Automated Conflict Detection Between Medical Care Pathways

Philip Weber, Bosco Filho, Mark Lee, Ian Litchfield, Ruth Backman

University of Birmingham, UK

School of Computer Science | Institute of Applied Health Research

ICSSP, Paris, 7th July 2017

(日) (四) (코) (코) (코) (코)

In England > 15 million people have a long-term health condition.

Around 70% of the money spent on health and social care.

In the UK 2.9 million with three or more (Multi-morbidity) – by 2018.

aging, smoking, diet, inactivity, ...

• cancer, heart disease, lung disease, diabetes, depression, ...

Complex processes for treatment (people, factors, clinical evidence ...)

UK National Institute for Care Excellence (NICE):

• Clinical Guidelines \rightarrow Care Pathways.

A care pathway is essentially a process for treatment of a disease.

Care Guidelines and Pathways

Two Problems

- 1. Informal modelling potential for inconsistency,
- 2. Focus on single conditions potential for conflict.

- Implicit cycle of retesting.
- What does Metformin conflict with?
- What does HbA1c interact with?

Our work:

- I define a formal pathway model to capture clinical pathways,
- evelop automated methods for conflict detection,
 - precommend minimal solutions for conflict resolution.

1. Modelling clinical guidelines

Phil Weber (Birmingham)

Conflict Detection – Clinical Processes

ICSSP, Paris, 7th July 2017

→ ∃ →

Modelling Clinical Guidelines

Requirement: formal modelling for analysis. Many options (YAWL, Petri Nets, Computer Interpretable Guidelines, ...)

Business Process Model and Notation (BPMN):

- well-known de facto business process modelling language,
- increasingly prevalent for modelling clinical pathways,
- graphical, intuitive, flexible, 'subset-able'.

But

- no formal semantics,
- models can be unstructured,
- especially the semantics w.r.t. data are unspecified.

Modelling Clinical Guidelines

Requirement: formal modelling for analysis. Many options (YAWL, Petri Nets, Computer Interpretable Guidelines, ...)

Business Process Model and Notation (BPMN):

- well-known de facto business process modelling language,
- increasingly prevalent for modelling clinical pathways,
- graphical, intuitive, flexible, 'subset-able'.

But

- no formal semantics,
- models can be unstructured,
- especially the semantics w.r.t. data are unspecified.

Data in Care Pathways

Routing may be dependent on and modify data, e.g.

- Is patient already taking medication m?
- If test X > value v, refer for treatment X else retest in M months.
- If patient age A > a prescribe drug x else y.
- Record the fact of prescription of drug Z.

BPMN has the Data Object element, but

- semantics open to interpretation,
- decoupled from the control-flow.

Literature covering formalisation of

- BPMN integration with data objects, e.g. [Meyer et al., 2013];
- interaction between processes and databases [Sun et al., 2014];
- seems more complex than we need;

• similarly the data semantics of YAWL or Computer Interpretable Guidelines.

Data in Care Pathways

Routing may be dependent on and modify data, e.g.

- Is patient already taking medication m?
- If test X > value v, refer for treatment X else retest in M months.
- If patient age A > a prescribe drug x else y.
- Record the fact of prescription of drug Z.

BPMN has the Data Object element, but

- semantics open to interpretation,
- decoupled from the control-flow.

Literature covering formalisation of

- BPMN integration with data objects, e.g. [Meyer et al., 2013];
- interaction between processes and databases [Sun et al., 2014];
- seems more complex than we need;
- similarly the data semantics of YAWL or Computer Interpretable Guidelines.

Data in Care Pathways

Routing may be dependent on and modify data, e.g.

- Is patient already taking medication m?
- If test X > value v, refer for treatment X else retest in M months.
- If patient age A > a prescribe drug x else y.
- Record the fact of prescription of drug Z.

BPMN has the Data Object element, but

- semantics open to interpretation,
- decoupled from the control-flow.

Literature covering formalisation of

- BPMN integration with data objects, e.g. [Meyer et al., 2013];
- interaction between processes and databases [Sun et al., 2014];
- seems more complex than we need;
- similarly the data semantics of YAWL or Computer Interpretable Guidelines.

BPMN for Two Pathway Fragments

Fragments of doctors' appointments for review of

OA : Osteoarthritis.

COPD : Chronic Obstructive Pulmonary Disease (Lung Disease).

ICSSP, Paris, 7th July 2017

∃ ⊳

BPMN for Two Pathway Fragments

Fragments of doctors' appointments for review of

OA : Osteoarthritis.

COPD : Chronic Obstructive Pulmonary Disease (Lung Disease).

→

BPMN+V: Data-Enhanced BPMN

Formal execution semantics ...

- subset of BPMN notation can be expanded,
- formal semantics of execution,
- based on Workflow Graphs ([Vanhatalo et al., 2007] formalism),

... and integration with data,

- semantics of dependence on and modification of data,
- based on Coloured Petri Nets.

Workflow Graphs

Effectively a subset of BPMN allowing the main control-flow patterns and imposing some structure on the model [Vanhatalo et al., 2007].

- G = (N, E), nodes N, edges E, such that $E \subseteq N \times N$,
- $N \in \{$ START, STOP, ACTIVITY, FORK, JOIN, DECISION, MERGE $\}$,
- *G* is well-formed by definition,
- allowing for atomic activities, parallel and alternative behaviours.

Semantics of G is a *token game* (*cf* Petri Nets).

- State s of G is a mapping $s : E \to \mathbb{N}$ assigning tokens to edges in E.
- $s(e) = k \iff$ in state s, edge e carries $k \in \mathbb{N}$ tokens.
- execution of node *n* changes the state to $s' : s \xrightarrow{n} s'$.

This says nothing about data.

BPMN+V: Modelling Data

Flexible approach to model data:

- Fixed set of d variables $X = \{x_1, \ldots, x_d\}$ of types $\mathcal{T}(x_i) \in \{\mathcal{T}_1, \ldots, \mathcal{T}_m\}$,
- valuations V = (v₁,..., v_d) assigned to X as the process executes.
 V assigned to token ('colour').
- Activity may be guarded by pre- and post-*conditions* $c(\cdot)$:
 - $c(\cdot)$ is a first-order logic formula over X, - $c(\cdot) \vDash V$ if the valuation V satisfies $c(\cdot)$, - e.g. $pre(a) := c(x_1, \ldots, x_d) \triangleq (x_i > 55)$.
- Activity may carry out *data modifications*:
 - statement $f(\cdot): V \to V'$ over variables in X, - e.g. x := x + 1 or x := False,
- data may require synchronisation managing the control-flow.

Implicit data is referenced but not modified.

- e.g. database of drug-drug-disease interactions (Stockley / BNF).

BPMN+V: Execution Semantics

Extension of Workflow Graphs:

- G = (N, I, E, X, pre, post, mod),
- $I: \mathbb{N} \to \{\text{Start, End, Activity, Exclusive, Inclusive, Parallel}\},\$
- $X = \{X_1, ..., X_d\},$
- {pre, post} : $N \rightarrow C$,
- $mod: N \rightarrow D$ (database),
- allowing for atomic activities, parallel, exclusive or inclusive choice.

Semantics defined in terms of before- and after- conditions and states,

- $m: E \rightarrow \{T_1, T_2, \ldots\}$ is a *marking* decribing the *state*,
- mapping each edge $e \in E$ to coloured tokens, $T_i = (t_i, V_i)$,
- execution modifies the state $m \xrightarrow{n} m'$ and (perhaps) valuation $V \to V'$.

BPMN+V: Execution Semantics

e.g. For an ACTIVITY *a* in a well-formed BPMN+V model:

- one input and one output sequence flow e_{in} , e_{out} .
- a consumes T = (t, V) from e_{in} and returns T' = (t, V') on e_{out} ,
- if $\exists T = (t, V) \in m(e_{in}) \mid pre(a) \vDash V$, //V satisfies any pre-condition.
- then $m \xrightarrow{a} m'$, where

1. $post(a) \models V'$, and 2. m'(e) = $\begin{cases}
m(e) \setminus \{T\} & \text{if } e = e_{in}, // V' \text{ satisfies any post} - condition. \\
m(e) \cup \{T'\} & \text{if } e = e_{out}, // token is 'moved'. \\
m(e) & \text{otherwise.}
\end{cases}$

e.g. $pre(a) := \neg NSAIDS,$ $f(a) \triangleq corticosteroids := corticosteroids + 1.$

- Similarly for all node types.

E SQA

BPMN+V: Data Annotation

12 / 21

э

2. Conflict Detection

Phil Weber (Birmingham)

Conflict Detection – Clinical Processes ICSSP,

ICSSP, Paris, 7th July 2017

-

12 / 21

э

Conflict Detection

The problem: to identify conflicts between clinical care guidelines followed concurrently in treating patients with multiple morbidities. Assume

- two BPMN+V models (care pathways) M_1, M_2 ,
- interacting with database \mathcal{D} ,
- shared set of *d* variables $X = X_1 \cup X_2$,
- set of k constraints $C = \{C_1, \ldots, C_k\}.$

Constraint C_r is a logical formula over X, e.g.

- if x_i and x_j indicate prescription of two medications,
- which must not be taken together,

• then
$$C_r(x_1,\ldots,x_d) \triangleq \neg (x_i \land x_j).$$

The problem:

identify all pairs of execution paths through M_1 , M_2 which will modify the variables in X so that at least one of the C is violated.

Conflict Detection

The problem: to identify conflicts between clinical care guidelines followed concurrently in treating patients with multiple morbidities. Assume

- two BPMN+V models (care pathways) M_1, M_2 ,
- interacting with database \mathcal{D} ,
- shared set of *d* variables $X = X_1 \cup X_2$,
- set of k constraints $C = \{C_1, \ldots, C_k\}.$

Constraint C_r is a logical formula over X, e.g.

- if x_i and x_j indicate prescription of two medications,
- which must not be taken together,

• then
$$C_r(x_1,\ldots,x_d) \triangleq \neg (x_i \land x_j).$$

The problem:

identify all pairs of execution paths through M_1 , M_2 which will modify the variables in X so that at least one of the C is violated.

Current process for conflict detection (evaluate BPMN+V):

- Model clinical pathways in BPMN+V,
- simple parallel composition,

Assumes patient (potentially) starts both pathways concurrently. Assumes no common activities.

Future: intelligent model composition.

Current process for conflict detection (evaluate BPMN+V):

- Model clinical pathways in BPMN+V,
- simple parallel composition,
- annotate with constraints (potential conflicts, e.g. meds. dependencies),
- identify data combinations for which to explore the model,
- Identify *d* variables *X* involved in conditions,
 values *V* checked/assigned.
- Create a 'covering set' of 2^d initial data settings for validation:
 - e.g. $\{y > 1, y \le 1\}$ for a condition y > 1.

Current process for conflict detection (evaluate BPMN+V):

- Model clinical pathways in BPMN+V,
- simple parallel composition,
- annotate with constraints (potential conflicts, e.g. meds. dependencies),
- identify data combinations for which to explore the model,
- state space exploration for each data combination (via CPN),
- Transform to CPN (take advantage of existing methods).
- Construct 2^d reachability graphs R_i (explore state space).
- Conflicting Activities indicated by non-final dead markings linked by common variables.
- Repeat for individual models (detect data-related inconsistencies)
- and composed models (detect conflicts).

Current process for conflict detection (evaluate BPMN+V):

- Model clinical pathways in BPMN+V,
- simple parallel composition,
- annotate with constraints (potential conflicts, e.g. meds. dependencies),
- identify data combinations for which to explore the model,
- state space exploration for each data combination (via CPN),
- identify 'non-final dead markings',
- visualise and interpret the conflicting activities and data combinations.

Composed OA and COPD Model

(Possibly invalid assumption that the patient starts following both models at the same time.)

Phil Weber (Birmingham)

Conflict Detection – Clinical Processes ICS

ICSSP, Paris, 7th July 2017 15 / 21

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3. Evaluation

Phil Weber (Birmingham)

Conflict Detection – Clinical Processes ICSSP

ICSSP, Paris, 7th July 2017

ヨト・モラト

15 / 21

크

Evaluation

3-stage evaluation:

Artificial process fragments, e.g.

- Randomly-generated models,
 - block-structured expansion,
 - controlled block probabilities and number of conflicts.
- Running example Osteoarthritis (OA) and COPD pathways,
 - 14 activities,
 - 3 variables,
 - up to 11,000 states in the composed model.

Model	Activity	Data	Initial Data	Conflict Model	Conflict Activity	Conflict Data
OA OA	Agree exercise plan [¬breathless] Prescribe NSAIDs	breathless=True NSAIDS=1	breathless=True NSAIDS=1			
COPD COPD COPD	$\begin{array}{l} \mbox{Prescribe cortico. and keep } \dots \\ \mbox{Prescribe roflumilast [th.lline < 1]} \\ \mbox{Prescribe th.lline } \dots \ [rofl. < 1] \end{array}$	cortico.=1 th.lline=1 rofl.=1	cortico.=1 th.lline=0 rofl.=0	COPD COPD	Prescribe th.lline after Prescribe roflumilast	rofl. th.lline
OA COPD	Prescribe NSAIDs Prescribe cortico. and keep	cortico.=1 NSAIDS=1	cortico.=0 NSAIDS=0	COPD OA	Prescribe and keep Prescribe NSAIDs	NSAIDS cortico.

data inconsistencies for OA (top),

- cannot proceed with exercise plan if patient presents with breathlessness,
- must not over-prescribe NSAIDS.

COPD (centre),

- must not over-prescribe corticosteroids,
- check/prescribe Roflumilast and Theophylline are mutually exclusive,
- but parallel structure allows both to be executed.

conflicts between the models (bottom).

• corticosteroids and NSAIDs are mutually exclusive across both pathways.

Report and Visualise Results

"Inconsistent with this {activity} when {data settings}". "Conflict with other {activity} when {data settings}".

Annotation using http://bpmn.io/ and/or Camunda Modeller.

Phil Weber (Birmingham)

ICSSP. Paris. 7th July 2017

18 / 21

Conflict Detection: Performance of State Space Method

Bespoke BPMN+V and CPN implementation. Averages over 30 randomly generated models.

(a) #states vs time (seconds) to run the conflict detection process,

- models generated with varying probability of sequence, alternate or parallelism.

(b) increasing #conflicts, in models with low probability of concurrent activity.

Conflict Detection: Performance of State Space Method

Bespoke vs SNAKES [1] vs Neco [2]. Averages over 30 randomly generated models.

[1] SNAKES: https://snakes.ibisc.univ-evry.fr/

"SNAKES is a Python library that provides all the necessary to define and execute many sorts of Petri nets",

[2] Neco: https://github.com/Lvyn/neco-net-compiler

"Neco... takes a Petri net and builds a library that has all the primitives to explore the state space ... optimised in many ways."

ICSSP, Paris, 7th, July 2017

Future Work

Modelling

- user interface, software tool and case study,
- data integration with sources of data and conflict.

Conflict Detection

- model composition adequacy of simplistic approach,
- conflict detection using logical specification and constraint solvers,
- scheduling constraints.

Conflict Resolution

- recommendation of minimal changes for conflict resolution,
- e.g. bypass activities,
- e.g. reschedule.

Thank you

Phil Weber

http://www.birmingham.ac.uk/mitcon/

http://www.cs.bham.ac.uk/~weberpy/ p.weber.1@cs.bham.ac.uk