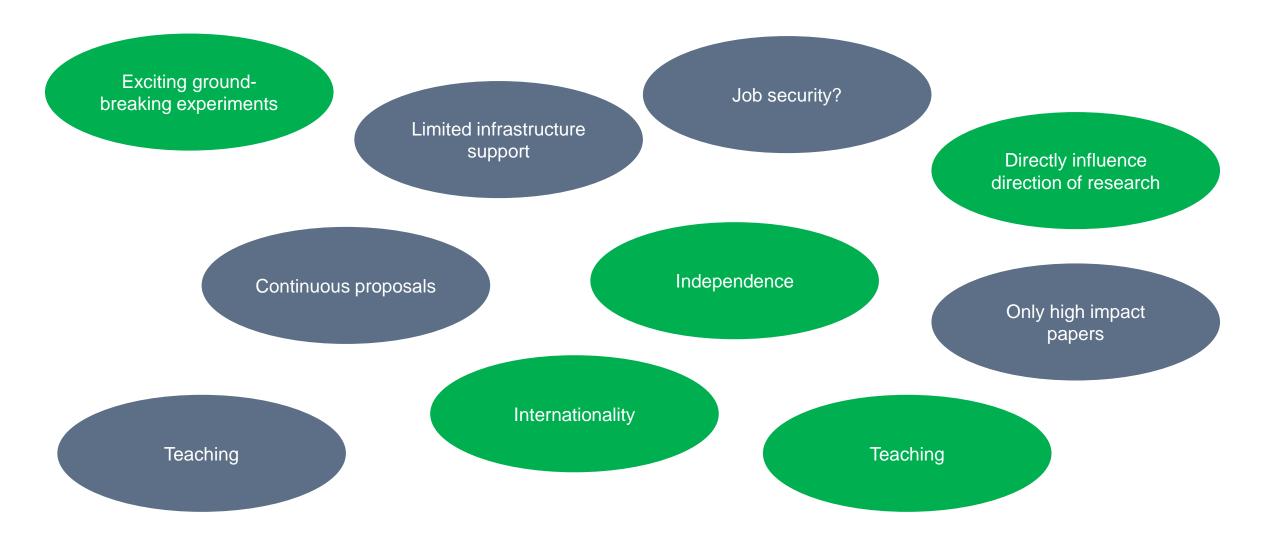


# From Academia to Industry

Ole Kock

# Being a physicist in industry




Should I stay in academia after my studies, PhD, Postdoc,...?

What is different / the same in industry?

# Academia – stay or leave



#### **Good or Bad? Positives and Negatives**



### What's different in industry



**Academia** Industry

External funded projects External & internal funded projects

Technical challenges Technical challenges

Publishing papers Selling products

Advancing the boundaries of science 

Profit for shareholders

#### Some thoughts from other people



"What are the most rewarding aspects of your job?"

Finding a **cost**effective solution for a complex problem

> I get to work on my own projects with little or no

Drive equipment design for next generation customer needs

> Be able to design and implement my ideas **from** scratch to completion and **contribute** significantly to the company's success

Challenging projects which require real scientific detective work to solve and bring about real world products.

supervision. I get to study new fields according to my own curiosity

Achieving new performance levels with newly developed processes

> Seeing others use the results of my work.

Problem solving, working with professionals from other disciplines (chemistry, EE, ME, CS)

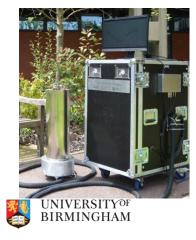
Providing a **reliable** and sophisticated software product with a long lifetime

> Level of responsibility, active participation equity participation.

Common Careers of Physicists in the Private Sector AIP: Roman Cziuko and Garrett Anderson

# Why industry




One of many reasons

#### See a project through to a functioning product

In my case: Building quantum sensors

#### Technologies developed at Te2v





#### **Gravity**

Using gravity to detect objects beneath the ground for the construction sector and defence.



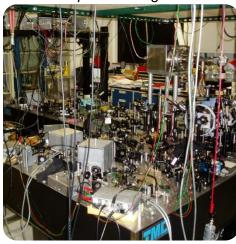
#### **Space**

Gravity sensing from space for future science missions.

Timing from space for navigation and synchronisation.



#### **Timing**


Synchronisation of large networks in telecoms, navigation and synthetic aperture radar for defence.

# Markets & Applications



Science

Sale of components- e.g. vacuum



Space

Space clocks and gravity sensors



Defence

Clocks and gravity sensors



Maritime

Navigation and clocks





Industrial (including agriculture)

Industrial sensing / imaging



Construction
Seeing beneath the ground



Oil and Gas

Detection and monitoring of oil



Medical

Magnetic brain scanning

# Skills & Experience Gained as a Postdoc TELEDYNE 62V Everywhereyoulook

- 1. What is the pain of the customer?
- 2. Good enough!
- 3. For what use?

- Talent Pool
- Leading Academics
- Industry thinking
- Club captain

- ...



# Thank you