThisLayer[layer]; // ready for next layer
Tayer++;
}
// Create neuron object, numDendrites is the number of neurons
// in the preceding Tayer
arrNeuron[i] = new Neuron(i, layer, numbDendrites);
}
}

// Calculate the number of synapses required and then resize the array

// created in the calling form. Instantiate the synapse objects and assign
// an id number to each.

public void SetSynapses(ref Synapse[] arrSynapse)

{
// Calculate total number of synapses: for each layer, the number of neurons in
// this Tlayer * the number of neurons in the next layer
for (int i = 0; i < numLayers - 1; i++)
numSynapses += numNeuronsInThisLayer[i] * numNeuronsInThisLayer[i + 1];
Array.Resize(ref arrSynapse, numSynapses);
// Instantiate synapse objects and assign id
for (int i = 0; i < numSynapses; i++)
{
arrsynapse[i] = new Synapse(Q);
arrsynapse[i].id = 1i;
3
}

// Assign the source and target neurons to each synapse
// Maybe break this up

public void SetConnections(ref Synapse[] arrSynapse)

{

int thisSynapse = 0; // holds the current synapse

// iterate by Tlayer

for (int i = 1; i < numLayers; i++)

{ // Set start and end neurons for target layer
int startNeuronTrgt = firstNeuronInThisLayer[i];
int endNeuronTrgt = firstNeuronInThisLayer[i] + numNeuronsInThisLayer[i];
// iterate for neurons in target layer
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for (int j = startNeuronTrgt; j < endNeuronTrgt; j++)

{
// Set start and end neurons for source layer
int startNeuronSrc = firstNeuronInThisLayer[i - 1];
. int endNeuronSrc = firstNeuronInThisLayer[i - 1] + numNeuronsInThisLayer[i -
// Iterate for neurons in source layer
for (int k = startNeuronSrc; k < endNeuronSrc ; k++)
{
arrsynapse[thisSynapse].idSrceNeuron = k;
) ) arrsynapse[thisSynapse++].idTrgtNeuron = j; // iterate synapse for next
iteration
3
b
3
3
[/ —mmmm - 2. Run Network methods W ----------------———————-
//

// Set all neurons to the value passed from user input. Both McLeod (20)
// and Gurney (40) employ a bias node which dynamically changes the threhold as
// if it were a synaptic weight (strength). This seems to be physiologically
// implausible since the neuron is said to depolarise and thus generate an
// action potential, at around -50mv (ward 20). I can find no reference to such
// behaviour in standard biology texts (eg Curtis & Barnes 1986)
//
pubTlic void SetNeuronThresholds(double netThreshold, ref Neuron[] arrNeuron)
{
for (int i = 0; i < numNeurons; i++)
arrNeuron[i].threshold = netThreshold;
3
// set rho, the slope of the sigmoid, for each neuron
pubTlic void SetSigmoidRho(double netRho, ref Neuron[] arrNeuron)
{
for (int i = 0; i < numNeurons; i++)
arrNeuron[i].rho = netRho;

// Set the initial strength and Tlearn rate for all synapses. Passed from user

// input.

public void SetSynapseStrengthAndLearnRate(double netStartStrength, double netLearnRate,
ref Synapse[] arrSynapse)

{
for (int i=0; i < numSynapses; i++)
{
arrsynapse[i].strength = netStartStrength;
arrsynapse[i].TlearnRate = netLearnRate;
}
3

// The user 1input for the activation and learn functions gives is a set of
// boolean values. They are converted to two integer variables for convenience.
public void SetActivationFunction(bool binary, bool sigmoid)

{
if (binary)
activationFunction = 0;
if(sigmoid)
activationFunction = 1;
3
public void SetLearnFunction(bool notLearning, bool hebb, bool delta)
{

if (notLearning)
learnFunction = 0;
if (hebb)
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TearnFunction = 1;
if (delta)
learnFunction

2;
3
// The input and target values are received from the user as strings.
// They are converted and assigned to the numeric arrays arrInputvalues[] and
// arrTargetvalues[]. The arrays are used by the two Tearn functions but not when
// there is no Tearning (see SetInputDendrites()).
//
// numvaluesInOutArray is set to numNeurons since I wish to align its subscripts
// to those of the output layer, for convenience. This means that the subscripts
// < startvalueOutArray are unused. I wanted to null them but C# won't have it.
//
public void SetInputAndTargetArrays(string[] inputvalues, string[] targetvalues)
{
if (learnFunction == || TearnFunction == 2) // Is Hebb or Delta
{

int numvaluesInOutArray = numNeurons;

//int numvaluesInOutArray = firstNeuronInThisLayer[numLayers - 1]

// + numNeuronsInThisLayer[numLayers - 1];

int startvalueOutArray = firstNeuronInThisLayer[numLayers - 1];

Array.Resize(ref arrInputvalues, numInputNeurons);

Array.Resize(ref arrTargetvalues, numvaluesInOutArray);

// First set all Target values to -999

for (int i = 0; i < arrTargetvalues.Length; i++)

arrTargetvalues[i] = -999.0; // Can't null a double!
// Set the user input and output string values to the two arrays
for (int i = 0; i < inputvalues.Length; i++)
arrInputvalues[i] = Convert.ToSingle(inputvalues[i]) / 100;
for (int i = 0; i < targetvalues.Length; i++)

arrTargetvalues[i + startvalueOutArray] = Convert.ToDouble(targetvalues[i]) /
100;

}
//
// SetHebbRuleStrengthChange() -- Implements Hebb Rule:
// strengthChange = learnRate * targetOutputvalue * inputvalue
// McLeod (54) expression 3.1. Since the values in the expression do not change
// throughout the run this methods is executed once only per run.
pubTlic void SetHebbRulestrengthChange(ref Synapse[] arrSynapse)
{
// First neuron in output layer
int startvalueTargetArray = firstNeuronInThisLayer[numLayers - 1];
// Iterate synapses
for (int currsSynapse = 0; currSynapse < numSynapses; currSynapse++)
{
// Iterate input array
for (int j = 0; j < arrInputvalues.Length; j++)

{
// Iterate output array
for (int i = startvalueTargetArray; i < arrTargetvalues.Length; i++)
{
if (arrsynapse[currSynapse].idSrceNeuron == j
&& arrsSynapse[currSynapse].idTrgtNeuron == 1)
{
// The strength change is the input value at neuron[j]
// * output(target) value at neuron[i] * learnRate
arrSynapse[currSynapse].strengthChange = arriInputvalues[j]
* arrTargetvalues[i] * arrSynapse[currSynapse].learnRate;
}
}
b
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3

//

// SetDeltastrengthChange() -- Implements Delta Rule Mcleod (19) expr 1.3

// This method is run at the end of each iteration to capture the obtained values.
// For each synapse change the strength by subtracting the obtained activation

// from the desired (target) activation: a[i](target) - a[i](obtained)

// multply the result by the input (source) activation and the TearnRate.

// Obtained activation is the set of values at the outAxon of

// the output Tayer. when the target Synapse is identified the values are passed
// to the Synapse properties targetActivity and obtainedActivity, and applied

// by the Applybelta() method on the next iteration.

pubTlic void SetDeltastrengthChange(ref Synapse[] arrSynapse, ref Neuron[] arrNeuron)

{
// First neuron in output layer
int startvalueTargetArray = firstNeuronInThisLayer[numLayers - 1];
// Iterate synapses
for (int currSynapse = 0; currSynapse < numSynapses; currsSynapse++)
{
// Iterate input array
for (int j = 0; j < arrInputvalues.Length; j++)
{
// Iterate output array
for (int i = startvalueTargetArray; i < arrTargetvalues.Length; i++)
{
// currSynapse connects neuron[j] to neuron[i]
int srceNeuron = arrSynapse[currSynapse].idSrceNeuron;
int trgtNeuron = arrSynapse[currSynapse].idTrgtNeuron;
if (srceNeuron == j && trgtNeuron == i)
{
// Set the target, obtained and source values
doubTle targetvalue = arrTargetvalues[i];
// Actual output of neuron[i]
doubTle obtainedvalue = arrNeuron[trgtNeuron].outAxon;
// output from source neuron[j]
//doubTle sourcevalue = arrNeuron[srceNeuron].outAxon;
// Set target and obtained values for use in Delta Rule
// sourcevalue is neuron outAxon value
//
// .. ! this once needs to be set once for each input word
arrsynapsel[currSynapse].targetActivity = targetvalue;
arrSynapse[currSynapse].obtainedActivity = obtainedvalue;
//arrSynapse[currSynapse].DeltaRule(targetvalue, obtainedvalue,
sourcevalue);
}
}
b
3
}

// Set user input values array to input layer dendrites
// value is /100 because sigmoid function generates values >0<1
pubTlic void SetInputDendrites(string[] inputvaluesArray, ref Neuron[] arrNeuron)
{
for (int i = 0; i < inputvaluesArray.Length ; i++)
arrNeuron[i].inDendrite[0] = Convert.ToDouble(inputvaluesArray[i]) / 100;
}
// Set netInput for each neuron in current layer
pubTlic void SetNetInputs(int thisLayer, ref Neuron[] arrNeuron)
{

int startNeuron = firstNeuronInThisLayer[thisLayer];
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int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
for (int i = startNeuron; i < endNeuron; i++)
arrNeuron[i].SetNetInput(Q);

// Apply Binary function to each neuron in current layer
pubTlic void ApplyBinary(int thisLayer, ref Neuron[] arrNeuron)

{

int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
for (int i = startNeuron; i < endNeuron; i++)

arrNeuron[i].BinaryFunction();

// Apply Sigmoid function to each neuron in current layer
public void ApplySigmoid(int thisLayer, ref Neuron[] arrNeuron)

{

int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
for (int i = startNeuron; i < endNeuron; i++)

arrNeuron[i].SigmoidFunction();

// Apply Not Learning function to each source synapse in current layer

// Get value from source neuron outAxon, set to source neuron synapse inAxon

// Apply not Tearning function

public void ApplyNotLearning(int thisLayer, ref Synapse[] arrSynapse, ref Neuron[]

arrNeuron)

{

int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
// Iterate neurons in current layer
for (int i = startNeuron; i < endNeuron; i++)
{
// Iterate synapses
for (int j = 0; j < numSynapses; j++)
// if this synapse is connected to neuron i
if (arrsSynapse[j].idSrceNeuron == i)
{
// pass the value from the neuron to the synapse
// apply not Tearning function
arrsynapse[j].inAxon = arrNeuron[i].outAxon;
arrsynapse[j].NotLearning();

// For each neuron in this layer set synapse input axon
// and apply Hebb Rule
pubTlic void ApplyHebb(int thisLayer, ref Synapse[] arrSynapse, ref Neuron[] arrNeuron)

{

int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
for (int i = startNeuron; i < endNeuron; i++)

{
for (int j = 0; j < numSynapses; j++)
if (arrsynapse[j].idSsrceNeuron == i) // if this synapse is connected to neuron
{

arrsynapse[j].inAxon = arrNeuron[i].outAxon; // pass the value from the

neuron to the synapse

arrsynapse[j].HebbRule(Q);
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3

// Applybelta() -- Implements Delta Rule Mcleod (19) expr 1.3

// The target and obtained activity required for the Delta Rule are set by

// SetbeltastrengthChange() method at the end of each iteration.

// This method could be merged with ApplyHebb()

public void Applybelta(int thisLayer, ref Synapse[] arrSynapse, ref Neuron[] arrNeuron)

{
int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
for (int i = startNeuron; i < endNeuron; i++)

{
for (int j = 0; j < numSynapses; j++)
) if (arrsynapse[j].idSrceNeuron == i) // if this synapse is connected to neuron
i
{

arrsynapse[j].inAxon = arrNeuron[i].outAxon; // pass the value from the
neuron to the synapse

arrsynapse[j].peltaRule();

// Pass Synapse dendrite outputs to target Neuron inputs

public void SetNeuronDendrites(int thisLayer, ref Neuron[] arrNeuron, ref Synapse[]
arrsynapse)

{
int startNeuron = firstNeuronInThisLayer[thisLayer];
int endNeuron = firstNeuronInThisLayer[thisLayer] + numNeuronsInThisLayer[thisLayer];
int targetDendrite = 0;
for (int i = startNeuron; i < endNeuron; i++)
{
for (int j = 0; j < numSynapses; j++)
{
if (arrsynapse[j].idTrgtNeuron == i)
{
// targetDendrite is the location of the source neuron
// minus the value of the first neuron in this Tayer

targetDendrite = arrSynapse[j].idSrceNeuron -
firstNeuronInThisLayer[thisLayer - 1];

arrNeuron[i].inDendrite[targetDendrite] = arrSynapse[j].outDendrite;
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B.2 The MakeANNie form handler code

using System;

using System.Collections.Generic;
using System.ComponentModeT;
using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.windows.Forms;

using System.IO;

namespace ANNie
{
public partial class MakeANNieForm : Form
// Create a network of neurons and synapses, connect them and run network

// Create here and resize and initialise later in order to expose to other methods
Network aNetwork = new Network(0);
Neuron[] aNeuron = new Neuron[0];
Synapse[] aSynapse = new Synapse[0];
string outFile = @".\outvalues.txt"; // used to pass values to outputForm
//
pubTlic MakeANNieForm()
{
InitializeComponent();
3
//
// Make Network
//
private void buttonl_cClick(object sender, EventArgs e)
{
string netName textBox6.Text;
int numNeurons = Convert.ToIntl6(textBoxl.Text);
int numLayers = Convert.ToIntl6(textBox2.Text);
int numInputNeurons = Convert.ToIntl6(textBox4.Text);
int numoutputNeurons = Convert.ToIntl6(textBox5.Text);
//
TistBoxl.Items.Clear();
TistBox2.Items.Clear();
label7.Text = "";
//
// Do some initial checking here to make sure the numbers work
// e.g. In a two layer network the input and output neurons must equal
// the total number of neurons. Hidden Tayers must be of equal size.

//

if (numNeurons <= 0 || numLayers <= O || numInputNeurons <= 0 || numOutputNeurons <= 0)
Tabel7.Text = "values must be positive";

if (numLayers <= 1)
Tabel7.Text = "Minimum 2 Tayers";

if (numInputNeurons + numOutputNeurons > numNeurons)
Tabel7.Text = "Not enough neurons!";

else

{
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//

// Network

//

// Initialise main values, constructor was run above to expose object
// in order to make network object public

aNetwork.Initialise(netName, numNeurons, numLayers, numInputNeurons,
numoutputNeurons) ;

// Calulate number of layers and neurons required from user spec
// and assign to network object

aNetwork.SetLayersAndPointers();

Tlabel7.Text = "Network layers and pointers created";

//

// Neurons

//

// Resize neuron array. aNeuron was created on form opening above
// to make array object public

Array.Resize(ref aNeuron, numNeurons);

aNetwork.SetNeurons(ref aNeuron); // Create neuron objects and set number

dendrites
Tabel17.Text = "Neurons and dendrites created";
//
// Synapses
//
// Calcualte total number of synapses.
// In each layer the number of synapses is equal to the number of neurons
// multiplied by the number of neurons in the prevous Tlayer
aNetwork.SetSynapses(ref aSynapse);
Tabel7.Text = "Synapses created.";
// Make the connections by setting the appropriate source and target
// neuron ids in each synapse.
aNetwork.SetConnections(ref asynapse);
Tabel7.Text = "Network created \r\nCheck connections";
groupBox2.Enabled = true;
// output neuron and synapse ids to form
for (int i = 0; i < numNeurons; 1i++)
TistBox1l.Items.Add(Convert.ToString(aNeuron[i].layer) + " " +
Convert.ToString(aNeuron[i].id));
for (int i = 0; i < aSynapse.Length; i++)
TistBox2.Items.Add(Convert.ToString(aSynapse[i].id) + " " +
Convert.ToString(asynapse[i].idSrceNeuron) + " " +
convert.ToString(aSynapse[i].idTrgtNeuron));
}
}
//
[/ = Run Network —  —==-==--—--mmmmmmmm oo
//
// Get run values from user and process
//
private void button3_Click(object sender, EventArgs e)
{

double threshold = Convert.Tobouble(textBox1ll.Text);
doubTle startStrength = Convert.ToDouble(textBox10.Text);
double TearnRate = Convert.ToDouble(textBox9.Text);

int numIterations = Convert.ToIntl6(textBox8.Text);
doubTle rho = Convert.ToDouble(textBox13.Text); // the slope of the sigmoid
bool isBinary = radioButtonl.Checked;

bool isSigmoid = radioButton2.Checked;

bool isHebbLearn = radioButton3.Checked;

bool isDeltaLearn = radioButton4.Checked;

bool isNotLearning = radioButton8.Checked;

bool isPresentAfterLearning = checkBoxl.Checked;

//booT disoutputFinal = radioButton5.Checked;
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//bool isoutputInter = radioButton6.Checked;

//bool isoutputAll = radioButton7.Checked;

string striInputvalues = textBox7.Text; // IPA code

string strInputAll = textBox7.Text.Trim(); // used for mutiple word input
string strTargetAll = textBox3.Text.Trim(Q);

//

// method here to get each input value for presentation to the network

// Need to modify the classes and form code as Tittle as possible

// csv between values, spaces inside values. Need to distinguish between

// phoneme: a single number, and word: a collection of phonemes.

//

// strInputAll contains the entire input as a string

// wrdInputCollection is a collection of words

string[] wrdInputCollection = new string[] { }; // new an array of input words
string[] wrdTargetCollection = new string[] { }; // new

wrdInputCollection = strinputAll.Trim().split(','); // new assign input words to

int numInputwWords = wrdInputCollection.Length; //
wrdTargetCollection = strTargetAll.Trim().split(','); // new assign target words to

// Do some exception checking, make sure arrays are the same size
// and what not

//
TidyUp(numIterations); // Pre-run housekeping
// Pre-iteration processing of network run values

SetNeuronsAndsynapses(threshold, startStrength, learnRate, rho); // Set start values
// neurons and

// Set boolean values to numeric and assign to class properties
SetActivationAndLearnFunctions(isBinary, isSigmoid, isNotLearning, isHebbLearn,

isDeltaLearn);

\r\n");
\r\n";

'); // mod
DH

functions

//
// Loop for each iteration
//
for (int currIteration = 0; currIteration < numIterations; currIteration++)
{
if (progressBarl.value >= progressBarl.Maximum)
progressBarl.value = 0;
else
progressBarl.value += 1;
File.AppendAll1Text(outFile, "Iteration " + currIteration + " ---—--—-—-———————

textBox12.Text = textBox1l2.Text + "Iteration + currIteration + "--——————————-

Tabel110.Text = Convert.ToString(curriteration);
this.Update(Q);
//

// Tloop for each word

//

for (int currInputword = 0; currInputWord < numInputWords; currInputwWord++)

{
// Set next input and target words from word collections
String[] strArrInputvalues = wrdInputCollection[currInputword].Trim().split(’

String[] strArrTargetvalues = wrdTargetCollection[currInputword].Trim().Split('
// Initiaise arrays containing input and target values for use in Hebb and Delta

aNetwork.SetInputAndTargetArrays(strArrInputvalues, strArrTargetvalues);
// Hebb strength change is fixed for the run and applied on each iteration
if (isHebbLearn)

aNetwork.SetHebbRuleStrengthCchange(ref aSynapse);
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// output current word to textbox and file
textBox12.Text = textBox12.Text + "word " + currInputword +
+ wrdInputCollection[currInputword] + "\r\n";
File.AppendAl1Text(outFile, "word " + currInputword +
+ wrdInputCollection[currInputword] + "\r\n");
// Set input values from this Form to input Tayer
aNetwork.SetInputDendrites(strArrInputvalues, ref aNeuron);
// process each Tayer
for (int currLayer = 0; currLayer < aNetwork.numLayers; currLayer++)
ProcessLayer(currLayer);
// Final processing of output Tayer
aNetwork.SetNetInputs(aNetwork.numLayers - 1, ref aNeuron);
aNetwork.ApplySigmoid(aNetwork.numLayers - 1, ref aNeuron);
// Display values to this Form and output to file
outputToFormAndFile(currIteration);

// values for strength change
if (isbeltaLearn)
aNetwork.SetbeltaStrengthChange(ref asynapse, ref aNeuron);
}
// display last values to textBox12
this.update(); // repaint form

Present input vlaues without learning

if (isPresentAfterLearning)

// strength changes have no effect when no learning but to make sure

for (int i = 0; i < aNetwork.numSynapses; 1i++)
aSynapse[i].strengthChange = 0.0;

textBox12.Text = "";

// Present each word to the network

for (int thisword = 0; thisword < numInputwords; thisword++)

{

File.AppendAl1Text(outFile, "Presentation without learning\r\n");

string[] arrInputvalues = wrdInputCollection[thisword].Trim().split(' "); //

aNetwork.learnFunction = 0;

aNetwork.SetInputDendrites(arrInputvalues, ref aNeuron);

// process each layer

for (int currLayer = 0; currLayer < aNetwork.numLayers; currLayer++)
ProcessLayer(currLayer);

// Final processing of output layer

aNetwork.SetNetInputs(aNetwork.numLayers - 1, ref aNeuron);

aNetwork.ApplySigmoid(aNetwork.numLayers - 1, ref aNeuron);

// Display values to this Form and output to file

outputToFormAndrile(0);

Tabel110.Text = ("Processing competed");

// Pre-run housekeeping
private void TidyUp(int iterations)

{
progressBarl.Maximum = iterations;
progressBarl.value = 0;
textBox12.Text = ""; // output box

label110.Text = "";
button2.Enabled = false;
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hebb,

this.Update(); // repaint form
if (File.Exists(outFile))
File.Delete(outFile); // delete previous output file - but it comes back!
3
// Set start values for all neurons and synapses
private void SetNeuronsAndSynapses(double netThreshold, double netStartStrength,
double netLearnRate, double netRho)

{
aNetwork.SetNeuronThresholds(netThreshold, ref aNeuron);
aNetwork.SetSynapseStrengthAndLearnRate(netStartStrength, netLearnRate, ref asynapse);
aNetwork.SetSigmoidRho(netRho, ref aNeuron);

}

// Set Network.activationFunction to 0, 1
// Set Network.learnFunction to 0, 1, 2

private void SetActivationAndLearnFunctions(bool binary, bool sigmoid, bool notLearn, bool
bool delta)

{
aNetwork.SetActivationFunction(binary, sigmoid);
aNetwork.SetLearnFunction(notLearn, hebb, delta);
}
// Process a layer. I haven't put this method in the Network class
// as some pre and post processing is required
public void ProcessLayer(int thisLayer)

{
// Summate dendrite inputs to Netinput
aNetwork.SetNetInputs(thisLayer, ref aNeuron);
// Neuron processing
if (aNetwork.activationFunction == 0)
aNetwork.ApplyBinary(thisLayer, ref aNeuron);
if (aNetwork.activationFunction == 1)
aNetwork.ApplySigmoid(thisLayer, ref aNeuron);
// Synapse processing
if (aNetwork.TlearnFunction == 0)
aNetwork.ApplyNotLearning(thisLayer, ref aSynapse, ref aNeuron);
if (aNetwork.learnFunction == 1)
aNetwork.ApplyHebb(thisLayer, ref aSynapse, ref aNeuron);
if (aNetwork.learnFunction == 2)
aNetwork.Applybelta(thisLayer, ref aSynapse, ref aNeuron);
// assign synapse outputs to next layer dendrite inputs
// outAxon is multiplied by 100 since sigmoid generates values >0<1
aNetwork.SetNeuronDendrites(thisLayer, ref aNeuron, ref aSynapse);
3
//
pubTlic void outputToFormAndFile(int thisIteration)
{

int startNeuron = 0;

int endNeuron = 0;

double outputvalue = 0.0;

doubTle roundedoutputvalue = 0.0;
string outLine = "";
string roundedoutLine =
string outText = "";
//if (File.Exists(outFile))

// File.Delete(outFile); // tidyUp() does this but it mysteriously reappears
//aNeuron[0].netInput

for (int thisLayer = 0; thisLayer < aNetwork.numLayers; thisLayer++)

{

startNeuron = aNetwork.firstNeuronInThisLayer[thisLayer];

endNeuron = startNeuron + aNetwork.numNeuronsInThisLayer[thisLayer];
if (thisLayer == 0)

{
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for (int i = 0; i < endNeuron; 1i++)
outLine += Convert.ToString(aNeuron[i].netInput) +

MA Applied Linguistics

File.AppendAl1Text(outFile, "inword: " + outLine + "\r\n");

outLine = ;
b
for (int i = startNeuron; i < endNeuron; i++)
{
outputvalue = aNeuron[i].outAxon * 100;
roundedoutputvalue = Math.Round(outputvalue, 0);
outLine += Convert.ToString(outputvalue) + " ";
roundedoutLine += Convert.ToString(roundedoutputvalue) +
b

outText = thisIteration + + thisLayer +
File.AppendAl1Text(outFile, outText);

if (thisLayer == aNetwork.numLayers -1)
textBox12.Text += thisIteration + ". "

outLine = "";

roundedoutLine =

outText = )

3

double sumStrengthChange = 0.0;

for (int i = 0; i < aNetwork.numSynapses; i++)

{
roundedoutputvalue = Math.Round(aSynapse[i].strength, 4);
outLine = outLine + "(" + aSynapse[i].idSrceNeuron + "," +
asynapse[i].idTrgtNeuron + ")" +
convert.ToString(roundedoutputvalue) + " ";
outLine = outLine + Math.Round(aSynapse[i].strengthChange, 4);
sumStrengthChange += aSynapse[i].strengthChange;

3

outText = outText + outLine + "\r\n" + "Sum of strength changes =
sumStrengthChange;

File.AppendAl1Text(outFile, outText + "\r\n\r\n'");

button2.Enabled = true;

// Does nothing but the compiler protests if I delete it
pubTlic void MakeANNieForm_Load(object sender, EventArgs e)
{
//Neuron[] testNeuron = new Neuron[0]; // create array of neurons

}
// Create output form and show output values from file
private void button2_cClick(object sender, EventArgs e)
{

ShowOutputForm showForm = new ShowOutputForm() ;

showForm.Show();

+ outLine + "\r\n";

+ roundedoutLine + "\r\n";

+
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Appendix C: Testing a single neuron

C1 All synapse inputs set to zero

Code: aSynapse[j].inAxon = 0.0;

Granny neuron !El E
Ma. dendrites |3 Threshald |1 [tberations I'lﬂﬂ Activation Function & Binary
" Sigmoid
Synapze input Dendrite inputs ko neuron MHet input Meuran autput
ARSI - gmmooan N ao | |81 0 -
a20: 00 _I g2ooao _I az20 _I a2 0 _I
83000 g3o00a0 a30 830
24000 g4000 240 84 0
aa 000 gso0oao 850 85 0
86000 BE 000 a6 0 a6 0
ar 000 gFooao ar o a7 o
aa0: 0 gaooao aao a2 0
89000 g3o0oan 230 830
0000 wooon 00 90 0
N000 Nooo Mo M0
92000 2000 920 92 0
3000 93000 930 930
94000 94000 940 94 0
95000 /o000 950 95 0
Q6000 e 000 960 95 0
7000 7000 970 97 0
@000 8000 920 92 0
930: 0. 0 5 99000 7 930 Tl |93 0 &

Action potentials [nretlnput >= threzhald) IEI Fire my neuron

Comment: Output values are always zero.
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C2 Total synapse values always >= threshold

Code:

aSynapse[j].inAxon = Convert.ToDouble(rnd.Next(o, 2));

if (synapseValues == "0: 0: 0: ")

aSynapse[j].inAxon = 1;

// in case all three are zero

Granny neuron !El E
Ma. dendrites |3 Threshald |1 [tberations I'lUU Activation Function & Binary
" Sigmoid
Synapze input Dendrite inputs ko neuron MHet input Meuran autput
oo - oooi12a - 01.25 <« | (01 -
10:1:1: 1012515 1275 ¢ 11
21:1: 1 212515175 24584« 21
o1t aolrm 2 3375 ¢ K
4010 4020 42 41
51001 5150225 Ba75 ¢« 51
B1:1: 0 E1.73 22610 B4ex B
111 722825 FArES 71
81:1: 1 8225 275 275 87.75 ¢ a1
91 1.0 92530 985 ¢ 91
100:0:1: oo 103 << 101
1011 110325 325 11 ER <« 111
121:1: 1 12 275 35 35 12975 << 121
131:0:1: 1330375 13B.75 << 131
141:1: 0 14 325 375 0 147 << 141
151:1: 0 1535410 1675 151
161:1: 0 16 375 425 0 168 << 16 1
170:1: 1: 170454 1785« 171
161: 0: 0 I I RN hd B RETR 4 R RER d|
Action potentialz [netinput »= threshold] |1 an

Comment: Always generates an action potential. Synaptic strengthening has no effect.
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C3 Synapse values set to 0.1

Code:

aSynapse[j].inAxon = 0.1;

Granny neuron

Mo dendrites |3

Threzhald I'I

[terations I'I alll

Activation Function % Binam

MA Applied Linguistics

=] E3

" Sigmoid
Synapze input Dendrite inputs ko neuron Met input Meuron output
820101 01: ﬂ 82 0.307493555939999 D.SEINEIEIEIEIEIE;' a2 0.92249999999£ﬂ a2 0 ﬂ
8301 01:01: 83 0.309999939999999 0309999995¢ 83 0.92999999993° B30
840101 01: 84 0.312493959939933 0.312493393¢ 84 0937439333335 84 0
8501 01: 01: 85 0.314999959999999 0.314999993¢ 85 0.94499999399¢ 85 0
860101 01: 86 0.3174935595939933 0.317493393¢ 86 0952439333935 a6 0
a7 01: 01 01: 87 0.319939959999999 0.319999933¢ 87 0.9595999993935 a7 o
220101 01: 88 0.3224939595939999 0.322493393¢ 88 0967439333335 a2 0
830101 01: 89 0.324933959999999 0.3249999393¢ 89 0.974599999393¢ 830
00101 01: 90 0.327493559939999 0.327493393¢ 90 0.952439333933¢ a0 0
N 0710101 91 0.323339999999999 0.329999993¢ 91 0.98999999393¢ M0
9207101 01: J 0.332499999999999 0.332499993¢ 92 D.EIEINEIEIEIEIEIEIEIEJ 92 0
EENNBNE L : 931.005 << J
9407101 01: 94 0.337499999999999 0.337499993¢ 941.00125 <« 94 1
950101 01: 95 0.333333959939999 0.3399939393¢ 95102 << 951
960101 01: 96 0.342499959999999 0 .342499333¢ 96 1.0275 << 95 1
A7 0101 01: 97 0.3443335595939939 0.344933393¢ 97 1.035 <« a7 1
920101 01: 98 0.347499959999999 0.347499993¢ 981.0425 << 921
9301:0.1: 0.1: 95 M 349999999999999 1 3499999992 105 <¢ 93 1
tnntotot =l 4] | 3 1001.0575<¢ x| {1001 =l

Action patentials [netlnput »= threshaold) IE?

Fire my neuron |

Comment: There is no action potential until iteration 93. All subsequent iterations
generate an action potential. The strengthening is the same for all synapses thus netInput
is >= threshold once the neuron dendrite inputs are each >=1/3.
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C4 Input values random number between 0.1 and 0.25

Code: aSynapse[j].inAxon = rnd.Next(10, 25) / 100.0;

Granny neuron !El E
Ma. dendrites |3 Threshald |1 [tberations I'lUU Activation Function & Binary
" Sigmoid
Synapze input Dendrite inputs ko neuron MHet input Meuran autput
0024: 013 024 - 0 02544 0134225 02544 - 00643025 «| (10D ;l
1014: 016 0.21: 1 01533 01716 0233625 10.558525 11 0
2071013 024 2 0112 014365 02814 2053705 121
30716 015 0.21: 3 01856 0171375 025725 J0.614225 130
4071: 0.21: 0.24: 4 01185 026035 03034 4 067785 140
5021017 013 5 0289375 0210375 017127 50641525 151
BO15: 021 0.2 B 013125 0.2709 031625 B 07784 16 0
O 0201 7013 0268 0182975 7 0.580975 17 1
8011018 015 8 0146025 02493 021675 80612075 120
90718 012 016 9 024705 01632 02376 9 0.65445 191
1001302 0.2 10 0.2698 0.293 0307 1008698 200
NM02% 013017 11 0.339825 0287375 0268175 11 0.895375 211
12021 0,23 0.21: 12 03213 03611 03423 121.0247 <« 220
13014011 018 13 0,219 0175725 0305 130696325 231
14014 0,23 016 14 0,224 038065 02744 14 0.87305 240
15023019 022 15 0381225 0323475 03894 151.0847 <« 251
16021011 014 16 0.3591 01903 02627 16 0.8021 261
17023021013 17 NANRRAR N 374377 1N QHHF?H _ILI 171.0197265 <« 271
1gorozz017 x| | 4 16 0.94025 = |51 d|
Action potentials [nretlnput >= threzhald) IEEI_ Fire my neuron |

Comment: There is no action potential until iteration 12. Action potentials are consistent
from iteration 40. Between iterations 12 and 40 the neuron demonstrates an increasing
though inconsistent tendency to generate an action potential.

This model was re-run ten times. The patterns are shown below, truncated at 80 for clarity.

000000000000 1001010101010111111111313110 111311111113333111113133331111113333111111
00000000000000000 111101011000 1111111111111313111111113133111111333311111113131111111
00000000000000000000 1111110 111111313111111333311111133333111113133333111113133331111131
00000000 10000100000001100010 111111111111113131111111313331111113333111111131331111111
000000000000000 100010111110 111131313131111113333111111333331111713333311113133331117111

00000000000000000 1100100000011010 1111111113133111111333331111133333111113333111111
000000000000000000 11110100 11111111111111113131111111333311111133331111113133131111111
00000000000000000 10000101011111113131311111133310 11113311111113333111113133133111111

1
2
3
4
5
6 000000000000000000 10001111111310 11121111333311133311733311333311333331171333111131311
7
8
9
1

0 00000000000000000 10101001111110 11111111131311111313131331111311333311111313133111111111
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C5 Graphical representation of neuron output

The horizontal axis is the number of iterations
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ol olol ol olol olol ol olol ol olol olol ol olol ol ololol olol olol ol olol ol olol ol ol ol ol ol ol ol ol ol olol olol ol olol ol
uuuuuuUuuUUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUUUUUUUU
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C.6 Neuron outputs with sigmoid function.

An action potential occurs when the output is greater than 0.5, the horizontal axis is the number of iterations.

3 dendrites threshold 2 sigmoid function 100 iterations

I A TTT T T T T T I T T T T T L L S
ccccecececceceoceecececececeoceocececececcececcococececececceoccoccocececcecceccecceccocceoccececcocceccecceccoccceoceccocceccecceccoccocceoceccocceccecceccoccecceoceccecccecceccocceccecceccecceccceccoccceccecccecccecccceccecccecccccccce
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Appendix D: Testing networks of
neurons

The following tables show the results of testing the model with a network of connected
neurons and synapses.
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Iteration. Output

e A AT A A A A A A A A A A A A A A e

lmisisisisisisisisisisisisisisisisinisininininbs i)
MmN MMMNMMNMMMNMMMNMMMN MMM N MMM NoMN

[elejelolelolelolololololaleololeloleojelelolelolelo]
A A A A A A AAAAAAAAAAAAAAAAA
e A A A A A A A A A A A A A A A A A A A A
MANMMNMMNMMNMMNMMNMMNMMNMMNMNMMN MMM MM

Iteration. Output

e Al A A A A A A A A A A A A A A A A A A
el il el el el b Rl b b R R R R R R R B |

dTdd AT A A A A A A A A A A A A
MMM MNMMNMNMNMMNMNMNNMMMNMMMN N MMM N MMM NN

[elejejlolololelelolololololololololololelelelele o]
A AT A A A A A A A A A A A A A A A A A
MMM MMMNMMMMMMNMMMN MMM M

Iteration. Output

A A A A A A A A A A A A A A A A A A A A A A

dTd A A A A A A A A A A A A A A A A
monmmnonmon Mmoo Mmoo MmenmMmnMmMmen MmO onocmnomM

[elelolelelolololololololololololololololololole] ]
lmla el el el Rl Rl Rk R R R R R R |
A A A A A A A A A A A A A A A A A A A A A A A
mmonnonmmMmonn Mmoo nmMmMmMmon oMM MMM

Iteration. Output

A A A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A A A

lsisisislisisisisisisisisisisisisisisinlisinininlisi)
mnmMmmnnMmonMnmMmoenMmnnMmenmMmmenmMmonon MmN onmMm

[elelolelolololololololololeolololololololelololel o]
AT A A AT A A A A A A A A A A A A A A A A
mMmonmnmmMmmMmmMmennMmMmm Mmoo mMmMm MMM oM

Geoff Cockayne

Iteration. Output

A A A A A A A A A A A A A A A A A A A A A A

dTd A A A A A A A A A A A A A A A A
monmmnonmonmMmMnn Mmoo MmonmMmnMmMmen MmO onocmnmM

[elelolelelololololololololololololololololololele]
lmla el el el Rl R e Rk R R R R R R |
A A A A A A A A A A A A A A A A A A A A A A A
mmonnmnmmMmon MMM MmMmMmMmon oMM MMM

Iteration. Output

A A A A A A A A A A A A A A A A A A A A A
el A A A A A A A A A A A A A A A A A A A A A

lsisisislisisisisisisisisisisisisisisinlisinininlisi)
mnmMmnnMmonMnmMmenMmnnmnMmenmMmmMmoenMmonon MmN onmM

[elelelelololololololololololololololololelololel o]
AT A AT A A A A A A A A A A A A A A A A
momonmnmmMmmMmmMmennMmMmMm Mmoo MmMmM MMM oM

The network was presented with a number of input patterns and target patterns in binary
form. In each case the model is two layer with four input and four output neurons. The

results are summarised in section 6.2.1 of the main text.
Table D.1.1: input pattern 1010, target pattern 0101. Binary activation and Hebb rule.

Threshold 1, start strength 0.1, learn rate 0.5

D.1 Binary pattern association

Iteration. Output

July 2008

e e el A A A A A A A A

OO rOO0OO0HHHHMMMMMMMMmMmMMmMNMNNmM
o MOMNMEON = = = = = = = = = = = = = = =
NN OO - = = ~O000O0O0O0OOCOOOCOO0OO0O
INNOOOIOOOOOO
...... el el e R R R R R R R R R R |
OCOO0COCOOH
A A A A A A A A A A A
A AT A A A A AN MMM MmN m
MO MMM M) = = = = = = = = = = = = = = =

.......... oHNM <

0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
15
16
17
18
19

Table D.1.2: input pattern 1100, target pattern 0o11. Binary activation and Hebb rule.

Threshold 1, start strength 0.1, learn rate 0.5

Iteration. Output

NN~ OoOo el A A A A A A A A
INNOOOO

...... e AT A A A A A A A A
OCOO0O0OOHHHH

e AT A A A A A A A

A A A A A AN N MmN

MMM = = = = s = = a2 = = x s s a s

[elelololololololo o)

A A A A A A A A A A A A A A
AT A A A MMM mMmonm
MMM = = = = 5 = 2 a2 = = = = = % =

.......... oHNM<
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Iteration. Output
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Iteration. Output
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Table D.1.3: input pattern 1000, target pattern 1001. Binary activation and Hebb rule.

Threshold 1, start strength 0.1, learn rate 0.5

Iteration. Output
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999999999221111111111111
9222222222
......... 009999999999999
0000000000992222222222222
999999999220000000000000
9222222222 .
......... 009999999999999
0000000000992222222222222
255393678990000000000000
TLNONOOOOYOYO -
.......... 001111111111111
OO0 OOOOO00O
.......... Or-iNMINONOOO = ANMSE
Or-iANMTtTINMONOO AT A AN AN

Table D.1.4: input pattern 0100, target pattern 0111 Binary activation and Hebb rule.

Threshold 1, start strength 0.1, learn rate 0.5

Iteration. Output

<
0.000000000 e Al A A A A A A

[=2]
NN MOMONOOOO AT A A A
<tLNONOOOOIOYOY - -
.......... OO rdrddrdrd A
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The threshold was then changed to 6.0 and the same patterns presented.

Table D.1.5: input pattern 1010, target pattern 0101. Binary activation and Hebb rule.
Threshold 6, start strength 0.1, learn rate 0.5

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output
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06 0 0.06
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55 0 0.55
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.9 0 0.9
6 0 0.96
9 00.99
99 0 0.99
01
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01

01

01

01

w
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Table D.1.6: input pattern 1100, target pattern 0o11. Binary activation and Hebb rule.
Threshold 6, start strength 0.1, learn rate 0.5

Iteration. Output Iteration. Output Iteration. Output Iteration. Output
0.0000 25. 0011 50. 0011 75. 0011
1. 0 0 0.01 0.01 26. 0011 5. 0011 76. 0011
2. 000.010.01 27. 0011 52. 0011 77. 0011
3. 00 0.02 0.02 28. 0011 53.0011 78. 0011
4. 00 0.04 0.04 29. 0011 54. 0011 79. 0011
5. 00 0.06 0.06 30,0011 55. 0011 80. 0011
6. 00 0.09 0.09 31.0011 56. 0011 81. 0011
7. 000.14 0.14 32. 0011 57. 0011 82. 0011
8. 00 0.22 0.22 33.0011 58. 0011 83. 0011
9. 00 0.310.31 34. 0011 5. 0011 84. 0011
10. 0 0 0.43 0.43 35. 0011 60. 0011 85. 0011
11. 0 0 0.55 0.55 36. 0011 61. 0011 8. 0011
12. 0 0 0.67 0.67 37.0011 62. 0011 87. 0011
13. 0 0 0.77 0.77 38. 0011 63. 0011 88. 0011
14. 0 0 0.85 0.85 39. 0011 64. 0011 89. 0011
15. 0 0 0.9 0.9 40. 0011 65. 0011 90. 0011
16. 0 0 0.94 0.94 41. 0011 66. 0011 91. 0011
17. 0 0 0.96 0.96 42. 0011 67. 0011 92. 0011
18. 0 0 0.98 0.98 43. 0011 68. 0011 93. 0011
19. 0 0 0.99 0.99 44. 0011 69. 0011 94. 0011
20. 0 0 0.99 0.99 45. 0011 70. 0011 95. 0011
21. 0 0 0.99 0.99 46. 0011 71. 0011 96. 0011
22. 0011 47. 0011 72. 0011 97. 0011
23. 0011 48. 0011 73.0011 98. 0011
24. 0011 49. 0011 74. 0011 99. 0011
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Iteration. Output
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Table D.1.7: input pattern 1000, target pattern 1001. Binary activation and Hebb rule.

Threshold 6, start strength 0.1, learn rate 0.5

Iteration. Output
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Table D.1.8: input pattern 0100, target pattern o111. Binary activation and Hebb rule.

Threshold 6, start strength 0.1, learn rate 0.5

Iteration. Output
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D.2.1 Non-binary pattern association 1

The network was presented with a number of input patterns and target patterns
representing the high frequency verbs used by McClelland and Rumelhart. The point at
which the model captures the past phoneme(s) is indicated. The model is two layer with
four input and four output neurons. The results are summarised in section 6.2.2 (table 9)
of the main text.

Table D.2.1.1: verb: 'come'. input pattern 05 35 12 00, target pattern 05 38 12 0o0.
Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.
Iteration. Output Iteration. Output Iteration. Output Iteration. Output
0. 29 29 29 29 30. 15 35 19 13 60. 11 37 15 8 90. 9 38 14 6

1. 28 30 29 28 31. 15 35 19 13 61. 11 37 15 8 91. 93814 6

2. 28 30 28 27 32. 15 36 18 12 62. 10 37 15 8 92. 838146

3. 27 30 27 26 33. 14 36 18 12 63. 10 37 15 8 93. 83814 6

4. 26 31 27 25 34. 14 36 18 12 64. 10 37 15 8 94. 838145

5. 25 31 26 25 35. 14 36 18 12 65. 10 37 15 7 95. 838 13 5

6. 25 31 26 24 36. 14 36 18 11 66. 10 37 15 7 96. 8 38 13 5

7. 243125 23 37. 14 36 18 11 67. 10 37 15 7 97. 838135

8. 233225 22 38. 14 36 17 11 68. 10 37 15 7 98. 838 13 5

9. 23322522 39. 13 36 17 11 69. 10 37 15 7 99. 838 13 5
10. 22732 24 21 40. 13 36 17 11 70. 10 38 15 7 <<< 150. 7 38 12 4
11. 22 32 24 20 41. 13 36 17 11 71. 10 38 14 7 200. 6 38 12 3
12. 21 33 23 20 42. 13 36 17 10 72. 10 38 14 7 250. 6 38 12 2
13. 21 33 23 19 43. 13 36 17 10 73. 10 38 14 7 300. 5 38 12 2
14. 20 33 23 19 42 13 37 17 10 74. 938 14 7 400. 538121
15. 20 33 22 18 45. 12 37 17 10 75. 938 14 7 500. 5 38 12 1
16. 19 33 22 18 46. 12 37 16 10 76. 9 38 14 7 600. 5 38 12 1
17. 19 34 22 17 47. 12 37 16 10 77. 938 14 7 700. 5 38 12 1
18. 19 34 21 17 48. 12 37 16 9 78. 938146 800. 5 38 12 1
19. 18 34 21 16 49. 12 37 16 9 79. 938146 900, 5 38 12 1
20. 18 34 21 16 50. 12 37 16 9 80. 93814 6 1000. 538 121
21. 18 34 21 16 51. 12 37 16 9 81. 93814 6 1134. 538 12 1
22. 17 34 20 15 52. 11 37 16 9 82. 938146 1135. 5 38 12 0
23. 17 34 20 15 53. 11 37 16 9 83. 938146 1136. 5 38 12 0
24. 17 35 20 15 54. 11 37 16 9 84. 938146

25. 16 35 20 14 55. 11 37 16 9 85. 938 14 6

26. 16 35 19 14 56. 11 37 15 8 86. 938 14 6

27. 16 35 19 14 57. 11 37 15 8 87. 938146

28. 16 35 19 13 58. 11 37 15 8 88. 938 14 6

29. 15 35 19 13 59. 11 37 15 8 89. 938146
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Table D.2.1.2: verb: 'get'. input pattern 06 28 03 00, target pattern 06 31 03 00. Sigmoid
activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output
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Iteration. Output
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51. 13 31119
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53. 12 31119
54. 12 31119
55. 12 31 10 9
56. 12 31 10 9
57. 12 31 10 9
58. 12 31 10 9
59. 12 31 10 8

<<

60. 12 31 10 8
61. 11 31 10 8
62. 11 31 10 8

[e)]
w
=
=
w
=
=
o
(o]

64. 11 319 8
65. 11 31 9 8
66. 11 31 9 8
67. 11 319 8
68. 11 31 9 8
69. 11 319 7
70. 11 3197
71. 11 3197
72. 11 3197
73. 10 3197
74. 10 319 7
75. 10 319 7
76. 10 31 8 7
77. 10 31 8 7
78. 10 31 8 7
79. 10 31 8 7
80. 10 31 8 7
81. 10 318 7
82. 10 3186
83. 10 31 86
84. 10 31 8 6
85. 10 31 8 6

8 6

8 6

8 6

8 6

90. 93186
91. 93186
92. 93176
93. 93176
94. 93176
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96. 93176
97. 93176
98. 93176
99. 93176
150. 83164
200. 7 315 3
300. 6 3142
400. 63131
600. 63131
800. 63131
1000. 6 3131
1201. 63131
1202. 63130
1203. 63130

Table D.2.1.3: verb: 'give'. input pattern 06 26 08 00, target pattern 06 38 08 0o0.
Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output
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N
[o)]
w
o
N
~N
N
[o)]

50. 13 37 14 9
51. 12 37 14 9
52. 12 37 14 9
53. 12 37 13 9
54. 12 37 13 9
55. 12 37 13 9
56. 12 37 13 9
57. 12 37 13 9
58. 12 37 13 8
59. 12 37 13 8

60. 12 37 13 8
61. 11 37 13 8
62. 11 37 13 8
63. 11 37 12 8
64. 11 37 12 8
65. 11 37 12 8
66. 11 37 12 8
67. 11 37 12 8
68. 11 37 12 7
69. 11 37 12 7
70. 11 37 12 7
71. 11 37 12 7
72. 11 37 12 7
73. 10 37 12 7
74. 10 38 12 7
75. 10 38 12 7
76. 10 38 12 7
77. 10 38 11 7
78. 10 38 11 7
79. 10 38 11 7
80. 10 38 11 7
81. 10 38 11 6
82. 10 38 11 6
83. 10 38 11 6
84. 10 38 11 6
85. 10 38 11 6
86. 10 38 11 g
88. 16

<<

90 38
91 38
92 38
93 38

O

v
LLOLVLLVLVLLVLVLWLLO

w

(o]

RFRRNNWAUIOOOOOOND

150. 8 38
200. 7 38
250. 7 38
300. 6 38
400. 6 38
600. 6 38
800. 6 38
6 3881
1191. 6 3881
1192. 6 3880
1193. 6 3880
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Table D.2.1.4: verb: 'look'. input pattern 11 33 05 00, target pattern 11 33 05 03. Sigmoid
activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OCRENOUTAWNRO
N
~
w
o
N
o
N
o

60. 15 33 11 10

61. 14 33 11 9
62. 14 33 11 9
63. 14 33 10 9
64. 14 33 10 9
65. 14 33 10 9
66. 14 33 10 9
67. 14 33 10 9
68. 14 33 10 9
69. 14 33 10 9
70. 14 33 10 9
71. 14 33 10 9
72. 14 33 10 9
73. 14 33 10 8
74. 14 33 10 8
75. 14 33 9 8
76. 14 33 9 8
77. 13 33 9 8
78. 13 33 98
79. 13 33 938
80. 13 33 98
81. 13 33 98
82. 13 33 98
83. 13 33 98
84. 13 33 9 8
85. 13 33 98
86. 13 33 9 8
87. 13 33 9 8
88. 13 33 97
89. 133397

90 13 33 97
91 13 33 97
92 13 3397
93 13 33 8 7
94 13 33 8 7
95 13 33 8 7
96 13 33 8 7
97 13 33 8 7
98 13 33 8 7
99 13 33 8 7
150 12 33 7 5
200 11 33 6 5
250 11 33 6 4
300 11 33 5 4
350 11 33 5 4
373 11 33 5 4
374 11 33 5 3 <<<
375 11 33 5 3

Table D.2.1.5: verb: 'take'. input pattern 03 38 05 00, target pattern 03 33 05 00.
Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OONOUVIARWNREO
N
[o)]
w
o
N
[o)]
N
v

49. 11 32 12 9
50. 11 32 12 9
51. 11 32 12 9
52. 10 32 12 9
53. 10 33 11 9
54. 10 33 11 9
55. 10 33 11 9
56. 10 33 11 8
57. 10 33 11 8
58. 10 33 11 8
59. 10 33 11 8

<

60. 10 33 11 8

62. 9 33 118
63. 9 33 10 8
64. 9 33 10 8
65. 9 33 10 8
66. 9 33 10 7
67. 9 33 107
68. 9 33 10 7
69. 933107
70. 933 107
71. 933 107
72. 933107
73. 833107
74. 833 107
75. 833107
76. 83397
77. 83397
78. 83397
79. 83396
80. 83396
81. 83396
82. 83396
83. 83396
84. 83396
85. 83396
8. 83396
87. 83396
88. 83396
89. 73396

90. 73396
91. 73396
92. 73396
93. 73386
94. 7 3386
95. 73386
96. 7 3385
97. 7 3385
98. 7 3385
99. 7 3385
150. 53374
200. 53363
300. 4 3352
400. 33351
600. 33351
800. 33351
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Table D.2.1.6: verb: 'go'. input pattern 06 39 00 00, target pattern 17 28 13 03. Sigmoid

activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OCRENOUTAWNRO
N
o
N
©
N
~
N
o

60. 19 28 16 10
61. 19 28 16 10

62. 19 28 16 9
63. 19 28 16 9
64. 19 28 16 9
65. 19 28 16 9
66. 19 28 16 9
67. 19 28 16 9
68. 19 28 15 9
69. 19 28 15 9
70. 19 28 15 9
71. 18 28 15 9
72. 18 28 15 9
73. 18 28 15 8
74. 18 28 15 8
75. 18 28 15 8
76. 18 28 15 8
77. 18 28 15 8
78. 18 28 15 8
79. 18 28 15 8
80. 18 28 15 8
81. 18 28 15 8
82. 18 28 15 8
83. 18 28 15 8
84. 18 28 15 8
85. 18 28 15 8
86. 18 28 15 8
87. 18 28 15 8
88. 18 28 15 8
89. 18 28 15 7

90. 18 28 15 7
91. 18 28 14 7
92. 18 28 14 7
93. 18 28 14 7
94. 18 28 14 7
95. 18 28 14 7
96. 18 28 14 7
97. 18 28 14 7
98. 18 28 14 7
99. 18 28 14 7

w

vl

o

=

~N

N

(o]

[

w
WwWhpAPpDUIO

<L

Table D.2.1.7: verb: 'have'. input pattern 14 29 08 00, target pattern 14 29 04 0o0.

Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OONOUVIARWNREO
N
~N
N
e}
N
[o)]
N
v

48. 18 29 11 9
49. 18 29 11 9
50. 17 29 11 9
51. 17 29 11 9
52. 17 29 11 9
53. 17 29 11 9
54. 17 29 11 9
55. 17 29 11 9
56. 17 29 11 8
57. 17 29 10 8
58. 17 29 10 8
59. 17 29 10 8

60. 17 29 10 8
61. 17 29 10 8
62. 17 29 10 8
63. 16 29 10 8
64. 16 29 10 8
65. 16 29 10 8
66. 16 29 10 7
67. 16 29 9 7
68. 16 29 9 7
69. 16 29 9 7
70. 16 29 9 7
71. 16 29 9 7
72. 16 29 9 7
73. 16 29 9 7
74. 16 29 9 7
75. 16 29 9 7
76. 16 29 9 7
77. 16 29 9 7
78. 16 29 9 6
79. 16 29 9 6
80. 16 29 9 6
81l. 16 29 8 6
82. 16 29 8 6
83. 16 29 8 6
84. 16 29 8 6
85. 1529 86
86. 1529 86
87. 152986
88. 1529 86
89. 152986

90. 1529 8 6
91. 1529 86
92. 1529 8 6
93. 1529 8 6
94. 1529 86
95. 1529 8 5
96. 1529 8 5
97. 1529 85
98. 1529 8 5
99. 152985
150. 14 29 6 4
200. 14 29 5 3
250. 14 29 5 2
300. 14 29 5 2
315. 14 29 5 2
316. 14 29 4 2
317. 14 29 4 2
400. 14 29 41
600. 14 29 4 1
800. 14 29 41
1000. 14 29 4 1
1144. 14 29 4 1
1145. 14 29 4 0
1146. 14 29 4 0

<L
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Table D.2.1.8: verb: 'live'. input pattern 11 26 09 00, target pattern 11 26 09 04. Sigmoid
activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OCRENOUTAWNRO
N
~N
N
©
N
~
N
o

69. 14 26 13 9
70. 14 26 13 9
71. 14 26 12 9
72. 14 26 12 9
73. 14 26 12 9
74. 14 26 12 9
75. 14 26 12 9
76. 14 26 12 9
77. 14 26 12 9
78. 13 26 12 9
79. 13 26 12 9
80. 13 26 12 9
81. 13 26 12 9
82. 13 26 12 9
83. 13 26 12 8
84. 13 26 12 8
85. 13 26 12 8
86. 13 26 12 8
87. 13 26 12 8
88. 13 26 12 8
89. 13 26 11 8

90. 13 26 11 8
91. 13 26 11 8
92. 13 26 11 8
93. 13 26 11 8
94. 13 26 11 8
95. 13 26 11 8
96. 13 26 11 8
97. 13 26 11 8
98. 13 26 11 8
99. 13 26 8
150. 12 26 10 6
200. 11 26 9 5
300. 11 26 9 5
321. 1126 95
322. 11 26 9 4 <<<
323. 11 26 9 4

Table D.2.1.9: verb: 'feel'. input pattern 07 25 11 00, target pattern 07 28 11 03. Sigmoid
activation and delta rule. Threshold 1, start strength 0.1, learn rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OONOUVIARWNREO
N
[o)]
N
\e]
N
~N
N
[o)]

60. 12 28 15 10
61. 12 28 15 10
62. 12 28 15 10

63. 12 28 14
64. 12 28 14
65. 12 28 14
66. 12 28 14
67. 11 28 14
68. 11 28 14
69. 11 28 14
70. 11 28 14

~
o
=
[
N
0
[
N
©0 00 00 00 00 0O 0O 0O GO 0O 0O 00 00 03 00 LO LO L0 LO 1O 1O 1O LV LV WV WV ©

78. 11 28 14
79. 11 28 13
80. 11 28 13
81. 11 28 13
82. 10 28 13
83. 10 28 13
84. 10 28 13
85. 10 28 13
86. 10 28 13
87. 10 28 13
88. 10 28 13
89. 10 28 13

90. 10 28 13 8
91. 10 28 13 7
92. 10 28 13 7
93. 10 28 13 7
94. 10 28 13 7
95. 10 28 13 7
96. 10 28 13 7
97. 10 28 13 7
98. 10 28 13 7
99. 10 28 13 7
150. 8 28 12 5
200. 8 28 11 5
250. 7 28 11 4
300. 7 28 11 4
350. 7 28 11 4
384. 7 28 11 4
385. 7 28 11 3 <<<
386. 7 28 11 3
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D.2.1 Non-binary pattern association 2

The network was presented with a number of input patterns and target patterns
representing infix morphology found in Semitic languages such as Arabic. The point at
which the model captures the past phonemes is indicated with arrows. The model is two
layer with five input and five output neurons. The results are summarised in section 6.2.2
(table 10) of the main text.

Table D.2.2.1: root /ketab/ target /kaeteeb/. input pattern 05 37 03 37 02, target pattern
05 29 03 29 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output
0. 30 30 30 30 30 30. 13 29 12 29 12 60. 929829 7 90. 729629 6
1. 29 30 29 30 29 31. 13 29 12 29 12 61. 9298 29 7 91. 7296295
2. 28 30 27 30 27 32. 13 29 12 29 11 62. 9298297 92. 7296295
3. 27 30 26 30 26 33. 13 29 12 29 11 63. 929829 7 93. 7296295
4. 26 30 25 30 25 34. 12 29 11 29 11 64. 929829 7 94. 7296295
5. 25 30 24 30 24 35. 12 29 11 29 11 65. 929829 7 95. 7296295
6. 24 30 23 30 23 36. 12 29 11 29 10 66. 929729 7 96. 7296295
7. 2330 23 30 22 37. 12 29 11 29 10 67. 9297297 97. 7296295
8. 22 3022 30 21 38. 12 29 11 29 10 68. 9297297 98. 7296295
9. 2230 21 30 21 39. 12 29 10 29 10 69. 9297297 99. 7296295
10. 21730 20 30 20 40. 11 29 10 29 10 70. 8297297 150. 6 29 5 29 4
11. 20 30 20 30 19 41. 11 29 10 29 10 71. 8297297 200. 6 29 4 29 3
12. 20 30 19 30 19 42. 1129 10 29 9 72. 8297296 250. 529 4 29 3
13. 19 30 18 30 18 43. 1129 10 29 9 73. 8297296 300. 5 29 329 3
14. 19 29 18 29 18 <<<  44. 11 29 10 29 9 74. 8297296 345. 529 329 3
15. 18 29 17 29 17 45. 11 29 10 29 9 75. 8297296 346. 5 29 3 29 2
16. 18 29 17 29 17 46. 1129929 9 76. 8297296 347. 5293292
17. 17 29 16 29 16 47. 1029929 9 77. 8297296

18. 17 29 16 29 16 48. 10 29 9 29 9 78. 8297296

19. 17 29 16 29 15 49. 10 29 9 29 9 79. 8297296

20. 16 29 15 29 15 50. 10 29 9 29 8 80. 829729 6

21. 16 29 15 29 14 51. 10 29 9 29 8 81. 8297296

22. 15 29 15 29 14 52. 10 29 9 29 8 82. 8297296

23. 15 29 14 29 14 53. 10 29 9 29 8 83. 829629 6

24. 15 29 14 29 13 54. 10 29 9 29 8 84. 8296296

25. 15 29 14 29 13 55. 10 29 8 29 8 85. 8296 29 6

26. 14 29 13 29 13 56. 10 29 8 29 8 86. 829 6 29 6

27. 14 29 13 29 13 57. 929 8 29 8 87. 8296296

28. 14 29 13 29 12 58. 9 29 8 29 8 88. 8296 29 6

29. 14 29 13 29 12 59. 929 8 29 7 89. 729629 6
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Table D.2.2.2: root /keteb/ target /kiteeb/. input pattern 05 37 03 37 02, target pattern
05 26 03 29 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 13 27 12 29 12 60. 9 26 8 29 7 90. 7 26 6 29 6

1. 29 30 29 30 29 31. 13 27 12 29 12 61. 9268 297 91. 7 266295

2 28 30 27 30 27 32. 13 27 12 29 11 62. 926 8 29 7 92. 7 266295

3. 27 29 26 30 26 33. 13 27 12 29 11 63. 9 26 8 29 7 93. 7 26 6 29 5

4. 26 29 25 30 25 34. 12 27 11 29 11 64. 9 26 8 29 7 94, 7 26 6 295

5 25 29 24 30 24 35. 12 27 11 29 11 65. 9 26 8 29 7 95. 7 26 6 295

6. 24 29 23 30 23 36. 12 27 11 29 10 66. 9 267 29 7 96. 7 26 6 29 5

7. 23 29 23 30 22 37. 12 27 11 29 10 67. 9267 297 97. 7 26 6 295

8. 22 29 22 30 21 38. 12 27 11 29 10 68. 9267 297 98. 7 26 6295

9. 22 29 21 30 21 39. 12 27 10 29 10 69. 9267 297 99. 7 26 6 29 5

10. 21 28 20 30 20 40. 11 27 10 29 10 70. 8267 297 150. 6 26 529 4
11. 20 28 20 30 19 41. 11 27 10 29 10 71. 8267 297 200. 6 26 4 29 3
12 20 28 19 30 19 42. 11 27 10 29 9 72. 8267 29 6 250. 526 4 29 3
13. 19 28 18 30 18 43. 11 27 10 29 9 73. 8267 296 300. 5 26 3 29 3
14. 19 28 18 29 18 44, 11 26 10 29 9 <<< |74. 8267 29 6 345. 5 26 3 29 3
15 18 28 17 29 17 45. 11 26 10 29 9 75. 8267 29 6 346 526 3 29 2
16. 18 28 17 29 17 46. 11 26 9 29 9 76. 8267 29 6 347. 5 26 3 29 2
17 17 28 16 29 16 47 10 26 9 29 9 77. 8267 29 6

18. 17 28 16 29 16 48. 10 26 9 29 9 78. 8267 29 6

19. 17 28 16 29 15 49. 10 26 9 29 9 79. 8267 296

20. 16 27 15 29 15 50. 10 26 9 29 8 80. 8267 296

21. 16 27 15 29 14 51. 10 26 9 29 8 8l. 8267 296

22 15 27 15 29 14 52 10 26 9 29 8 82. 81267 296

23. 15 27 14 29 14 53. 10 26 9 29 8 83. 8266296

24. 15 27 14 29 13 54. 10 26 9 29 8 84. 8 26 6 29 6

25. 15 27 14 29 13 55. 10 26 8 29 8 85. 826 6 296

26. 14 27 13 29 13 56. 10 26 8 29 8 86. 8 26 6 29 6

27 14 27 13 29 13 57. 9 26 8 29 8 87. 826 6 29 6

28. 14 27 13 29 12 58. 926 8 29 8 88. 826 6296

29. 14 27 13 29 12 59. 926 8 29 7 89. 7266296

Table D.2.2.3: root /keteb/ target /eektib/. input pattern 05 37 03 37 02, target pattern
29 05 03 26 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 29 13 12 27 12 60. 29 9 8 26 7 90. 297 6 26 6

1. 30 29 29 30 29 31. 29 13 12 27 12 61. 29 98 267 91. 2976 265

2 30 28 27 30 27 32. 29 13 12 27 11 62. 29 98 267 92. 2976265

3 30 27 26 29 26 33. 29 13 12 27 11 63. 29 9 8 26 7 93. 297 6 265

4. 30 26 25 29 25 34. 29 12 11 27 11 64. 29 9 8 26 7 94, 297 6 265

5 30 25 24 29 24 35. 29 12 11 27 11 65. 29 9 8 26 7 95. 297 6 265

6. 30 24 23 29 23 36. 29 12 11 27 10 66. 29 97 26 7 96. 29 7 6 26 5

7 30 23 23 29 22 37. 29 12 11 27 10 67. 29 97 267 97. 2976265

8. 3022 222921 38. 29 12 11 27 10 68. 29 97 267 98. 2976 265

9. 30 22 21 29 21 39. 29 12 10 27 10 69. 29 97 267 99. 297 6 26 5

10. 30 21 20 28 20 40. 29 11 10 27 10 70. 2987 267 150. 296 5 26 4
11. 30 20 20 28 19 41. 29 11 10 27 10 71. 2987 267 200. 29 6 4 26 3
12 30 20 19 28 19 42. 29 11 10 27 9 72. 29 87 26 6 250. 295 4 26 3
13. 30 19 18 28 18 43. 29 11 10 27 9 73. 2987 266 300. 29 5 3 26 3
14. 29 19 18 28 18 44, 29 11 10 26 9 <<< |74. 29 8 7 26 6 345. 29 5 3 26 3
15 29 18 17 28 17 45. 29 11 10 26 9 75. 29 87 26 6 346. 29 5 3 26 2
16. 29 18 17 28 17 46. 29 11 9 26 9 76. 29 87 26 6 347. 29 5 3 26 2
17. 29 17 16 28 16 47. 29 10 9 26 9 77. 29 87 26 6

18. 29 17 16 28 16 48. 29 109 26 9 78. 29 87 26 6

19. 29 17 16 28 15 49. 29 10 9 26 9 79. 29 87 26 6

20. 29 16 15 27 15 50. 29 10 9 26 8 80. 29 87 266

21. 29 16 15 27 14 51. 29 10 9 26 8 81. 29 87 26 6

22 29 15 15 27 14 52 29 10 9 26 8 82. 2987 266

23. 29 15 14 27 14 53. 29 10 9 26 8 83. 29 86 266

24. 29 15 14 27 13 54. 29 10 9 26 8 84. 29 8 6 26 6

25. 29 15 14 27 13 55. 29 10 8 26 8 85. 29 8 6 26 6

26. 29 14 13 27 13 56. 29 10 8 26 8 86. 29 8 6 26 6

27. 29 14 13 27 13 57. 299 8 26 8 87. 29 8 6 26 6

28. 29 14 13 27 12 58. 299 8 26 8 88. 29 8 6 26 6

29. 29 14 13 27 12 59. 2998267 89. 2976 266
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Table D.2.2.4: root /ketab/ target /kita:b/. input pattern 05 37 03 37 02, target pattern

05 26 03 30 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 13 27 12 30 12 60. 9 26 8 30 7 90. 7 26 6 30 6

1. 29 30 29 30 29 31. 13 27 12 30 12 61. 9 26 8 30 7 91. 7 26 6 30 5

2 28 30 27 30 27 32. 13 27 12 30 11 62. 9 26 8 30 7 92. 7 26 6 30 5

3. 27 29 26 30 26 33. 13 27 12 30 11 63. 9 26 8 30 7 93. 7 26 6 305

4. 26 29 25 30 25 34, 12 27 11 30 11 64. 9 26 8 30 7 94. 7 26 6 30 5

5 25 29 24 30 24 35. 12 27 11 30 11 65. 9 26 8 30 7 95. 7 26 6 30 5

6. 24 29 23 30 23 36. 12 27 11 30 10 66. 9 26 7 30 7 96. 7 26 6 30 5

7. 23 29 23 30 22 37. 12 27 11 30 10 67. 9267 30 7 97. 7 26 6 30 5

8. 22 29 22 30 21 38. 12 27 11 30 10 68. 9267 30 7 98. 7 26 6 30 5

9. 2229 21 30 21 39. 12 27 10 30 10 69. 9267 30 7 99. 7 26 6 305

10. 21 28 20 30 20 40. 11 27 10 30 10 70. 8 267 30 7 150. 6 26 5 30 4
11. 20 28 20 30 19 41. 11 27 10 30 10 71. 8267 30 7 200. 6 26 4 30 3
12 20 28 19 30 19 42. 11 27 10 30 9 72. 8267 306 250. 5 26 4 30 3
13 19 28 18 30 18 43. 11 27 10 30 9 73. 8267 30 6 300 526 3 30 3
14. 19 28 18 30 18 44. 11 26 10 30 9 <<< |74. 8 26 7 30 6 345. 5 26 3 30 3
15. 18 28 17 30 17 45. 11 26 10 30 9 75. 8267 306 346. 5 26 3 30 2
16. 18 28 17 30 17 46. 11 26 9 30 9 76. 8 267 30 6 347. 5 26 3 30 2
17 17 28 16 30 16 47 10 26 9 30 9 77. 8267 30 6

18. 17 28 16 30 16 48. 10 26 9 30 9 78. 8267 30 6

19. 17 28 16 30 15 49. 10 26 9 30 9 79. 8267 30 6

20. 16 27 15 30 15 50. 10 26 9 30 8 80. 8267 30 6

21. 16 27 15 30 14 51. 10 26 9 30 8 81l. 8267 306

22 15 27 15 30 14 52 10 26 9 30 8 82. 8267 30 6

23 15 27 14 30 14 53 10 26 9 30 8 83. 8 26 6 30 6

24. 15 27 14 30 13 54. 10 26 9 30 8 84. 8 26 6 30 6

25 15 27 14 30 13 55 10 26 8 30 8 85. 8 26 6 30 6

26. 14 27 13 30 13 56. 10 26 8 30 8 86. 8 26 6 30 6

27. 14 27 13 30 13 57. 9 26 8 30 8 87. 826 6 30 6

28. 14 27 13 30 12 58. 9 26 8 30 8 88. 8 26 6 30 6

29. 14 27 13 30 12 59. 926 8 30 7 89. 7 26 6 30 6

Table D.2.2.5: root /katab/ target /kutub/. input pattern 05 37 03 37 02, target pattern

05 33 03 33 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 13 32 12 32 12 60. 9 338337 90. 7336336

1. 29 30 29 30 29 31. 13 32 12 32 12 61. 9 33 8337 91. 7 336335

2 28 30 27 30 27 32. 13 32 12 32 11 62. 9338337 92. 7336335

3. 27 30 26 30 26 33. 13 32 12 32 11 63. 9338337 93. 7336335

4. 26 31 25 31 25 34, 12 32 11 32 11 64. 9 33 8 33 7 94. 7 336 335

5. 25 31 24 31 24 35. 12 33 11 33 11 <<<|65. 9 33 8 33 7 95. 7336335

6. 24 31 23 31 23 36. 12 33 11 33 10 66. 9337 337 96. 7 336335

7. 23 31 23 31 22 37 12 33 11 33 10 67. 9337337 97. 7 336 335

8. 2231223121 38. 12 33 11 33 10 68. 9337337 98. 7336335

9. 2231213121 39. 12 33 10 33 10 69. 9337337 99. 7 336335

10. 21 31 20 31 20 40. 11 33 10 33 10 70. 8337 337 150. 6 33 5 33 4
11. 20 31 20 31 19 41. 11 33 10 33 10 71. 8337337 200. 6 33 4 33 3
12 20 31 19 31 19 42. 11 33 10 33 9 72. 8337336 250. 533 4 33 3
13 19 31 18 31 18 43. 11 33 10 33 9 73. 8337 336 300 533 3333
14. 19 32 18 32 18 44, 11 33 10 33 9 74. 8337336 345. 5 33 3 33 3
15. 18 32 17 32 17 45. 11 33 10 33 9 75. 8337336 346. 5 33 3 33 2
16. 18 32 17 32 17 46. 11 33 9 33 9 76. 8337 336 347. 5 33 3 33 2
17. 17 32 16 32 16 47. 10 33 9 33 9 77. 8337336

18. 17 32 16 32 16 48. 10 33 9 33 9 78. 8337336

19. 17 32 16 32 15 49. 10 33 9 33 9 79. 8337 336

20. 16 32 15 32 15 50. 10 33 9 33 8 80. 8337336

21. 16 32 15 32 14 51. 10 33 9 33 8 81. 8337336

22 15 32 15 32 14 52 10 33 9 33 8 82. 8337336

23. 15 32 14 32 14 53. 10 33 9 33 8 83. 8336336

24. 15 32 14 32 13 54. 10 33 9 33 8 84. 8336336

25 15 32 14 32 13 55 10 33 8 33 8 85. 8336336

26. 14 32 13 32 13 56. 10 33 8 33 8 86. 8336336

27. 14 32 13 32 13 57. 933 8338 87. 8336336

28. 14 32 13 32 12 58. 9 33 8 33 8 88. 8336336

29. 14 32 13 32 12 59. 9338337 89. 7336336
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Table D.2.2.6: root /ketab/ target /kata:b/. input pattern 05 37 03 37 02, target pattern

05 35 03 30 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 13 34 12 30 12 60. 9 358 30 7 90. 7 356306

1. 29 30 29 30 29 31. 13 34 12 30 12 61. 9 358 30 7 91. 7 356 305

2 28 30 27 30 27 32. 13 34 12 30 11 62. 9 358 30 7 92. 7 356 305

3. 27 31 26 30 26 33. 13 34 12 30 11 63. 9 358 30 7 93. 7356305

4. 26 31 25 30 25 34. 12 34 11 30 11 64. 9 358 30 7 94. 7 356 305

5 25 31 24 30 24 35. 12 34 11 30 11 65. 9 358 30 7 95. 7 356 305

6. 24 31 23 30 23 36. 12 34 11 30 10 66. 9 357 307 96. 7 356 305

7. 23 32 23 30 22 37. 12 34 11 30 10 67. 9357 307 97. 7 356 305

8. 22 32 22 30 21 38. 12 34 11 30 10 68. 9357 307 98. 7 356 305

9. 22 32 21 30 21 39. 12 34 10 30 10 69. 9357 307 99. 7356305

10. 21 32 20 30 20 40. 11 34 10 30 10 70. 8 357 30 7 150. 6 35 5 30 4
11. 20 32 20 30 19 41. 11 34 10 30 10 71. 8357 30 7 200. 6 35 4 30 3
12 20 32 19 30 19 42. 11 34 10 30 9 72. 8357 306 250. 5354 30 3
13 19 32 18 30 18 43. 11 34 10 30 9 73. 8357 30 6 300 535330 3
14. 19 33 18 30 18 44. 11 35 10 30 9 74. 8 357 30 6 345. 5 35 3 30 3
15. 18 33 17 30 17 45. 11 35 10 30 9 75. 8357 306 346. 5 35 3 30 2
16. 18 33 17 30 17 46. 11 35 9 30 9 76. 8 357 30 6 347. 5 35 3 30 2
17 17 33 16 30 16 47 10 35 9 30 9 77. 8 357 30 6

18. 17 33 16 30 16 48. 10 359 30 9 78. 8357 306

19. 17 33 16 30 15 49. 10 359 30 9 79. 8357 30 6

20. 16 33 15 30 15 50. 10 35 9 30 8 80. 8357 306

21. 16 33 15 30 14 51. 10 35 9 30 8 81. 8357306

22 15 33 15 30 14 52 10 35 9 30 8 82. 8357306

23 15 34 14 30 14 53 10 35 9 30 8 83. 8356 306

24. 15 34 14 30 13 54. 10 35 9 30 8 84. 8 356 306

25 15 34 14 30 13 55 10 35 8 30 8 85. 8 356 30 6

26. 14 34 13 30 13 56. 10 35 8 30 8 86. 8 356 30 6

27. 14 34 13 30 13 57. 9358 30 8 87. 8356 306

28. 14 34 13 30 12 58. 9 35 8 30 8 88. 8 356 306

29. 14 34 13 30 12 59. 9358 30 7 89. 7 356 306

Table D.2.2.7: root /ketab/ target /ki:tob/. input pattern 05 37 03 37 02, target pattern

05 2503 31 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn
rate 0.5, rho 1.0.

Iteration. Output Iteration. Output Iteration. Output Iteration. Output

0. 30 30 30 30 30 30. 13 26 12 31 12 60. 9 258 317 90. 7256316

1. 29 30 29 30 29 31. 13 26 12 31 12 61. 9 258 317 91. 7256 315

2 28 30 27 30 27 32. 13 26 12 31 11 62. 9258317 92. 7256315

3. 27 29 26 30 26 33. 13 26 12 31 11 63. 9258 317 93. 7256315

4. 26 29 25 30 25 34, 12 26 11 31 11 64. 9 258 317 94. 7 256 315

5 25 29 24 30 24 35. 12 26 11 31 11 65. 9258 317 95. 7256315

6. 24 29 23 30 23 36. 12 26 11 31 10 66. 9257 317 96. 7 256 315

7. 23 29 23 30 22 37. 12 26 11 31 10 67. 9257317 97. 7256 315

8. 2228 22 3021 38. 12 26 11 31 10 68. 9257317 98. 7 256315

9. 2228 21 30 21 39. 12 26 10 31 10 69. 9257317 99. 7 256315

10. 21 28 20 30 20 40. 11 26 10 31 10 70. 8257 317 150. 6 25 5 31 4
11. 20 28 20 30 19 41. 11 26 10 31 10 71. 8257317 200. 6 25 4 31 3
12 20 28 19 30 19 42. 11 26 10 31 9 72. 8257316 250. 5254 313
13 19 28 18 30 18 43. 11 26 10 31 9 73. 8257 316 300 5253313
14. 19 28 18 31 18 44, 11 26 10 31 9 74. 8257 316 345. 525 3 313
15 18 27 17 31 17 45. 11 26 10 31 9 75. 8257316 346 5253312
16. 18 27 17 31 17 46. 11 26 9 31 9 76. 8 257 316 347. 525 3 312
17 17 27 16 31 16 47 10 26 9 31 9 77. 8257 316

18. 17 27 16 31 16 48. 10 26 9 31 9 78. 8257316

19. 17 27 16 31 15 49. 10 25 9 319 79. 8257 316

20. 16 27 15 31 15 50. 10 25 9 31 8 80. 8257316

21. 16 27 15 31 14 51. 10 25 9 31 8 8l. 8257316

22 15 27 15 31 14 52 10 25 9 31 8 82. 8257316

23. 15 27 14 31 14 53. 10 25 9 31 8 83. 8256316

24. 15 27 14 31 13 54. 10 25 9 31 8 84. 8256316

25 15 26 14 31 13 55 10 25 8 31 8 85. 8256 316

26. 14 26 13 31 13 56. 10 25 8 31 8 86. 8256316

27. 14 26 13 31 13 57. 9258318 87. 8256316

28. 14 26 13 31 12 58. 925 8 31 8 88. 8256316

29. 14 26 13 31 12 59. 9258317 89. 7256316
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Table D.2.2.8: root /katab/ target /katu:b/. input pattern 05 37 03 37 02, target pattern
05 37 03 34 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn

rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OONOUVIARWNREO
N
[o)]
w
[
N
%]
w
=
N
@]

46. 11 36 9 34
47. 10 36 9 34
48. 10 36 9 34
49. 10 37 9 34
50. 10 37 9 34
51. 10 37 9 34
52. 10 37 9 34
53. 10 37 9 34
54. 10 37 9 34
55. 10 37 8 34
56. 10 37 8 34

57. 937 8 34 8
58. 937 8 34 8
59. 9378347

[o o Ho Ko Yo Joo o JNoRoJVo) o]

60. 9 37 8 347
61. 9 37 8 347
62. 9 37 8 347
63. 9 37 8 347
64. 9 37 8 347
65. 9 37 8 34 7
66. 9377 347
67. 9377 347
68. 9377 347
69. 9377 347
70. 8377 347
71. 8377 347
72. 8377 346
73. 8377 346
74. 8377 346
75. 8377346
76. 8377 346
77. 8377 346
78. 8377 346
79. 8377 346
80. 8377 346
81. 8377 346
82. 8377 346
83. 8376346
84. 8 37 6 34 6
85. 8 376 34 6
86. 8 37 6 34 6

8 6 6

8 6 6

7 6 6

90. 7 376 346
91. 7 376 345
92. 7 376 345
93. 7376 345
94. 7 37 6 345
95. 7 376 345
96. 7 376 345
97. 7 37 6 345
98. 7 376 345
99. 7 376 345
150. 6 37 5 34
200. 6 37 4 34
250. 5 37 4 34
300. 5 37 3 34
345. 5 37 3 34
346. g 37 g 34

NNWWWWA

Table D.2.2.9: root /ketab/ target /keta:b/. input pattern 05 37 03 37 02, target pattern
05 27 03 36 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn

rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

LENOUIAWNRO
N
o
N
[Ce]
N
(%a)
w
=
N
v

46. 11 27 9 35
47. 10 27 9 36
48. 10 27 9 36
49. 10 27 9 36
50. 10 27 9 36
51. 10 27 9 36
52. 10 27 9 36
53. 10 27 9 36
54. 10 27 9 36
55. 10 27 8 36
10 27 8 36
57. 927 8 36 8
58. 927 8 36 8
59. 9278367

00 00 00 00 00 00 00 WO W W

60. 9 27 8 36 7
61. 927 8 367
62. 9 27 8 36 7
63. 9 27 8 36 7
64. 927 8 36 7
65. 9 27 8 36 7
66. 9277 367
67. 9277 367
68. 9277 367
69. 9277 367
70. 8277 367
71. 8277 367
72. 8277 36 6
73. 8277 36 6
74. 8277 36 6
75. 8277 366
76. 8277 36 6
77. 8277 36 6
78. 8277 366
79. 8277 36 6
80. 8277 366
81. 8277 366
82. 8277 366
83. 827 6 36 6
84. 8 27 6 36 6
85. 8 27 6 36 6
86. 8 27 6 36 6
87. 827 6 36 6
88. 8 27 6 36 6
89. 727 6 366

90. 7 27 6 36 6
91. 7 27 6 36 5
92. 727 6 365
93. 727 6 365
94. 7 27 6 36 5
95. 7 27 6 36 5
96. 7 27 6 36 5
97. 7 27 6 36 5
98. 7 27 6 36 5
99. 7 27 6 365
150. 6 27 5 36
200. 6 27 4 36
250. 527 4 36
345. 5 27 3 36
346. 5 27 3 36
347. 5 27 3 36

NNWWwWwh
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Table D.2.2.10: root /katab/ target /ku:tab/. input pattern 05 37 03 37 02, target pattern
05 34 03 37 02. Sigmoid activation and delta rule. Threshold 1, start strength 0.1, learn

rate 0.5, rho 1.0.

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OoONOUVIRWNERFRO
N
[o)]
w
[
N
%]
w
=
N
@]

46. 11 34 9 36
47. 10 34 9 36
48. 10 34 9 36
49. 10 34 9 37
50. 10 34 9 37
51. 10 34 9 37
52. 10 34 9 37
53. 10 34 9 37
54. 10 34 9 37
55. 10 34 8 37
56. 10 34 8 37

59. 9 34 8 37 7

00 000000000000V WWOW

60. 9 34 8 37 7
61. 9 34 8 37 7
62. 9 34 8 37 7
63. 934 8 37 7
64. 9 34 8 37 7
65. 9 34 8 37 7
66. 9347 377
67. 9347377
68. 9347377
69. 9347377
70. 8347 377
71. 8347 377
72. 8347 376
73. 8347 376
74. 8347 37 6
75. 8347 376
76. 8347 37 6
77. 8347 37 6
78. 8347 376
79. 8347 376
80. 8347 376
81. 8347376
82. 8347376
83. 8346 376
84. 8 346 376
85. 8346 376
86. 8 34 6 37 6
87. 8346376
88. 8346 376
89. 7346376

90. 7 346376
91. 7 346 375
92. 7 346 375
93. 7 346 375
94. 7 34 6 375
95. 7 346 375
96. 7 346 375
97. 7 346 375
98. 7 346 375
99. 7 346 375
150. 6 34 5 37
200. 6 34 4 37
250. 5 34 4 37
300. 5 34 3 37
345. 5 34 3 37
346. g 34 % 37

NNWWWwWhA
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In the models described in section 4 of the text, a single network is able to the correct

target form for multiple inputs. This was attempted with the model built for this project

with the results shown below.

Table D.3.1: input patterns 1010 0110, target patterns 0101 1100. Binary activation and

Hebb rule. Threshold 1, start strength 0.1, learn rate 0.5

Iteration. Output Iteration. Output Iteration. Output Iteration. Output
0. 0101 26. 100 100 O 100 52. 100 100 0 100 78. 100 100 O 100
0. 1201 26. 100 100 0 100 52. 100 100 O 100 78. 100 100 O 100
1. 1602 27. 100 100 0 100 53. 100 100 O 100 79. 100 100 O 100
1. 21502 27. 100 100 O 100 53. 100 100 0 100 79. 100 100 O 100
2. 23306 28. 100 100 0 100 54. 100 100 O 100 80. 100 100 O 100
2. 65706 28. 100 100 0 100 54. 100 100 O 100 80. 100 100 O 100
3. 67901 29. 100 100 O 100 55. 100 100 0 100 81. 100 100 O 100
3. 1591 0 15 29. 100 100 0 100 55. 100 100 O 100 81. 100 100 O 100
4. 15 96 0 33 30. 100 100 O 100 56. 100 100 O 100 82. 100 100 O 100
4. 3399 0 33 30. 100 100 O 100 56. 100 100 0 100 82. 100 100 O 100
5. 33 100 0 57 31. 100 100 O 100 57. 100 100 O 100 83. 100 100 O 100
5. 57 100 0 57 31. 100 100 O 100 57. 100 100 O 100 83. 100 100 O 100
6. 57 100 0 79 32. 100 100 0 100 58. 100 100 0 100 84. 100 100 O 100
6. 79 100 0 79 32. 100 100 O 100 58. 100 100 O 100 84. 100 100 O 100
7. 79 100 0 91 33. 100 100 O 100 59. 100 100 O 100 85. 100 100 O 100
7. 91 100 0 91 33. 100 100 0 100 59. 100 100 0 100 85. 100 100 O 100
8. 91 100 0 96 34. 100 100 O 100 60. 100 100 0 100 86. 100 100 O 100
8. 96 100 0 96 34. 100 100 O 100 60. 100 100 0 100 86. 100 100 O 100
9. 96 100 0 99 35. 100 100 0 100 61. 100 100 O 100 87. 100 100 O 100
9. 99 100 0 99 35. 100 100 O 100 61. 100 100 0 100 87. 100 100 O 100
10. 99 100 O 100 36. 100 100 O 100 62. 100 100 0 100 88. 100 100 O 100
10. 100 100 O 100 36. 100 100 0 100 62. 100 100 O 100 88. 100 100 O 100
11. 100 100 0 100 37. 100 100 O 100 63. 100 100 0 100 89. 100 100 O 100
11. 100 100 0 100 37. 100 100 O 100 63. 100 100 0 100 89. 100 100 O 100
12. 100 100 O 100 38. 100 100 0 100 64. 100 100 O 100 90. 100 100 O 100
12. 100 100 0 100 38. 100 100 O 100 64. 100 100 0 100 90. 100 100 O 100
13. 100 100 0 100 39. 100 100 O 100 65. 100 100 0 100 91. 100 100 0 100
13. 100 100 O 100 39. 100 100 0 100 65. 100 100 O 100 91. 100 100 O 100
14. 100 100 0 100 40. 100 100 O 100 66. 100 100 0 100 92. 100 100 0 100
14. 100 100 0 100 40. 100 100 O 100 66. 100 100 0 100 92. 100 100 0 100
15. 100 100 O 100 41. 100 100 O 100 67. 100 100 O 100 93. 100 100 O 100
15. 100 100 0 100 41. 100 100 O 100 67. 100 100 0 100 93. 100 100 0 100
16. 100 100 0 100 42. 100 100 O 100 68. 100 100 0 100 94. 100 100 0 100
16. 100 100 O 100 42. 100 100 O 100 68. 100 100 O 100 94. 100 100 O 100
17. 100 100 0 100 43. 100 100 O 100 69. 100 100 0 100 95. 100 100 0 100
17. 100 100 0 100 43. 100 100 O 100 69. 100 100 0 100 95. 100 100 O 100
18. 100 100 O 100 44, 100 100 O 100 70. 100 100 O 100 96. 100 100 O 100
18. 100 100 0 100 44. 100 100 O 100 70. 100 100 O 100 96. 100 100 O 100
19. 100 100 0 100 45. 100 100 O 100 71. 100 100 O 100 97. 100 100 0 100
19. 100 100 O 100 45. 100 100 O 100 71. 100 100 0 100 97. 100 100 O 100
20. 100 100 O 100 46. 100 100 O 100 72. 100 100 O 100 98. 100 100 0 100
20. 100 100 0 100 46. 100 100 O 100 72. 100 100 O 100 98. 100 100 0 100
21. 100 100 O 100 47. 100 100 O 100 73. 100 100 0 100 99. 100 100 O 100
21. 100 100 0 100 47. 100 100 O 100 73. 100 100 O 100 99. 100 100 0 100
22. 100 100 0 100 48. 100 100 O 100 74. 100 100 O 100

22. 100 100 O 100 48. 100 100 O 100 74. 100 100 0 100

23. 100 100 0 100 49. 100 100 O 100 75. 100 100 O 100

23. 100 100 0 100 49. 100 100 O 100 75. 100 100 O 100

24. 100 100 O 100 50. 100 100 0 100 76. 100 100 0 100

24. 100 100 0 100 50. 100 100 O 100 76. 100 100 O 100

25. 100 100 0 100 51. 100 100 O 100 77. 100 100 O 100

25. 100 100 O 100 51. 100 100 0 100 77. 100 100 0 100

The model was subsequently run with various thresholds, start strengths, learn rates and
using the sigmoid and delta rules. In each case the results were similar.
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The model was then tested using the IPA codes shown in table 7 in the main text. A sample

run is shown below.

Table D.3.2: input patterns 05 35 12 00 (/kam/), 06 28 03 00 (/get/), target patterns

05 38 12 00, (/keim/), 06 31 03 00 (/got/). Sigmoid activation and Delta rule. Threshold 1,

start strength 0.1, learn rate 0.5, rho 1.0

Iteration. Output

Iteration. Output

Iteration. Output

Iteration. Output

OWOWRCONNOOVIVTADWWNNREROO
N
w
w
[
N
S
N
N

25. 12 34 13 9
25. 12 34 13 9
26. 12 34 13 9
26. 12 34 13 9
27. 12 34 13 9
27. 12 34 13 9
28. 11 34 12 8
28. 12 34 13 9
29. 11 34 12 8
29. 11 34 13 8
30. 11 34 12 8
30. 11 34 12 8
31. 11 34 12 8
31. 11 34 12 8
32. 11 34 12 8
32. 11 34 12 8
33. 10 34 12 7
33. 11 34 12 8
34. 10 34 11 7
34. 10 34 12 7
35. 10 34 11 7
35. 10 34 12 7
36. 10 34 11 7
36. 10 34 11 7
37. 10 34 11 7
37. 10 34 11 7
38. 10 34 11 7
38. 10 34 11 7
39. 10 34 11 6
39. 10 34 11 7
42. 9 3410 6

42. 934116

43. 934106

43. 934116

44. 9 34 10 6

44, 93411 6

45. 9 34 10 6

45. 9 34 10 6

46. 9 34 10 6

46. 9 34 10 6

47. 9 34 10 5

47. 9 34 10 6
48. 934105
48. 9 3410 6
49. 8 34105
49. 9 3410 6

50. 8 34 105
50. 934105
51. 834105
51. 934105
52. 834105
52. 934105
53. 83495
53. 834105
54. 83495
54. 8 34105
55. 83495
55. 834105
56. 8 3495
56. 834105
57. 83495
57. 834105
58. 83495
58. 834105
59. 83494
59. 83495
60. 8 34 9 4
60. 8 34 95
61. 8 34 94
61. 83495
62. 83494
62. 8 3495
63. 8 34 94
63. 8 34 94
64. 7 349 4
64. 8 34 9 4
65. 7 34 9 4
65. 8 34 9 4
66. 7 34 9 4
66. 8 34 9 4
67. 7 3494
67. 8 34 9 4
68. 7 3494
68. 8 34 9 4
69. 7 3494
. 8 9 4
70. 7 9 4
7 9 4

7 9 4

7 9 4

7 9 4

7 9 4

7 9 4

7 9 4

7 8 4

7 9 4

75. 7 34 8 4
75. 7 3494
76. 7 34 8 4
76. 7 34 9 4
77. 7 34 8 4
77. 7 349 4
78. 7 34 8 3
78. 7 3494
79. 73483
79. 73494
80. 73483
80. 73494
81. 7 34 8 3
81. 73494
82. 73483
82. 734914
83. 73483
83. 73493
84. 7 34 8 3
84. 73493
85. 73483
85. 734 9 3
86. 7 3483
86. 73493
87. 7 34 8 3
87. 73483
88. 73483
88. 7 34 8 3
89. 73483
89. 73483
90. 7 3483
90. 7 34 83
91. 7 34 83
91. 7 3483
92. 6 34 83
92. 7 34 83
93. 63483
93. 7 34 83
94. 6 34 8 3
94. 7 34 83
95. 6 34 8 3
95. 7 34 8 3
96. 6 34 8 3
96. 7 34 83
97. 6 34 8 3
97. 7 34 83
98. 6 34 8 3
98. 7 34 83
99. 6 34 83
99. 7 3483

This model was also run with various input and target values, and the threshold, start

strength, learn rate and rho value adjusted. In each case the results were similar.
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