OUTPATIENT DIAGNOSIS OF ENDOMETRIAL CANCER IN WOMEN WITH FIRST EPISODE OF POSTMENOPAUSAL BLEEDING

A West Midlands Health Technology Collaboration Report

Authors: Justin Clark*, Pelham Barton†, Janesh Gupta* and Khalid Khan*

- * Department of Obstetrics & Gynaecology Birmingham Women's Hospital Birmingham B15 2TG
- + Health Economics Facility University of Birmingham Birmingham B15 2TT

Report Number: 51

ISBN number: 0704425033

© Copyright, West Midlands Health Technology Assessment Collaboration Department of Public Health and Epidemiology The University of Birmingham 2002.

About West Midlands Health Technology Assessment Collaboration

The West Midlands Health Technology Assessment Collaboration (WMHTAC) produce rapid systematic reviews about the effectiveness of healthcare interventions and technologies, in response to requests from West Midlands Health Authorities or the HTA programme. Reviews usually take 3-6 months and aim to give a timely and accurate analysis of the quality, strength and direction of the available evidence, generating an economic analysis (where possible a cost utility analysis) of the intervention.

About InterTASC

WMHTAC is a member of InterTASC, which is a national collaboration with three other units who do rapid reviews: The Trent Working Group on Acute Purchasing; The Wessex Institute for Health Research and Development; The York Centre for Reviews and Dissemination. The aim of InterTASC is to share the work on reviewing the effectiveness and cost-effectiveness of health care interventions in order to avoid unnecessary duplication and improve the peer reviewing quality control of reports.

West Midlands Development and Evaluation Committee Recommendation:

The **Recommendation** of the Committee was therefore:

Evidence level II – Strongly Supported

Anticipated Expiry Date

This report was completed in August 2003

The searches were completed between December 1999 and December 2001

2005 unless new technology emerges beforehand

Contents

1	Air	n of review	4
	1.1	Rationale	4
2	Ba	ckground	4
-	2.1	Description of the underlying health problem	
	2.1		
	2.1		
	2.2	Investigation of women with postmenopausal bleeding for endometrial ca 6	ancer
	2.3	Existing evidence on accuracy of diagnostic tools	7
	2.4	Existing economic evidence	
	2.5	Current service provision	11
	2.6	Questions addressed by this report	13
3	Ма	thods	14
5	IVIC		14
	3.1	Systematic review methods	14
	3.1	-	
	3.1		
	3.1	3 Quality assessment	15
	3.1		
	3.1		
	3.2		
	3.2		
	3.2	2 Data sources and modeling assumptions for decision analysis	33
	3.2		
	3.2	4 Outcome	
	3.2	5 Sensitivity Analyses	39
	0		40
4	Qu	ality, direction and strength of the evidence	40
	4.1	Results of systematic review of endometrial biopsy.	40
	4.2	Question	
	4.3	Study Selection	
	4.3	5	
	4.3		
	4.3		
	4.4	Results of systematic review of endometrial thickness measurement by	
		ound	
	4.4	C	
	4.4		
	4.4	3 Study quality	53

	4.4.4	Data synthesis	
	4.5 Re	esults of systematic review of hysteroscopy	
	4.5.1	Question	63
	4.5.2	Study selection	63
	4.5.3	Study quality	65
	4.5.4	Data synthesis	70
	4.5.5	Sensitivity analysis	
		mmary of results of systematic reviews	
	4.7 Re	esults of economic analysis	79
	4.7.1	Question	
	4.7.2	Results	
	4.7.3	Base-case results	
	4.7.4	Other age-groups	
	4.7.5	Results of sensitivity analyses	
	4.8 Su	mmary of results of economic analysis	
5	Discus	sion and conclusions	90
	51 D	,	00
		agnostic reviews	
	5.1.1	Test accuracy in the diagnosis of endometrial cancer	
	5.1.2	Test feasibility	
	5.1.3	Validity of reviews.	
	5.1.4	Comparison with other reviews and guidelines	
	5.1.5	Applicability of reviews	
		conomic evaluation	
	5.2.1	Base case analysis	
	5.2.2	Sensitivity analysis.	
	5.2.3	Validity of economic evaluation	
	5.2.4	Comparison with other economic evaluations and guidelines	
	5.2.5	Applicability of economic evaluation	
		ecommendations for practice	
	5.4 Re	ecommendations for future research	
6	Ackno	wledgements and contributors	
	6.1 A	cknowledgments	
		riting committee	
		ontributors	
	6.4 Co	ontributions	
	6.5 Fu	nding	
	6.6 Co	onflicts of interest	
7	Apper	ndicies	
	-	ppendix 1 – Search strategies	
	7.1.1	Endometrial biopsy evidence	
	7.1.2	Ultrasound endometrial thickness evidence	104

7.1.3 Hysteroscopy evidence	
7.1.4 Economic evaluation evidence. May 2002	
7.2 Appendix 2 - Reference list of excluded studies from systematic r	eviews of
endometrial biopsy	
7.3 Appendix 3 - Reference list of excluded studies from systematic r	eviews of
ultrasound	111
7.4 Appendix 4 - Reference list of excluded studies from systematic re-	eviews of
hysteroscopy	119

8	References	13	0
---	------------	----	---

Summary

Aim

To summarise the current evidence regarding the diagnostic accuracy of outpatient endometrial evaluation using endometrial biopsy (EB), ultrasound scan (USS) and outpatient hysteroscopy (OPH) and to determine the optimum combination of these tests for the investigation of women with post-menopausal bleeding (PMB) for endometrial cancer, which represents the best value for money.

Background

Traditional investigation of women with PMB using inpatient dilatation of the cervix and curettage of the endometrium (D&C) is now considered out dated practice and has been replaced by outpatient endometrial evaluation using EB, USS or OPH. However, there is uncertainty regarding the individual value of these tests and the best sequence or combination in which to use them for the diagnosis of endometrial cancer.

Epidemiology

Postmenopausal bleeding (PMB) is a common clinical problem in both general practice and hospital settings. The prevalence of endometrial cancer in women presenting with PMB is between 5 and 10% and incidence rates have increased during the last decade.

Diagnosis and treatment

Referral of all women presenting with PMB in the primary care setting for further investigation is mandatory in order to exclude endometrial cancer. A positive diagnosis for cancer following outpatient endometrial testing leads to advanced treatment in most instances, usually consisting of hysterectomy with or without the need for adjuvant non-surgical treatments depending on the surgical stage of disease.

Methods

Systematic quantitative reviews of the published literature were conducted for each outpatient test in order to generate precise estimates of their accuracy in the diagnosis of endometrial cancer in women with PMB. Likelihood ratios (LRs) were used as the summary measure of accuracy so that clinically useful post-test probabilities could be determined. This data was then used in a decision analysis designed to reflect current service provision.

Quantity and quality of research

One hundred and twenty four primary observational studies were included in the diagnostic reviews. Study quality was generally poor with regard to patient recruitment and data collection, description of tests, verification of diagnosis and blinding of testing from reference standard interpretation.

Value of diagnostic tests

There was statistical heterogeneity in pooling of likelihood ratios, for USS and OPH, but an explanation for this could not be found in spectrum composition and study quality. For a postmenopausal woman with vaginal bleeding with a 5% pre-test probability of endometrial cancer, her probability of cancer is approximately 80% following a positive EB or OPH and between 0.4 and 0.8 % following a negative

USS, depending upon whether a 4 or 5mm threshold for abnormality is used. A positive test result following EB or OPH is more useful for predicting endometrial cancer than USS, whereas a negative test result following USS is more useful for excluding endometrial cancer than EB or OPH.

Costs and consequences

Life expectancies were comparable for all diagnostic strategies, but costs varied. For all ages the model indicated that the strategy based on initial diagnosis with USS was the least expensive for the investigation of women with PMB.

Optimal diagnostic strategy (cost-effectiveness)

Initial investigation with USS, using a 5mm double layer endometrial thickness cutoff, is the most cost-effective strategy for the diagnosis of endometrial cancer in women presenting for the first time with PMB. Sensitivity analyses showed that initial investigation with EB or USS using a 4mm cut-off were also potentially costeffective (incremental cost-effectiveness ratios under £30,000 per life year gained) at their most favourable estimates of diagnostic performance, in women under 65 years and at disease prevalence of 10% or more. The choice between initial testing with EB or USS will therefore depend upon patient age and preference, disease prevalence and the availability of high quality USS.

Conclusions

In most circumstances women presenting for the first time with PMB should undergo initial evaluation with pelvic ultrasound using a threshold of 4mm or 5mm to define abnormal results. Clinical guidelines should be developed and disseminated based on this report.

Abbreviations and Definitions

ABS	Abdominal Ultrasound Scan
BWH	Birmingham Women's Hospital
CEA	Cost-Effectiveness Analysis
CI	Confidence Interval
D&C	Dilatation of the cervix and Curettage of the endometrium
D	Dominated
DB	Directed Biopsy
dOR	diagnostic Odds Ratio
EB	Endometrial Biopsy
Eca	Endometrial cancer
EED	Economic Effectiveness Database
Ehyp	Endometrial hyperplasia
ET	Endometrial Thickness
FIGO	International Federation of Gynecology and Obstetrics
FNR	False Negative Rate
FPR	False Positive Rate
HRT	Hormone Replacement Therapy
Hyst	Hysterectomy
ICER	Incremental Cost-Effectiveness Ratio
LR	Likelihood Ratio
LYG	Life Year Gained
MeSH	Medical Subject Heading
NHS	National Health Service
NS	Not Specified
OB	Outpatient Biopsy
OPH	Outpatient Hysteroscopy
TAH	Total Abdominal Hysterectomy
TNR	True Negative Rate
TPR	True Positive Rate
TVS	Transvaginal Ultrasound Scan
tw	textword
USS	Ultrasound Scan
WMCIU	West-Midlands Cancer Intelligence Unit

1 Aim of review

To summarise the current evidence regarding the diagnostic accuracy of outpatient endometrial evaluation using endometrial biopsy (EB), ultrasound scan (USS) and outpatient hysteroscopy (OPH) and to determine the optimum combination of these tests for the investigation of women with post-menopausal bleeding (PMB) for endometrial cancer, which represents the best value for money.

1.1 Rationale

Traditional investigation of women with postmenopausal bleeding (PMB) using inpatient dilatation of the cervix and curettage of the endometrium (D&C) is now considered out-dated practice and has been replaced by outpatient endometrial evaluation using miniature EB devices, (EB) transvaginal USS (USS) and hysteroscopy (OPH).¹ However, despite the widely accepted advantages of outpatient investigation, there is uncertainty regarding the individual value of these tests and the best sequence or combination in which to use them. Consequently practice varies throughout the West Midlands and indeed around the rest of Europe and North America,²⁻⁷ largely dependent upon preference (of individual clinicians) and pragmatism (resources available to them).

The main aim of investigating women with PMB is to exclude endometrial cancer. The incidence of endometrial cancer has increased during the last decade.^{5,8} Unlike other malignancies affecting women, endometrial cancer often presents at an early stage when the possibility of curative treatment by hysterectomy remains.^{5,8} Prognosis is increasingly bleak the more advanced and more generalised the disease. As there have been no recent advances in the treatment of endometrial cancer that can be expected to increase survival, the importance of accurate and timely diagnosis of endometrial cancer is paramount in order to reduce mortality further.

This report assesses the diagnostic accuracy of currently available outpatient tests for the clinical investigation of women with post-menopausal bleeding for endometrial cancer. In addition, the report examines the optimal combination of EB, USS and OPH, which represents the best value for money.

2 Background

2.1 Description of the underlying health problem

2.1.1 Aetiology and epidemiology of postmenopausal bleeding

Postmenopausal bleeding (PMB) is a common clinical problem in both general practice and hospital settings.^{1,9,10} Women are most likely to present with this symptom in the sixth decade of life⁸ where consultation rates in primary care for PMB are 14.3/1000 population.^{8,9} Similarly, in the hospital setting, abnormal patterns of uterine bleeding account for more than 70% of all gynaecological consultations in the peri- and post-menopausal years.¹ At the Birmingham Women's Hospital (BWH),

which serves a female population of 220,000 (of which we can assume 80,000 are postmenopausal), approximately 1000 women are seen each year with PMB (incidence 12.5/1000 population).

In most instances (90-95%), PMB results from benign causes such as intrauterine structural pathologies (polyps, fibroids), infection / inflammatory processes or prescription of exogenous hormones. Often, bleeding arises from apparently normal atrophic endometrium and is thought to be due to superficial petechial haemorrhages and mucosal ulceration.^{11,12} However, the main aim of investigations for PMB is to exclude endometrial cancer, ¹³ which presents with this symptom in over 95% of cases.¹⁴ The probability of endometrial cancer in women presenting with PMB is approximately 5-10%^{5,15,16} and therefore referral of such women for further investigation is mandatory. Published recommendations state that women should be seen within 2-6 weeks of referral.⁵ On referral, some additional means of endometrial assessment is performed, as it is not possible to exclude cancer on clinical assessment alone. Traditionally, abnormal uterine bleeding has been investigated with D&C (D&C) under general anaesthetic but now there is a trend towards minimally invasive, outpatient investigations utilising miniature EB, USS and hysteroscopy (see current service provision below).^{5,17-21}

2.1.2 The epidemiology and management of endometrial cancer

Endometrial cancer represents the most common female pelvic genital malignancy in the western world²² and is increasingly common among more affluent populations and increases with the adoption of more westernised lifestyles.⁸ The aetiology of endometrial cancer is unknown, but several factors are known to increase or decrease the likelihood of developing endometrial cancer. The most important of these appear to be age, obesity and unopposed endogenous or exogenous oestrogen production.⁸

In England and Wales, there are around 4000 new cases of endometrial cancer per annum (440 in the West Midlands), representing almost 4% of all cancer cases in women, in whom it is ranked 5^{th, 5,8} Incidence rates are approximately 50 per 100,000 population in women over 60 years. The overall age standardised rate has remained close to 12/100,000 since the 1970s, but in women aged 55-74 rates have increased slightly in the 1990s.⁵ The lifetime risk of developing endometrial cancer has been estimated to be 1.4%. An average general practitioner with a list size of 2000 would expect to see 1 new case of endometrial cancer every 6 years. In contrast to the trends in incidence, there have been long-term declines in mortality from cancer of the uterus. The age-standardised rate has halved from 6/100,000 in 1950 to 3/100,000 in 1999. In England and Wales survival was only slightly below the European average, but was well below that in the Netherlands, Germany, France and more than 10% below rates in the USA.⁸ Overall 5-year survival is around 77%, and improves with early stage localised disease. Around 70% of women diagnosed with endometrial cancer have early stage disease and 5-year survival is around 87%. Survival is worse for later stage disease at around 60% and is as low as 19% with the most advanced stage of disease.²³ If detected at an early stage, endometrial cancer is curable in most cases, usually by surgery (hysterectomy) and/or radiotherapy. As there have been no recent advances in the treatment of endometrial cancer that can be expected to increase survival, the importance of accurate and timely diagnosis of endometrial cancer is paramount in order to reduce mortality further.

2.2 Investigation of women with postmenopausal bleeding for endometrial cancer

The traditional investigation for PMB was inpatient dilatation of the cervix and curettage of the endometrium (D&C).²⁴ This is now considered out dated practice and has been largely replaced by the development of minimally invasive diagnostic tools for use in the outpatient setting. These new diagnostic modalities include outpatient endometrial biopsy (EB), transvaginal ultrasonography (USS) and outpatient hysteroscopy (OPH). (Table 1).

Table 1

Endometrial Ultrasound Features Hysteroscopy Comment **Biopsy** 111 $\sqrt{\sqrt{3}}$ All safe,¹⁷⁻²⁰ endometrial $\checkmark\checkmark$ Safety biopsy has more potential for trauma as it is a blind procedure $\sqrt{\sqrt{3}}$ **** All acceptable 26-28 Acceptability ultrasound least painful and invasive, endometrial biopsy most painful²⁹ 111 11 1 Failure rates higher in Feasibility procedures requiring uterine instrumentation. Endometrial biopsy higher than hysteroscopy. 17-18,30-31 Other Minimal Extracavity / Directed Advances in the technology and application of ultrasound³⁴⁻³⁶ and other endometrial expertise pelvic information³² required¹⁷ biopsies³³ radiographic imaging techniques³⁷ gives this modality the greatest future potential in diagnosis

Diagnostic modalities available to detect endometrial cancer in women with post menopausal bleeding.

 $\checkmark \checkmark \checkmark$ invariably $\checkmark \checkmark$ typically \checkmark generally

Outpatient EB is a blind procedure where the endometrium is sampled using smalldiameter mechanical or suction devices, which can be easily introduced into the uterine cavity without the need for anaesthetic. There is concern however, surrounding the non-representative nature of these blind procedures, which may be related to the small proportion of the endometrial surface sampled³⁸ and the nonsampling of focal intrauterine lesions.³⁹ Hysteroscopy is an endoscopic technique allowing visualisation of the endometrial cavity. Recent advances in instrumentation have allowed hysteroscopy to be performed in an outpatient setting, further increasing its use in gynecological practice. Various macroscopic features have been suggested as indicative of endometrial disease. However, there is no consensus and visual interpretation is subjective and operator dependent.⁴⁰ Concerns surrounding the role and value of hysteroscopic diagnosis have therefore arisen.^{13,31,41,42} The development of pelvic ultrasound scanning (transabdominal or transvaginal) has allowed high resolution imaging inside the uterus enabling measurement of the endometrial thickness.²⁰ It has been shown that the endometrial thickness of normal atrophic uterus measures on average 2.3 mm.⁴³⁻⁴⁶. However, advanced endometrial carcinoma has also been known to occur in cases without noticeable endometrial thickness on ultrasound.⁴⁷ All the forgoing outpatient modalities are generally considered to be safe, ^{18,48} simple to use ^{17,18} and acceptable to patients.^{27,28,49} In addition, avoiding the need for an inpatient stay potentially reduces health resources utilisation.

However, despite the widely accepted advantages of outpatient investigation, there is considerable debate regarding the best way to evaluate women with PMB for endometrial cancer and consequently practice varies throughout the United Kingdom^{4,50,51} Practice is largely dependent upon individual clinician preference and resources available to them.

2.3 Existing evidence on accuracy of diagnostic tools

The bibliographic databases MEDLINE (1966-2001) and EMBASE (1982-2001) were searched for existing published evidence addressing the accuracy of investigative tools used in PMB. This showed that in the last decade, there have been many publications indicating that outpatient EB, ultrasound measurement of endometrial thickness and ambulatory hysteroscopy may be useful in predicting endometrial cancer and hyperplasia. However, individual studies addressing accuracy of these minimally invasive diagnostic tools, are small leading to imprecise and heterogeneous estimates of accuracy.⁵² In addition, many studies have used measures of diagnostic accuracy that are not clinically intuitive. The generation of conflicting and confusing data has thus hampered clinical interpretation. The absence of a uniform strategy for the investigation of women with PMB has resulted because of a deficiency in the rigorous assessment of these newer diagnostic tools.

No systematic reviews of EB, USS or OPH were available at the outset of the research forming this report. However, during the course of preparing this report, two systematic reviews of USS and one of EB were published. The results and conclusions of all these reviews are of limited validity due to potential biases in their methodological approach as discussed later in the report (see section 5.1.3). We were unable to identify any systematic reviews addressing the diagnostic accuracy of

hysteroscopy. Therefore the need to conduct comprehensive high quality reviews in this field was clear.

2.4 Existing economic evidence

The bibliographic databases MEDLINE (1966-2001) and EMBASE (1988-2001) were searched for existing published economic evidence addressing the costeffectiveness of investigative tools used in PMB for detecting endometrial cancer. The search strategy used is shown in Appendix 1. In addition, the economic effectiveness database (EED) held at the Centre for Reviews and Dissemination at York University and the Cochrane Library were also searched.

Following the electronic searches of MEDLINE and EMBASE, there were 26 potentially eligible studies identified of which four were selected after obtaining the full manuscripts. In addition, two manuscripts were selected from the EED out of 22 potentially eligible studies. No relevant studies were found from the Cochrane database. There were two duplicate selections, leaving a total of four relevant economic evaluations.

The relevance of three of these studies^{57,58,59} is questionable given that they explored the use of a single outpatient test in comparison to outdated inpatient D&C. Two studies found outpatient investigation using EB or OPH to be more cost-effective than inpatient D&C in terms of complications avoided and additional cases of cancer detected.^{57,58} The study of highest quality found EB to be most cost-effective as measured by survival, than a policy of observation until bleeding recurred, D&C or immediate hysterectomy.⁵⁹ The authors suggested that initial close observation (i.e. no diagnostic testing) may be considered following first presentation with PMB for women at 'low risk' of endometrial cancer.⁵⁹ This approach is probably no longer ethical following the introduction of USS with its low associated morbidity. Moreover, individual risk assessment in women with PMB has not been validated for use in the clinical arena.¹⁵ The fourth, more relevant study addressed outpatient investigation, and concluded that initial evaluation with USS was less costly than initial evaluation with EB in relation to test feasibility.⁶⁰ No study evaluated the costeffectiveness of all contemporary outpatient modalities (i.e. EB, USS and OPH) used in sequence or combination for the investigation of postmenopausal bleeding for endometrial cancer.

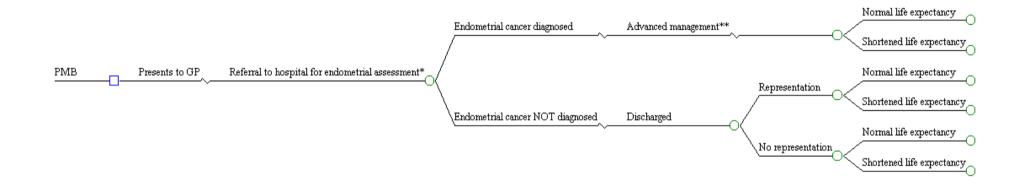
No study was identified that evaluated the cost-effectiveness of different sequences of investigation of PMB for endometrial cancer using all contemporary available outpatient modalities (i.e. EB, USS and hysteroscopy). A summary of these studies is given in Table 2.

Table 2Economic evaluations in the diagnosis of endometrial cancer in PMB.

Author (Year)	Study and Comparison	Economic analysis	Limitations
Ong et al ⁵⁷ (1997)	Retrospective non-randomised study with concurrent controls. <i>Population</i> : 498 women with suspected endometrial cancer Intervention: <i>Intervention</i> : EB vs D&C. <i>Outcome</i> : rate of detection of endometrial cancer, benign abnormalities and complications	Cost-effectiveness analysis <i>Measure of benefit:</i> complications avoided and additional cases of endometrial cancer detected. <i>Finding:</i> EB was found to be the dominant strategy (cheaper and associated with less complications) therefore a synthesis of benefits and costs not provided	Selection bias (retrospective design). Failure rates of EB not accounted for (not intention to treat analysis). Short term (< 2 year), incomplete follow up – maybe undetected false negatives. No sensitivity analyses, discounted rates or price data reported.
Hidlebaugh ⁵⁸ (1996)	Retrospective cohort study with concurrent controls. <i>Population</i> : 568 women with abnormal uterine bleeding <i>Intervention</i> : OPH+ EB vs IPH + D&C <i>Outcome</i> : adequacy of tissue sampling, clinical outcomes and success rates and complications	Cost-effectiveness analysis Measure of benefit: additional successful cases and cases with adequate tissue sampling, complications avoided. Finding: OPH + EB found to be dominant strategy therefore a synthesis of benefits and costs not provided	Selection bias (retrospective design). 'Diagnostic accuracy' of each strategy inadequately defined in terms of adequacy of tissue sampled for histology. Unclear length of follow up – maybe undetected false negatives. Not intention to treat analysis casting doubt over estimates of benefit. No sensitivity analyses.
Feldman et al ⁵⁹ (1993)	Computer-based recursive decision tree model based on retrospective review of pathology reports <i>Population:</i> 287 women with PMB <i>Intervention:</i> Management pathways based on EB, D&C, TAH or observation at initial presentation <i>Outcome:</i> correct diagnosis of endometrial cancer or complex hyperplasia (with or without atypia).	Cost-effectiveness analysis. <i>Measure of benefit:</i> life expectancy of the various strategies and their cost-effectiveness as a function of patient age and combined risk of cancer or complex hyperplasia. Sensitivity analyses performed. <i>Finding:</i> initial evaluation with EB was found to be the most cost-effective strategy. Cost, but not effectiveness (life expectancy) did vary markedly as a function of the strategy chosen.	Diagnostic strategies did not include USS.

Table 2

Economic evaluations in the diagnosis of endometrial cancer in PMB Cont:


Author (Year)	Study and Comparison	Economic analysis	Limitations
Weber et al ⁶⁰ (1998)	Comparison of two diagnostic algorithms	Cost-analysis.	Relative performance characteristics of EB
	<i>Population:</i> Computer simulation	<i>Measure of benefit:</i> Mean cost/completed diagnostic	and USS vary widely in the literature,
	<i>Intervention:</i> Algorithms based on EB vs USS	algorithm. No clinical benefits reported. Sensitivity	often based on poor quality studies, which
	at initial presentation	analyses performed around these performance	influence estimates of benefit. No
	<i>Outcome:</i> probability of non-diagnostic test	characteristics	estimates of diagnostic accuracy,
	and abnormal result (endometrial cancer,	<i>Finding:</i> initial evaluation with USS was less costly	complications or effectiveness data
	hyperplasia and benign abnormalities).	than EB in the evaluation of women with PMB.	incorporated in the algorithms.

2.5 Current service provision

Referral of all women presenting with PMB in the primary care setting for further investigation is mandatory⁵ in order to exclude endometrial cancer. All women referred should be seen within 2 weeks.⁵ Additional means of endometrial assessment is performed on referral, utilising the outpatient tests, endometrial biopsy (EB), ultrasound scan (USS) or outpatient hysteroscopy (OPH). Negative findings result in discharge back to primary care, whereas a positive diagnosis leads to advanced treatment in most instances. Treatment for endometrial cancer varies although in most instances hysterectomy and surgical staging is performed followed by adjuvant non-surgical treatments where necessary.^{61,105} The typical event pathway is shown in Figure 1.

Figure 1

Event pathway (current service provision) for the investigation and management of women with postmenopausal bleeding.

PMB = postmenopausal bleeding, GP = General Practitioner

* Some combination of endometrial biopsy, pelvic ultrasound and hysteroscopy

** Surgery (hysterectomy) with or without adjuvant radiotherapy / chemotherapy

2.6 Questions addressed by this report

In women presenting with PMB:

- What is the accuracy of outpatient EB in the diagnosis of endometrial cancer?
- What is the accuracy of outpatient endometrial USS in the diagnosis of endometrial cancer?
- What is the accuracy of OPH in the diagnosis of endometrial cancer?
- Which of the above three tests and their combination is most cost effective in outpatient diagnosis of endometrial cancer?

3 Methods

3.1 Systematic review methods

To determine the accuracy of the outpatient diagnostic tests used in PMB to predict endometrial cancer we conducted quantitative systematic reviews of EB, USS and hysteroscopy. The methodology used was common to all three reviews, it was based on a prospective protocol considering widely recommended methods,⁶²⁻⁶⁴ and followed the stages given below.

3.1.1 Identification of studies

General bibliographic databases, MEDLINE and EMBASE, were searched. Language restrictions were not applied and the searches were limited to human studies. The electronic search strategies targeted diagnostic procedures exclusively, studies addressing the relevant clinical problem (abnormal uterine bleeding which encompasses both pre and PMB) were then identified on completion of the initial search phase by examining all the retrieved citations. Pilot searches suggested that the following search strategies gave reasonable precision without compromising sensitivity:

Endometrial biopsy (1982-1999)
All medical subject headings (MeSH) with diagnosis were combined with the textwords EB and diagnosis.
Ultrasound (1966-2000)
The textwords ultrasound and endometrial thickness and sonography were combined.
Hysteroscopy (1982 to 2001)
The medical subject heading (MeSH) and textword fields title or abstract for the term hysteroscopy were combined with the MeSH and fields title, abstract or floating subheading for the term diagnosis.

The authors and journal titles were removed from the retrieved citations thereby blinding the reviewers. In addition, the Cochrane Library and relevant specialist registers of the Cochrane Collaboration were searched. Reference lists of all known reviews and primary studies were checked and direct contact with manufacturers of outpatient EB devices and hysteroscopes was also made.

3.1.2 Selection criteria

The reviews focused on prospective observational studies or comparative crosssectional studies in which the results of the diagnostic test of interest were compared with the results of a reference standard. The population of interest was women with abnormal pre or postmenopausal uterine bleeding. The diagnostic interventions were EB, endometrial thickness measured using ultrasound imaging and hysteroscopy and the diagnostic reference standard was endometrial histology. The review of EB was conducted first, where the diagnostic reference standard was endometrial histology obtained by *inpatient* sampling (endometrial curettage, directed biopsy, endometrial resection and hysterectomy specimens). However, a significant proportion of primary studies assessing diagnostic accuracy of ultrasound and hysteroscopy used outpatient EB devices to obtain histological samples. The results of the review of outpatient EB showed high diagnostic accuracy (see later). We were therefore confident of including this as a histological reference standard because bias due to misdiagnosis by EB was considered unlikely to be a significant problem (see section 5.1.3). The primary outcome measure was the accuracy with which endometrial cancer was diagnosed. Secondary outcomes were failed procedures (EB and hysteroscopy) and major complications (hysteroscopy). The studies were identified by two reviewers independently.

The studies were identified in a two-stage process by two reviewers independently. The titles and abstracts identified as being potentially relevant from the computer database searches or inspection of bibliographies were scanned and provisionally included, unless they could definitely be excluded as not addressing the accuracy of outpatient EB. The full texts of all provisionally included articles from the first stage were retrieved. Final inclusion/exclusion decisions were made with reference to a checklist, the items of which were based on the selection criteria above. This checklist was piloted and the repeatability of its use tested and confirmed. Disagreements about inclusion/exclusion were initially resolved by consensus and where this was not possible it was resolved using arbitration by a third reviewer. The agreement statistics between reviewers were computed using percentage agreement and weighted kappa statistics.⁶⁵ The kappa statistic provides measurement of agreement.⁶⁶

3.1.3 Quality assessment

All papers meeting the eligibility criteria were assessed for their methodological quality. We defined this quality as the confidence that the study design, conduct and analysis minimized bias in the estimation of diagnostic accuracy. Based on existing checklists,^{62,67-69} quality assessment involved scrutinizing study designs and the relevant features of population, intervention and outcome. These included method of data collection and patient selection, details relating to type of abnormal bleeding and menopausal status, description of the diagnostic test and histological reference standard, and presence of verification bias and blinding (Table 3).⁶³

Table 3Quality assessment and definitions

Feature	Quality assessment
Study design	Studies where the diagnostic test and reference standard were performed on the same occasion were defined as cross-sectional or simultaneous studies and considered ideal. Observational series where the intervention and reference standard were not carried out simultaneously were defined as sequential studies whereas case-control studies encompassed those studies where a subset of the population was already known to have endometrial cancer or hyperplasia. These latter designs were considered second best.
Data collection	Prospective collection of data from the study population was considered ideal whereas retrospective collection was considered second best.
Patient selection	Consecutive recruitment of eligible women was considered ideal and convenience sampling, i.e. arbitrary recruitment or non-consecutive recruitment was deemed second best. In the absence of any explicit information in the manuscript on the method of data collection or recruitment, the article was categorised as unclearly reported.
Population details	Population details were considered adequate if the menopausal status and type of abnormal uterine bleeding of women enrolled was reported and inadequate if not reported.
Population spectrum*	Population spectrum was considered wide if patients with and without Hormone Replacement Therapy (HRT) were included. Those excluding women on HRT were considered narrow and inadequate if not reported.
Definition of menopause*	Length of amenorrhoea indicating that the woman was menopausal was considered ideal if it was $>/=12$ months, and inadequate if it was < 12 months or unreported.
Diagnostic test: Endometrial biopsy	The description of the use of the outpatient biopsy device was considered ideal if the methodology was reported in sufficient detail to allow replication by other researchers. In the absence of the above information, the diagnostic intervention was considered as unclearly reported.
Ultrasound	The description of the ultrasound test was considered ideal if the method of obtaining the ultrasound image (i.e. transvaginal or transabdominal) was reported along with the frequency of the transducer used. Whether one or both layers of the endometrium were measured for thickness was also assessed. Information on the cut-off level for an abnormal test result was also sought. If the cut-off level for an abnormal result was determined <i>a priori</i> it was considered ideal. If any of the above information was not present then the diagnostic test was classified as unclearly reported.

Table 3 continued

Hysteroscopy	The description of the hysteroscopic technique and the definition of the hysteroscopic features constituting a diagnosis of endometrial disease were considered adequate if the methodology was reported in sufficient detail or referenced to allow replication by other researchers. For hysteroscopic technique to be deemed adequate the method used to inspect the uterine cavity had to be explicit in addition to describing the setting, type of hysteroscope, distension medium, and imaging system. In the absence of the above information, description of the diagnostic intervention was considered as inadequate.
Reference standard	For confirmation of diagnosis by a reference standard, histology obtained from inpatient endometrial sampling (hysterectomy, directed biopsy or D&C were considered ideal and histology obtained from blind outpatient sampling was considered second best (USS and OPH). For the reviews of EB confirmation of diagnosis by a reference standard, hysterectomy, directed biopsy and dilatation and curettage under anaesthesia were considered adequate, in that order of importance.
Verification bias†	Verification bias was considered to be present if the application of the reference test was dependent upon the result of the hysteroscopy (differential verification) or if <90% patients originally tested had diagnosis verified (incomplete or partial verification)
Timing of verification‡	The verification of diagnosis following the index test was either performed at the same time (simultaneous) or after a short delay (sequential). Simultaneous verification was considered ideal whereas sequential verification was considered second best.
Blinding	Blinding was considered present if it was clearly reported that the pathologists providing histological diagnoses were kept unaware of the test (endometrial biopsy, ultrasound or hysteroscopy) diagnosis. If the diagnosis following the test was divulged to the pathologists or in the absence of any such reporting, blinding was categorized as absent.
Follow up	Greater than 90% follow up of the original study population was considered ideal and less than 90% follow up as second best.

Analysis of these items was used to develop a hierarchy of evidence in diagnostic test studies, shown in Table 4.

Table 4

Hierarchy of evidence for primary research on diagnostic accuracy

Level	Description
1.	An independent, blind comparison with reference standard among an appropriate population of consecutive patients.
2.	An independent, blind comparison with reference standard among an appropriate population of non-consecutive patients or confined to a narrow population of study patients.
3.	An independent, non-blind comparison with reference standard among an appropriate population of consecutive patients.
4.	An independent, non-blind comparison with reference standard among an appropriate population of non-consecutive patients or confined to a narrow population of study patients.
5.	An independent, blind comparison among an appropriate population of patients, but reference standard not applied to all study patients.
6.	Reference standard not applied independently or expert opinion with no explicit critical appraisal, based on physiology, bench research or first principles.

We used a piloted checklist to identify and record items of study quality. The assessment was performed independently, in duplicate for the reviews of EB and ultrasound. In the hysteroscopy review, the assessment of English language papers was performed by one reviewer and foreign language papers by two reviewers independently following translation where necessary. Any disagreements were resolved by consensus.

3.1.4 Data abstraction

3.1.4.1 Primary outcome

Endometrial cancer was the primary outcome, and to analyse its prediction, data were abstracted as two by two tables of the diagnostic test under scrutiny, result (positive or negative) and the results of the reference standard histology (benign or malignant). This allowed us to calculate the true positive rate (sensitivity), false positive rate (1-specificity) and likelihood ratios (LRs) for each primary study. In the review of ultrasound measurement of endometrial thickness, different cut-off levels for an abnormal test result were adopted by the different selected studies and 2x2 tables were produced according to these cut-off levels.

3.1.4.2 Secondary outcomes

Unsuccessful sampling using outpatient EB was categorised as either failed procedures or as histologically inadequate specimens. Hysteroscopic procedures failing to make a final diagnosis because of technical aspects (e.g. cervical stenosis, anatomical factors, structural abnormalities), inadequate visualization (e.g. obscured by bleeding, debris) or patient factors (e.g. pain, intolerance) were categorized failed procedures. Failure rates were recorded but excluded from two by two tables whereas inadequate specimens (precluding a definitive diagnosis following the reference test in the case of hysteroscopy) were used in sensitivity analyses including them along with negative results. This is because the inability to obtain a specimen is generally considered a negative result.^{70,71} Information on menopausal status, the number of women recruited, and those whose outcome data were known was also sought from the manuscripts. In addition, the setting (outpatient or inpatient) and technical details pertaining to the hysteroscopic examination were sought.

3.1.5 Quantitative data synthesis

We calculated true positive rate (sensitivity), false positive rate (1-specificity) and likelihood ratios (LRs) for each study along with their 95% confidence intervals (CIs). Where 2x2 tables contained zero cells, 0.5 was added to each cell to enable our calculations.⁷² Meta-analysis to produce summary pooled estimates of sensitivity and specificity were performed if these measures were found to behave independently^{73,74} as indicated by lack of statistical correlation between them. However, estimates of sensitivity and specificity have limited value in clinical interpretation.⁷⁵⁻⁷⁸ Therefore we generated summary likelihood ratios (LRs) as the principal measures of diagnostic accuracy based on the recommendations of the various Evidence-based Medicine Groups.^{75,77,79-82} The LRs indicate by how much a given hysteroscopy finding raises or lowers the probability of having endometrial cancer or disease.⁸³ This is important in clinical decision-making because the estimated probability of disease (or not having disease) is a prime factor determining whether to withhold treatment, undertake further diagnostic testing or treat without further testing.⁸⁴ Thus the generation of LRs and post-test probabilities represents a more relevant method of establishing the utility of a test and reduces the risk of erroneous inferences being drawn.^{76,85}.

Pooling of LRs was performed by weighting the log LR from each study in inverse proportion to its variance. We examined the clinical implications of the LRs generated for diagnostic accuracy to determine post-test probabilities using Bayes' theorem using the formula: post-test probability = likelihood ratio x pre-test probability/[1-pre-test probability x (1-likelihood ratio)]. An estimate of pre-test probability was obtained by calculating the prevalence of pathology in the population studied. The post-test probability of endometrial pathology, in the presence of a particular test result, refers to the probability of this outcome being present conditional on this test result. In this way, a more clinically useful measure of the diagnostic performance of pathology is known. In order to deal with the uncertainty in the estimation, we generated 95% confidence intervals (CI) around the point estimates. Approximate variance for the post-test odds were obtained by adding the variances of the combined LRs and pre-test odds, enabling the calculation of its 95% CI. The 95% CIs for the post-test probabilities were then generated by

converting the limits of the post-test odds to their respective probabilities. We generated inferences according to strength of evidence considering estimate of accuracy, homogeneity of results and study quality.⁸⁶

In the review of ultrasound, meta-analyses were performed separately for subgroups of studies with the same cut-off level for abnormality and the same measurement techniques (single or both endometrial layers). The effect of HRT use on diagnostic accuracy was also evaluated by subgroup analysis. For all reviews, heterogeneity of results between different primary studies was formally assessed using the χ^2 test. We explored for sources of heterogeneity by univariate subgroup analyses, stratifying studies according to variation in specific study characteristics (e.g. population, intervention, outcome and study quality).^{79,87} Multivariable modeling was then performed as described for hysteroscopy below.

For the hysteroscopy review, heterogeneity of results between different studies was formally assessed graphically using sensitivity and specificity plots in addition to the χ^2 test. In order to explore for clinical sources of heterogeneity, we defined the potential explanatory variables a priori.⁸⁸ In view of the potential influence of spectrum variability,^{89 90} we considered menopausal status and setting to be important. In addition, we planned to examine the impact of study quality on estimation of accuracy according to individual quality items (patient selection, reference standard, completeness of verification and blinding) and also according to an overall quality level (1-6) incorporating these items.¹⁷ We statistically examined if estimation of accuracy was different in the subgroups. This was done by examining if the impact of an explanatory variable on the log of diagnostic odds ratio (dOR), a measure which accommodates LRs for both positive and negative test results, in meta-regression analysis.^{87,91} We initially performed univariate analyses followed by multivariable modelling, which controlled for confounding between variables.⁸⁷ The models produced by multivariable analysis included menopausal status (postmenopausal vs. pre-menopausal and mixed population) and clinical setting (office vs. inpatient) as explanatory variables. The models were adjusted for the effect of study quality. For this we used quality as a binary variable (levels 1-3 vs. 4-5), which avoided problems of co-linearity between quality items. By testing only three variables in metaregression analysis, we hoped to avoid spurious results due to "overfitting".⁹¹ This approach is in keeping with published recommendations, which advocate a cautious examination of potential reasons for heterogeneity by specification of a small number of subgroup analyses in advance.^{79,88,92}

When heterogeneity was encountered within subgroup meta-analysis for hysteroscopy, we initially pooled results from individual studies using both a fixed effects and random effects model. In the presence of heterogeneity across studies, a random effects model may be considered preferable^{79,88,92,93} in meta-analysis, as this approach produces wider CIs. However, this benefit has to be balanced against the potential disadvantage that by weighting smaller studies preferentially, it may produce biased point estimates of accuracy.⁷⁹ We examined for such a bias in our meta-analyses and reported results with a fixed effects model where a random effects model was associated with higher estimates of accuracy. This allowed more conservative interpretation of the results. Furthermore, if heterogeneity remained within the prespecified clinical subgroups, we based our inferences on high quality studies (levels 1-3).

For the hysteroscopy review, additional *post hoc* analyses to explore for causes of heterogeneity were conducted alongside those planned in advance, when certain variables were considered to be informative or recommended by the peer reviewers. Following univariable analyses, multivariable meta-regression analyses were performed to evaluate the effect of the explanatory variables on log dOR observed among individual studies.⁸⁷ The models produced by multivariable analysis included the independent variables description of test (adequate vs. inadequate), complications (present vs. absent), timing of verification (simultaneous vs. sequential), method of data collection (prospective vs. other) and completeness of follow up (greater than 90% vs. less than 90%), in addition to the variables defined *a priori*. The findings of these *post hoc* analyses were, however, considered in the context of hypothesis generation.

A sensitivity analysis was also carried out in the review of hysteroscopy, considering inadequate histological specimens, precluding a definitive diagnosis following the reference test, as negative results. This is because insufficient tissue samples are generally taken to mean absence of pathology.^{70,71} We also excluded intrauterine polyps and fibroids as part of a sensitivity analysis, in order to examine whether the presence of these focal lesions affected estimates of diagnostic accuracy.

For all reviews, we explored for publication bias by producing funnel plots of diagnostic LRs against corresponding standard errors. The adjusted rank correlation method was used to test the correlation between estimated LRs and their standard errors.^{94,94}

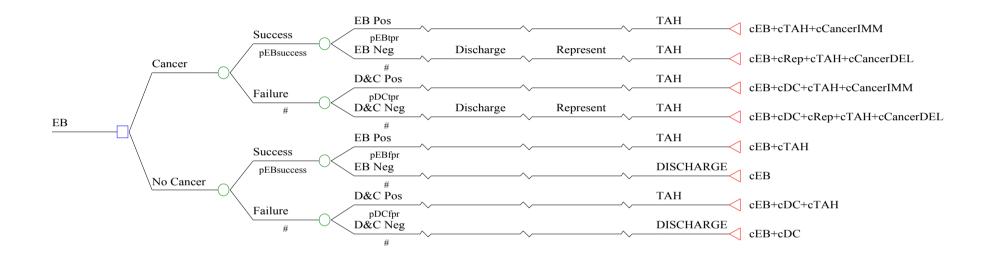
3.2 Economic analysis methods

The cost-effectiveness analysis was based on modelling the costs and outcomes of patients with PMB investigated using various diagnostic strategies. Survival in terms of life years gained (LYG) was the outcome and cost per LYG was the measure of cost-effectiveness.

3.2.1 The model

A decision model was constructed to reflect current service provision (Figure 2). As there is no consensus regarding how best to investigate women with PMB for endometrial cancer, initial investigation utilising all tests either alone or in combination were included in the model. For strategies involving USS, both 4mm and 5mm cut-offs were used to define abnormal endometrial thickening. This was done to address the ongoing clinical debate regarding what constitutes the best USS cut-off for abnormal endometrial thickening (4mm or 5mm) and also to reflect varying clinical practice.²⁰ A further option, of withholding immediate investigation at initial presentation and only instituting diagnostic work-up if PMB recurred, was also considered. Thus, 12 outpatient strategies for the clinical investigation of women with PMB for endometrial cancer were evaluated based on initial evaluation with:

1. EB

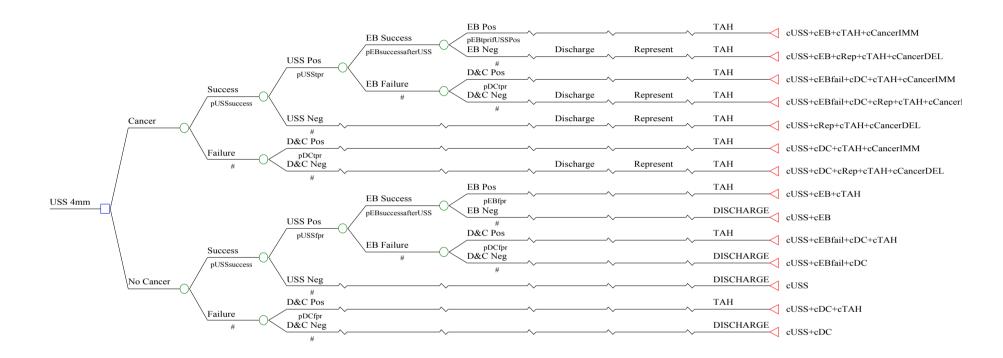

2. USS (4mm)

3. USS (5mm)

- 4. OPH
- 5. USS (4mm) and OPH
- 6. USS (5mm) and OPH
- 7. USS (4mm) and EB
- 8. USS (5mm) and EB
- 9. EB and OPH
- 10. USS (4mm) and EB and OPH
- 11. USS (5mm) and EB and OPH
- 12. No initial evaluation

In cases of test failure, the default diagnostic procedure was inpatient evaluation of the endometrium under general anaesthetic utilising blind or directed dilatation of the cervix and curettage of the endometrium (D&C) (Figures 2-10). Initial endometrial assessment by inpatient D&C under general anaesthetic is outmoded as a first-line investigation, but is still employed when outpatient modalities fail.

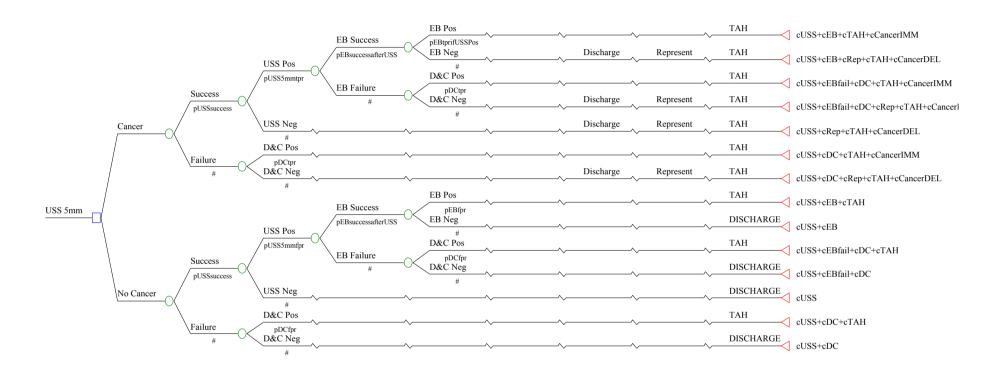
Figure 2 Decision analytic model: Strategy utilising initial evaluation with endometrial biopsy (EB) for the investigation of postmenopausal bleeding for endometrial cancer



Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability, # = complementary probability

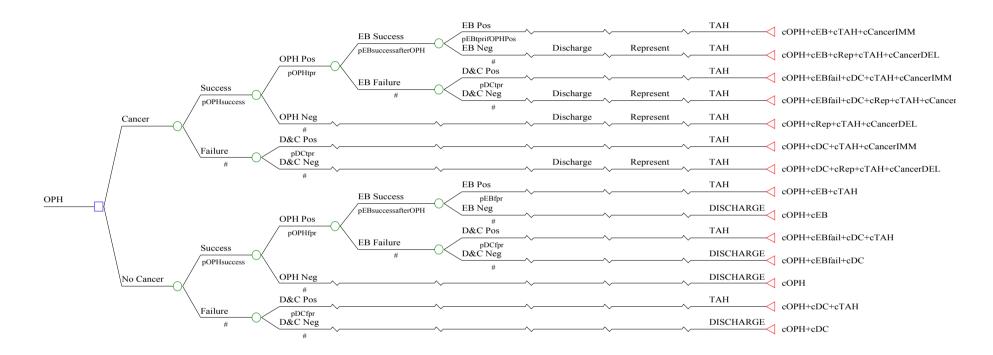
Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details


Figure 3 Decision analytic model: Strategy utilising initial evaluation with pelvic ultrasound scan (USS) using a cut-off of 4mm to signify abnormal endometrial thickness for the investigation of postmenopausal bleeding for endometrial cancer

Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, Neg = negative test result, OPH = outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability., # = complementary probability, Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details

Figure 4 Decision analytic model: Strategy utilising initial evaluation with pelvic ultrasound scan (USS) using a cut-off of 5mm to signify abnormal endometrial thickness for the investigation of postmenopausal bleeding for endometrial cancer

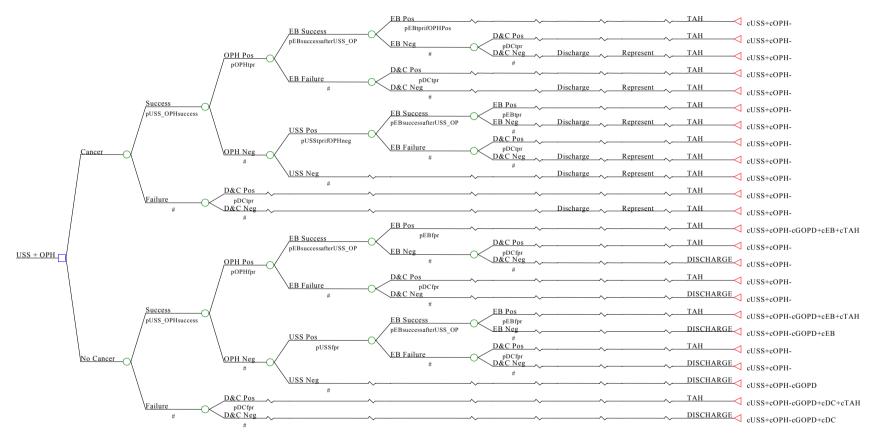


Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability, # = complementary probability.

Represent = a combination of all three tests performed (USS and EB and OPH) - see text for details

Figure 5 Decision analytic model: Strategy utilising initial evaluation with outpatient hysteroscopy (OPH) for the investigation of postmenopausal bleeding for endometrial cancer



Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, Neg = negative test result, OPH = outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability, # = complementary probability.

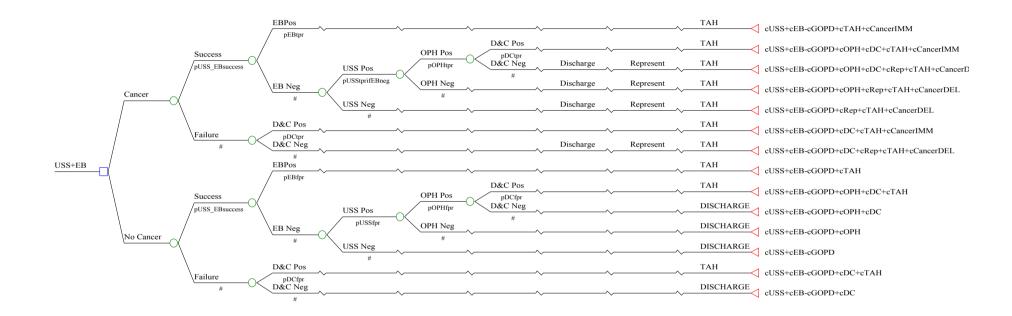
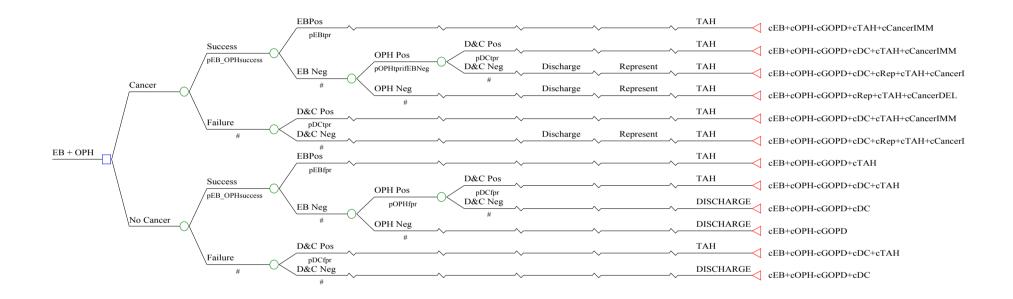

Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details

Figure 6 Decision analytic model: Strategy utilising initial evaluation with a combination of pelvic ultrasound and outpatient hysteroscopy (USS_OPH) for the investigation of postmenopausal bleeding for endometrial cancer (both 4mm and 5mm ultrasound cut-offs used to signify abnormal endometrial thickness)

Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, GOPD = gynaecology outpateint department visit (additional), Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan. Prefix c = cost, prefix p = probability, # = complementary probability. Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details

Figure 7 Decision analytic model: Strategy utilising initial evaluation with a combination of pelvic ultrasound and endometrial biopsy (USS_EB) for the investigation of postmenopausal bleeding for endometrial cancer (both 4mm and 5mm ultrasound cut-offs used to signify abnormal endometrial thickness)

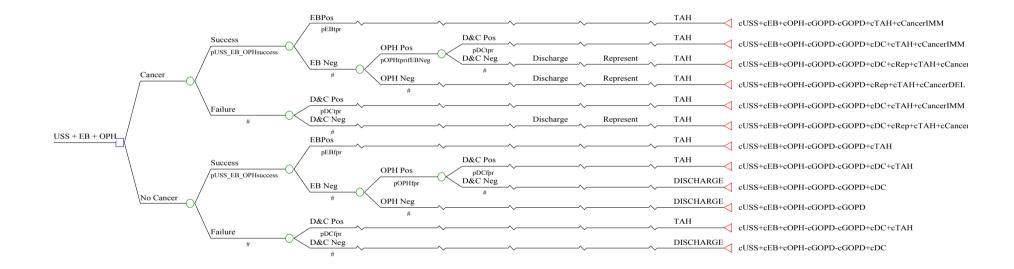


Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, GOPD = gynaecology outpatient department visit (additional), Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability, # = complementary probability.

Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details

Figure 8 Decision analytic model: Strategy utilising initial evaluation with a combination of endometrial biopsy and outpatient hysteroscopy (EB_OPH) for the investigation of postmenopausal bleeding for endometrial cancer

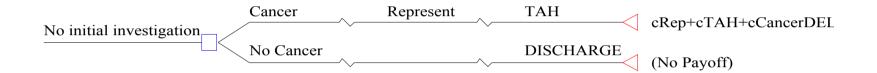


Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, GOPD = gynaecology outpatient department visit (additional), Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability. # = complementary probability

Represent = a combination of all three tests performed (USS and EB and OPH) – see text for details

Figure 9 Decision analytic model: Strategy utilising initial evaluation with a combination of pelvic ultrasound, endometrial biopsy and outpatient hysteroscopy (USS_EB_OPH) for the investigation of postmenopausal bleeding for endometrial cancer (both 4mm and 5mm ultrasound cut-offs used to signify abnormal endometrial thickness)



Cancer IMM = endometrial cancer treatment following immediate diagnosis, Cancer DEL = endometrial cancer treatment following delayed diagnosis, D&C or DC = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, GOPD = gynaecology outpateint department visit (additional), Neg = negative test result, OPH =outpatient hysteroscopy, Pos = positive test result, PMB = postmenopausal bleeding, Rep = represent, TAH = total abdominal hysterectomy, tpr = true positive rate, USS = ultrasound scan.

Prefix c = cost, prefix p = probability. # = complementary probability

Represent = a combination of all three tests performed (USS and EB and OPH) - see text for details

Figure 10 Decision analytic model: Strategy of no initial evaluation (i.e. diagnostic work-up only if symptoms recurred) for the investigation of postmenopausal bleeding for endometrial cancer

Cancer DEL = endometrial cancer treatment following delayed diagnosis, Rep = represent, TAH = total abdominal hysterectomy, Prefix c = cost,

Represent = a combination of all three tests performed (ultrasound, outpatient endometrial biopsy and hysteroscopy) – see text for details

The model used estimates of probabilities for various test results, life expectancy, direct medical cost and computed cost-effectiveness as a function of age cohorts (45 years, 55 years, 65 years, 75 years and greater than 80 years of age). Endometrial cancer was divided into localised (FIGO stage I) and more advanced (FIGO stages II-IV) disease. The model also considered major morbidity associated with diagnosis by D&C.²⁴

3.2.2 Data sources and modeling assumptions for decision analysis

In the first instance we assumed that the hypothetical presentation with postmenopausal bleeding re-presented the first episode. No postmenopausal woman was assumed to be less than 45 years old and no other significant aetiology (e.g. other genital tract malignancy) was considered. The woman was considered to be otherwise healthy with a normal age-adjusted life expectancy. The probability of endometrial cancer in women presenting with postmenopausal bleeding is between 5 and $10\%^{5,15}$ and w omen are most likely to present with this symptom in the seventh decade of life.⁸ Therefore, we assumed a 65 year old woman presenting with PMB and a 5% prevalence of malignant disease for the base-case analysis.

As there is no consensus regarding how best to investigate women with PMB for endometrial cancer, initial investigation utilising all tests either alone or in combination were included in the model. This resulted in the definition of twelve possible initial strategies (Figures 2-10). The initial investigation(s) used in each of the twelve strategies were assumed to take place in a 'one stop' setting (i.e. one initial consultation only with no planned follow up unless test(s) failed or abnormal results were found. We assumed that the same specialist (consultant grade) performed all clinical diagnostic and surgical procedures. For the base case analysis it was assumed that an additional return visit was required following a positive USS in order to perform endometrial sampling. The impact of performing EB following a positive USS at the same visit was examined as part of a sensitivity analysis, to reflect the practice of gynaecologists with expertise in ultrasound. Expert clinical opinion was then obtained independently (contributors TJC, AC, KSK, JKG listed in section 6) about decision-making conditional upon positive or negative test results (i.e. the need for any further testing or therapeutic intervention). An expert clinical panel was then convened to reach consensus in cases of disagreement. In this manner a representative body of opinion was obtained regarding current management pathways in the diagnosis of PMB. It was agreed that invasive surgery (hysterectomy) for endometrial cancer would not be performed without histological confirmation, whether by EB or D&C. Once the decision for hysterectomy had been made, additional pre-operative investigation by examination under anaesthesia, fractional curettage, cystoscopy, magnetic resonance imaging and other radiographic modalities was assumed not to have been necessary thereby reflecting current clinical practice.⁶¹ Radiotherapy and chemotherapy were assumed to have been provided by the same medical oncologist.

Failed diagnostic procedures led to investigation by inpatient dilatation and curettage (D&C). In the case of outpatient endometrial biopsy, failed procedures were considered to be cases where technical problems meant that an endometrial specimen could not be obtained. Histologically inadequate specimens were considered to be

negative tests for both EB and D&C providing USS and OPH were negative.^{17,70} Inpatient D&C was assumed to have no technical failure rate.⁹⁵ Data for failure rates and estimates of diagnostic accuracy were obtained from high quality published systematic quantitative reviews of the diagnostic literature for EB, USS and OPH (included in this report).¹⁷ Failure rates for initial strategies utilising test combinations were estimated by the consensus panel based on the definition of a failed strategy as any test making up the strategy failing and on available failure rate data from individual tests. ¹⁷¹⁸⁻²⁰ Similarly, failure rates were also adjusted for tests performed in a diagnostic strategy conditional on the success of preceding tests. The baseline true positive rates for diagnostic tests carried out conditional on a preceding test result were also adjusted as part of a sensitivity analysis to take account of plausible changes in accuracy due to lack of complete test independence (Table 5).^{15,96} As over 95% of women with endometrial cancer present with PMB¹⁴ it was assumed that all women who were erroneously discharged following the initial presentation (i.e. false negatives) remained symptomatic. The interval to re-presentation was thus taken to be short and all these women were then assumed to undergo reinvestigation with all outpatient tests where the true positive rate was assumed to be 100% and false positive rate 0%.

Probability estimates used and data sources for the decision tree used for the investigation of postmenopausal bleeding

Variable	Baseline	Sensitivity analysis (range)	Source
Failure rates			
Endometrial biopsy	0.12	(95% CI 0.09-0.15)	SR^{17}
Ultrasound scan	0.0	(95% CI 0.0-0.02)	SR^{20}
Outpatient hysteroscopy	0.05	(95% CI 0.04-0.07)	SR^{18}
Ultrasound scan + outpatient hysteroscopy	0.04	(95% CI 0.03-0.06)	EP
Ultrasound scan + endometrial biopsy	0.12	(95% CI 0.09-0.17)	EP
Ultrasound scan + endometrial biopsy + outpatient	0.12	(95% CI 0.09-0.17)	EP
hysteroscopy		()	
Endometrial biopsy after successful outpatient	0.07	(95% CI 0.05-0.10)	EP
hysteroscopy		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Endometrial biopsy after successful ultrasound scan	0.12	(95% CI 0.09-0.15)	EP
Complication Rates			
Outpatient diagnostic procedures (EB, USS, OPH)	-	-	SRs ^{48,1}
			20
Dilatation and curettage	0.014	-	NR ²⁴
True Positive Rates			
Endometrial biopsy	0.94	(95% CI 0.84-0.99)	SR^{17}
Ultrasound scan 4mm	0.99	(95% CI 0.97-1.0)	SR^{19}
Ultrasound scan 5mm	0.97	(95% CI 0.94-0.98)	SR^{19}
Outpatient hysteroscopy	0.86	(95% CI 0.84-0.89)	SR^{18}
Dilatation and curettage	0.96	(95% CI 0.82-1.0)	EP
Conditional True Positive Rates			
Endometrial biopsy if outpatient hysteroscopy positive	0.94	(95% CI 0.93-0.97)	EP
Endometrial biopsy if ultrasound positive	0.94	(95% CI 0.94-0.95)	EP
Outpatient hysteroscopy if endometrial biopsy negative	0.86	(95% CI 0.83-0.87)	EP
Outpatient hysteroscopy if ultrasound positive	0.86	(95% CI 0.86-0.87)	EP
Ultrasound scan 4mm if endometrial biopsy negative	0.99	(95% CI 0.82-0.99)	EP
Ultrasound scan 4mm if outpatient hysteroscopy negative	0.99	(95% CI 0.92-0.99)	EP
Ultrasound scan 5mm if endometrial biopsy negative	0.97	(95% CI 0.80-0.99)	EP
Ultrasound scan 5mm if outpatient hysteroscopy negative	0.97	(95% CI 0.91-0.99)	EP
False Positive Rates			
Endometrial biopsy	0.01	(95% CI 0.0-0.02)	SR^{17}
Ultrasound scan 4mm	0.51	(95% CI 0.49-0.54)	SR^{19}
Ultrasound scan 5mm	0.45	(95% CI 0.43-0.47)	SR ¹⁹
Outpatient hysteroscopy	0.01	(95% CI 0.0-0.06)	SR^{18}
Dilatation and curettage	0.01	(95% CI 0.0-0.03)	EP
Prevalence	0.05	(95% CI 0.03-0.10)	PL ^{5,15}
Surgical stage at hysterectomy (FIGO)			
Probability of stage I (First presentation)	0.7	0.6-0.8	FIGO ²
Probability of stage II-IV (First presentation)	0.3	0.2-0.4	FIGO ²
Probability of stage I (Representation)	0.65	0.4-0.7	EP
Probability of stage II-IV (Representation)	0.35	0.3-0.6	EP

EB = endometrial biopsy, EP = expert panel, FIGO = International Federation of Gynecology and Obstetrics, NR = narrative review, OPH = outpatient hysteroscopy, PL = published literature, SR = systematic review, USS = ultrasound scan

We assumed no serious morbidity to be associated with any of the ambulatory procedures (ultrasound, hysteroscopy and endometrial biopsy) based on evidence from systematic reviews of the available literature.¹⁷⁻²⁰ For D&C we assumed the major complication rate to be 1.4% (included haemorrhage 0.4%, infection 0.3%, perforation 0.6% and emergency laparotomy 0.1%).²⁴ Costs associated with morbidity arising from complications were incorporated into the model, but no adjustment to life expectancy was made (Table 6).

Table 6

Direct medical costs used and data sources for decision tree for the investigation of postmenopausal bleeding (Base-case and sensitivity analyses).

Variable	Baseline (£) ^{\$}	Source	Range (£)*	Source
Diagnosis				
Pelvic ultrasound scan	115	BWH	93-219	DoH
Outpatient hysteroscopy	225	BWH	143-247	DoH
Endometrial biopsy	186	BWH	126-195	DoH
Pelvic ultrasound scan + outpatient	279	BWH	191-395	DoH†
hysteroscopy				
Pelvic ultrasound scan + endometrial	240	BWH	174-343	DoH†
biopsy				,
Outpatient hysteroscopy +	350	BWH	224-371	DoH†
endometrial biopsy				,
Pelvic ultrasound scan + outpatient	404	BWH	272-519	DoH†
hysteroscopy + endometrial biopsy				I
Day-case hysteroscopy/D&C	360#	BWH	317-493	DoH
GOPD FU	61	DoH	45-71	DoH
Failed endometrial biopsy**	111	BWH	75-116	DoH
Treatment				-
Complex hysterectomy	2123	BWH	926-2773	DoH
External beam radiotherapy	845	DoH	504-1756	DoH
Chemotherapy	258	DoH	167-327	DoH
Complications [‡]				
Co-amoxiclav 375mg tds (7 day	3.30	BNF	-	-
course)	0.00	21.12		
Inpatient stay (1 day)	620	BWH		
Unplanned laparotomy	2123	BWH	1121-2008	DoH
enplained inputotoniy	2123	2001	1121 2000	2011

* used for sensitivity analyses, ranges represent interquartile spread from national schedule of reference costs (November 2000), Department of Health. Includes cost of outpatient appointment (first visit) †adapted from national schedule of reference costs⁹⁷ (November 2000), Department of Health, Interquartile ranges

*adapted from national schedule of reference costs'' (November 2000), Department of Health, Interquartile ranges summed.

‡ Incidence of major complications associated with Dilatation and curettage (D&C) applied to these costs and cost of inpatient hysteroscopy/D&C altered accordingly See text)

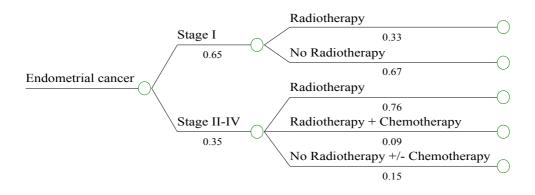
includes £10 additional cost to account for complications incidence and cost i.e.

cost of complication (infection, haemorrhage and perforation) x incidence = 623.3x1.3% + cost of unplanned laparotomy + incidence = 2123x0.1% = £8 therefore rounded up to £10 additional cost (£350 increased to £360) \$ Where two diagnostic modalities used, the cost = sum of individual costs - £61 (cost of outpatient appointment), where three diagnostic modalities used, the cost = sum of individual costs - £61x2 (cost of outpatient appointments)

** Minus histopathological examination of endometrial specimen costs

BWH = Birmingham Women's Hospital standard charges for uncomplicated procedures 2000

DoH = Department of Health, national schedule of reference costs (November 2000)⁹


BNF = British National Formulary

Mortality rates were assumed to be negligible for all the diagnostic tests. ^{1718-20,24} The mortality rate for abdominal hysterectomy in endometrial cancer was assumed to increase with age (0.4% in a woman aged 45 years, 0.8% at 55 years, 1.4% at 65 years and 3.5% at 75 years)⁹⁸ and adjustments to survival where made accordingly.

For the base-case analysis, we assumed that all women not discharged underwent initial treatment by total abdominal hysterectomy (TAH) and bilateral salpingooophorectomy with or without pelvic node sampling (i.e. all were fit for surgery and none had primary radical radiotherapy). All women were therefore assumed to be surgically staged.²³ There is some variation in practice in the treatment of endometrial cancer regarding the relative roles of surgery, radiotherapy/chemotherapy.^{61,23} The treatment pathways in our model were based on published recommendations and reports of current practice.^{5,61,99,100} All epidemiological statistics relating to endometrial cancer were taken from the latest annual report from the International Federation of Obstetrics and Gynaecology (FIGO) of results of treatments of gynaecological cancers.²³ For the base-case analysis, the cost of treating a woman correctly diagnosed with endometrial cancer on first presentation was based on the assumption that 70% of such women had localised (FIGO stage I) disease and 30% advanced (FIGO stages II-IV) disease.²³ To account for delayed diagnosis experienced by women with endometrial cancer who were erroneously discharged initially (false negatives) and were subsequently diagnosed following re-presentation, we estimated them to have a 5% increased probability of advanced stage endometrial cancer (stage II-IV) for the baseline analysis in the absence of relevant data. Those with advanced disease (stages II, III or IV) underwent radiotherapy (adjuvant/palliative) and/or chemotherapy. 5,61,99-100 Women with stage Ic disease or poorly differentiated (histological grade 3) stage Ia or Ib disease were assumed to have adjuvant radiotherapy.⁵ The proportion of women undergoing additional non-surgical treatment is shown in Figure 11.

Figure 11

Decision analytic model (common pathway for further treatment of endometrial cancer following initial hysterectomy)

Standardised radiotherapy and chemotherapy regimens were assumed regardless of disease stage, radiotherapy consisted of a 5-week course of external beam radiotherapy giving a total dose of 50-55 grays in 20-28 fractions. Chemotherapy

consisted of standard cytotoxic and/or hormonal therapies.^{5,61,99,100} Compliance with treatment was assumed to be 100%. We assumed that hormonal treatment using long term oral progestogens was not employed given there is no evidence of benefit in terms of survival.¹⁰¹ The 5-year survival rates were assumed to be 87% for stage I disease and 60% for advanced (stage II-IV) disease.²³

3.2.3 Cost data

Costs were estimated from the perspective of our base National Health Service (NHS) hospital and from NHS data provided by the Department of Health. The analysis included all direct medical costs in pounds sterling (Table 6). Data for the baseline and sensitivity analyses were obtained from local sources (Birmingham Women's Hospital data for uncomplicated procedures 2000-2001) and national sources (Department of Health, National Schedule of Reference Costs for the United Kingdom 2000⁹⁷ and Unit costs of health and social care 2000/2001¹⁰²) Drug costs were obtained from the British National Formulary 2002.Costs for outpatient investigation included the clinic appointment and other hospital charges, the relevant procedures (endometrial biopsy, ultrasound scan or outpatient hysteroscopy) and the specialist(s) fee (consultant gynaecologist +/- consultant pathologist). Costs for hysteroscopy/D&C under general anaesthesia took into account hospital costs for a day-case surgical procedure in addition to the specialists' fees for a consultant gynaecologist and anaesthetist. In addition, a cost associated with complications arising from D&C was estimated and incorporated (include inpatient stay and antibiotics for haemorrhage, uterine infection, perforation and unplanned emergency laparotomy). The costs of reinvestigation by all three outpatient modalities incurred in those women representing after initial erroneous discharge were included in the model. Hysterectomy was classed as a complex major laparotomy and costed according to our base hospital charges taking into account uncomplicated inpatient hospital stay operating theatre costs and specialist fees. Radiotherapy charges were estimated from charges for standard outpatient treatment charges (12-24 fractions of external beam radiotherapy) using national data.⁹⁷ Chemotherapy was costed according to national data for day-case treatment of the female reproductive system.⁹⁷ No adjustments to costs were made for the effects of inflation.

3.2.4 Outcome

Baseline values of the probabilities of each test result and treatment outcome, together with the costs of each diagnostic intervention, were estimated and incorporated into the decision tree (DATA Professional 2001, Treeage software inc, 1075 Main Street, Williamstown, United States, MA 01267 [www.treeage.com]. The cost and effectiveness for each of the seven strategies were calculated. The effectiveness of each competing diagnostic strategy was determined by comparing survival using the outcome measure cost per life year gained.

Age-specific life expectancies were calculated in the following way. For "true negative" results, normal actuarial age/sex specific death rates¹⁰³ were used to calculate life expectancy. For women with stage I or stage II-IV endometrial cancer, international 5-year survival data²³ were compared with the expected survival for the general population. The resulting hazard ratio was assumed to apply constantly over 12 years, after which survival is equivalent to the normal population.¹⁰⁴ Finally, for

"false positive" results, an age-specific immediate mortality was applied for the effect of the unnecessary hysterectomy,⁹⁸ after which the general population life expectation was used. The base-case analysis used an age of 65 years.⁸ This age was chosen as endometrial cancer has its peak incidence in this decade.

The costs, effect in terms of additional life year saved and average cost-effectiveness ratios (cost per additional life year saved) were determined for each diagnostic strategy. Incremental cost-effectiveness ratios were then generated by using the ratio of cost compared to change in life expectancy relative to the cheapest strategy. In this way improvements in life expectancy per extra pound spent could be determined. In accordance with Treasury guidelines, future years of life were discounted at 1.5% per year. Discounting costs was not relevant as all costs were assumed to occur in the first year.

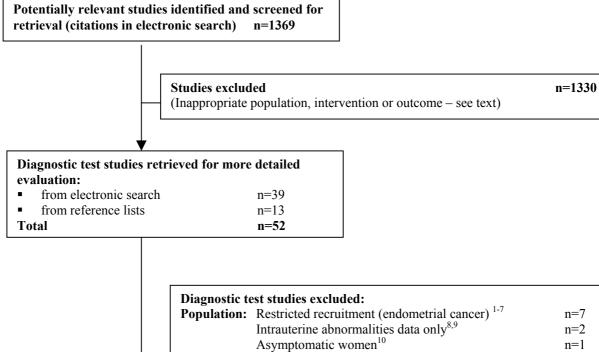
3.2.5 Sensitivity Analyses

We performed extensive sensitivity analysis for all strategies found to be potentially cost-effective following the base-case analysis. One-way analyses over ranges of age at presentation, disease prevalence, test failure rates, estimates of diagnostic accuracy and upstaging of endometrial cancer due to delayed diagnosis to explore the robustness of the analytic model (Tables 5 and 6). For costs of cancer, we varied the costs of local (FIGO Stage 1) and advanced (FIGO stage II-IV) disease together.

4 Quality, direction and strength of the evidence

4.1 Results of systematic review of endometrial biopsy.

4.2 Question


What is the accuracy of outpatient EB in the diagnosis of endometrial cancer?

4.3 Study Selection

The electronic search generated 1369 citations and of these there were 39 articles ¹⁰⁵ ^{39,53,57,106-140} which both reviewers thought were relevant: 37 were published in English, one in French and one in Spanish. A further 13 articles¹⁴¹⁻¹⁵³ were identified through examination of the reference lists of the known primary publications and review articles. After independent review of the 52 manuscripts, 11 articles (10 English, ^{106,109,113,119,137,138,142,145,146,150} one French ¹⁵⁴) were considered to be eligible for inclusion in the review (Figure 12). Excluded studies are listed in Appendix 2. Agreement regarding eligibility was 90% (weighted kappa 0.7). The lists of references supplied by the manufacturers contacted did not add anything to the above search.

Figure 12

Study selection process for systematic review of outpatient EB.

	Intrauterine abnormalities data only ^{8,9} Asymptomatic women ¹⁰ Subtotal	n=2 n=1 n=10
Diagnostic: Interventior	Performed under general anaesthetic ¹¹⁻¹⁸ Cytological outpatient device ¹⁹ No convincing gold standard ²⁰⁻²⁸ Subtotal	n=8 n=1 n=9 n=1
Outcome:	Differential verification ^{29,30} Lack of data to construct 2x2 table ³¹⁻³⁸ Lack of original data / reviews ³⁹⁻⁴¹ Subtotal	n=2 n=8 n=3 n=13
Total exclud	led ¹⁻⁴¹	n=4

Diagnostic test studies included in meta-analysis (see main text) n=11

There were 1013 subjects in 13 diagnostic evaluations reported in 11 primary studies: 40 women in a single evaluation of the Accurette® device,¹⁴² 70 women in a single evaluation of the Gynoscann® device,¹³⁷ 176 women in a single evaluation of the Novak® curette,¹⁴⁵ 546 women in 7 evaluations of the Pipelle® device,¹⁰⁶ ^{109,119,137,138,146,154} 104 women in 2 evaluations of the Vabra® aspirator^{142,145} and 77 women in a single evaluation of the Z-sampler®¹¹³ device. Seven of these evaluations contained data exclusively about postmenopausal women,^{106,109,113,119,138,14237,39-40,44,47,62} three about pre and postmenopausal women^{131,137,150} and in three menopausal status was unclear.^{145,146}. Postmenopausal women re-presented 79% of the populations studied.

4.3.1 Study quality

The observer agreement for various items of study quality ranged from 73 to 100%. Kappa values were 0.5 for population enrolment, 1.0 for biopsy technique description, 0.9 for blinding of test results and 1.0 for description of outcomes. The methodological quality criteria of the studies selected for meta-analyses are summarised in Tables 7 and 8.

Diagnostic accuracy of outpatient endometrial biopsy in detecting endometrial cancer in women at risk of abnormal endometrial histology: Methodological details

	Population	Intervention	Outcome						
Study (Year Published)	Study Design	Patient Selection	Quality Level	Menopausa Post	ll Status (%) Pre	Unclear	Description of Technique	Reference Standard	Blinding of Results
Accurette® Goldberg et al ¹⁴² (1981)	Prospective	Arbitrary	4	30 (100)	-	-	Adequate	†D&C	Unreported
Gynoscann Sun-Kuie et al ¹³⁷ (1992)	Prospective	Arbitrary	4	*5 (11)	41 (89)	-	Adequate	†D&C	Unreported
Novak Curette® Stovall et al ¹⁴⁵ (1989)	Retrospective	Arbitrary	4	-	-	165(100)	Adequate	Hyst	Unreported
Pipelle® Baruch et al ¹⁵⁰ (1994)	Retrospective	Arbitrary	4	*23 (52)	9 (20)	112 (28)	Adequate	†D&C/Hyst	Unreported
Salet-Lizee et al 131 (1993)	Prospective	Arbitrary	4	*41 (42)	57 (58)	-	Inadequate	†D&C	Unreported
De Silva et al 109 (1997)	Prospective	Consecutive	1	35 (100)	-	-	Adequate	†D&C	Yes
Van den Bosch et al 138 (1995)	Prospective	Consecutive	3	138 (100)	-	-	Adequate	Biopsy/Hyst	Unreported
Gupta et al ¹¹⁹ (1996)	Prospective	Arbitrary	1	54 (100)	-	-	Inadequate	†D&C	Unreported
Batool et al ¹⁰⁶ (1994) Giannacopoulos et al ¹⁴⁶ ((1996)	Prospective Prospective	Arbitrary	I	13 (100) -	-	- 57 (100)	Adequate Inadequate	†D&C †D&C/Hyst	Yes Unreported
Vabra Aspiration®									
Goldberg et al ^{142} (1981)	Prospective	Arbitrary	4	31 (100)	-	-	Adequate	†D&C	Unreported
Stovall et al ^{145} (1989)	Retrospective	Arbitrary	4	-	-	62 (100)	Adequate	Hyst	Unreported
Z-sampler®									
Etherington et al ¹¹³ (1995) * Numbers of patients within respective r	Prospective	Consecutive	3	34 (100)	-	-	Adequate	†D&C	Unreported

before such exclusions

†D&C = dilatation of cervix and curettage of uterine cavity under anaesthesia, Hyst = hysterectomy

Methodological quality of outpatient EB studies included in meta-analyses

Quality Criteria	No. of Studies
POPULATION	
Data Collection	
Adequate (prospective)	9/11 (82%)
Inadequate (retrospective)	2/11 (18%)
Patient Selection	
Adequate (consecutive)	4/11 (36%)
Inadequate (arbitrary)	7/11 (64%)
Population Details	
Complete	8/11 (73%)
Inadequate	3/11 (27%)
INTERVENTION	
Biopsy technique description	
Adequate	8/11 (73%)
Inadequate	3/11 (27%)
OUTCOME	
*Reference standard	
Hysterectomy	5/11
Directed Biopsy	1/11
D&C	10/11
Blinding of Test Results	
Adequate	2/11 (18%)
Unreported	9/11 (82%)
Use of reference standard regardless of test	
result	
Adequate (>90%)	11/11 (100%)
• • /	

*More than one reference standard in some studies

Study recruitment was prospective in nine (82%) of the studies, patient details were complete in 8 (73%) studies, but patient selection was consecutive in only 4 (36%) of the studies. The description of the interventions were adequate in 8 (73%) of the studies. The assessment of outcome data shows that in only 2 (18%) of the studies were the outpatient test results reported to be masked from the pathologist interpreting the reference standard. Thus 2 studies^{106,109} (18%) were level 1, a further 2 studies^{113,136} (18%) were level 3 and 7 studies^{119,131,137,138,142,145,146,150} (64%) were level 4 in quality.

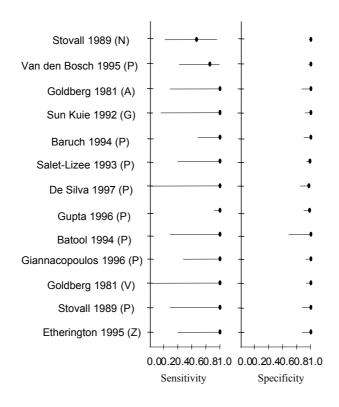
4.3.2 Failure rate and inadequate specimen rate

The overall failure rate for outpatient biopsy was 68/1013 representing 7% (95% CI 5%-8%) of all attempted biopsies. Pipelle®, the most frequently evaluated device, had a failure rate of 8% (43/546 95% CI 6%-11%). Histologically inadequate samples (no specimen obtained or insufficient for adequate assessment) were reported in 138/945 (15% 95% CI 12%-17%) samples overall and in 64/503 (13% 95% CI

10%-16%) of Pipelle® samples. Among the 7 evaluations of exclusively postmenopausal women, the failure rates and inadequate sampling rates were higher than that found in all studies combined. There were 58/486 (12% 95% CI 9%-15%) failures and 93/428 (22% 95% CI 17.9-25.9) inadequate samples. One case of cancer was found in all the inadequate specimens (Table 9).

Procedure feasibility and diagnostic accuracy of outpatient endometrial biopsy in endometrial cancer

Device (No. Evaluations) & Study (Year Published)	Failure Rate	Inadequate Rate	Cancer in Inadequate Samples	Cancer +ve test (Sensitivity)	Cases -ve tests (1-specificity)	LR+ (95% CI)	LR- (95% CI)
Accurette®	- / / 0 / / 0 0 / 0						
Goldberg et al ¹⁴² (1981)	5/40 (13%)	5/35 (14%)	0	3/3 (1.0)	0/27 (0.0)	49.0 (3.1-783.4)	0.1 (0.01-1.7)
Gynoscann							
Sun-Kuie et al ¹³⁷ (1992)	8/70 (11%)	16/62 (26%)	0	2/2 (1.0)	0/44 (0.0)	75.0 (4.6-1236.4)	0.2 (0.01-2.1)
Novak Curette®							
Stovall et al ¹⁴⁵ (1989)	0/176 (0%)	11/176 (6%)	0	4/6 (0.67)	0/159 (0.0)	205.7 (12.2-3458.4)	0.3 (0.1-1.0)
Pipelle®							
Baruch et al ^{150} (1994)	0/45 (0%)	1/45 (2%)	0	10/10 (1.0)	0/34 (0.0)	66.8 (4.3-1050.5)	0.1 (0.00-0.7)
Salet-Lizee et al ^{131} (1993)	0/98 (0%)	0/98 (0%)	0	4/4 (1.0)	1/94 (0.01)	94.0 (13.4-660.4)	0.1 (0.01-1.41)
De Silva et al ¹⁰⁹ (1997)	9/50 (18%)	6/41 (15%)	1	1/1 (1.0)	1/34 (0.03)	34.0 (1.7-666.1)	0.5 (0.1-0.9)
Van den Bosch et al 138 (1995)	2/140 (1%)	0/138 (0%)	0	6/7 (0.86)	0/131 (0.0)	214.5 (13.23480.3)	0.1 (0.02-0.9)
Gupta et al ¹¹⁹ (1996)	15/69 (22%)	0/54 (0%)	0	2/2 (1.0)	1/52 (0.0)	52.0 (7.5-362.2)	0.2 (0.01-2.15)
Gupta et al ¹¹⁹ (1996) Batool et al ¹⁰⁶ (1994)	15/70 (21%)	42/55 (76%)	0	3/3 (1.0)	0/10 (0.0)	19.3 (1.3-296.2)	0.1 (0.01-1.8)
Giannacopoulos et al ¹⁴⁶ ((1996)	2/74 (3%)	15/72 (21%)	0	5/5 (1.0)	0/52 (0.0)	97.2 (6.1-1549.5)	0.1 (0.01-1.2)
Total	43/546 (8%)	64/503 (13%)	1	-	-	64.6 (22.3-187.1)	0.1 (0.04-0.28)
Vabra Aspiration®							
Goldberg et al ^{142} (1981)	0/64 (0%)	2/64 (3%)	0	1/1 (1.0)	0/61 (0.0)	93.0 (5.3-1647.3)	0.3 (0.02-2.8)
Stovall et al ^{145} (1989)	5/40 (13%)	4/35 (11%)	0	3/3 (1.0)	0/28 (0.0)	50.8 (3.2-812.1)	0.1 0.01-1.7)
Total	5/104 (5%)	6/99 (6%)	0	-	-	59.4 (6.8518.6)	0.2 (0.03-1.0)
Z-sampler®							
Etherington et al ¹¹³ (1995)	7/77 (9%)	36/70 (51%)	0	4/4 (1.0)	0/30 (0.0)	55.8 (3.5-886.0)	0.1 (0.01-1.4)
All Devices (13)							
Total	68/1013 (7%)	138/945 (15%)	1 ((0.7 95% CI 0.02-4.0))	-	-	66.5 (30.0-147.1)	0.14 (0.1-0.3)


4.3.3 Data synthesis

Amongst adequate specimens, outpatient EB failed to diagnose three endometrial cancers. Figure 13 presents the sensitivity and specificity of EB in the diagnosis of endometrial cancer. The overall pooled sensitivity was 94.1% (95% CI 83.8% to 98.8%) and specificity was 99.6% (95% CI 98.8% to 99.9%). In view of the lack of an association between sensitivity and specificity, a summary receiver operating characteristic curve was not generated.⁷⁴ The pooled LRs for endometrial cancer were 66.48 (95% CI 30.04-147.13) and 0.14 (95% CI 0.08-0.27) for positive and negative outpatient test results respectively. The pre-test probability increased from 6.3% (95% CI 4.7% to 8.2%) to 81.7% (95% CI 59.7% to 92.9%) with a positive result. It decreased to 0.9% (95% CI 0.4% to 2.4%) with a negative result (Table 10).

Figure 13

Sensitivity and specificity of endometrial biopsy in the diagnosis of endometrial cancer

Results sorted according to estimated sensitivity and presented with 95% confidence interval

Pooled estimates of pre-test probabilities, likelihood ratios and post-test probabilities for diagnostic accuracy of outpatient biopsy in detecting endometrial cancer in women with abnormal uterine bleeding.

Device & Population	Pre-test Probability	Post-test Probabi	ility (%) (range)
	% (95% CI)	Test +	Test –
ALL DEVICES			
All Women	6.3 (4.7-8.2)	81.7 (59.7-92.9)	0.9 (0.4-2.4)
Postmenopausal	6.9 (4.4-10.1)	83.1 (58.0-94.3)	1.0 (0.4-2.9)
Women	× ,		
PIPELLE©			
All Women	6.3 (4.7-8.2)	81.3 (52.4-94.4)	0.7 (0.2-2.4)
Postmenopausal	6.9 (4.4-10.1)	82.7 (50.7-95.5)	0.8 (0.2-3.1)
Women	× ,		· · · · · ·

An estimate of the pre-test probability was obtained by calculating the prevalence of the outcome event in the population studied. The following equation was used for calculating post-test probability: post-test probability = likelihood ratio x pre-test probability / [1-pre-test probability x (1-likelihood ratio)], where Likelihood Ratios (95% CI) for all devices are LR+ 66.5 (30.0-147.1) / LR- 0.14 (0.1-0.3) and Likelihood Ratios (95% CI) for pipelle® device are LR+ 64.6 (22.3-187.1) / LR- 0.1 (0.04-0.28)

Ranges of post-test probability were calculated by using lower and upper limits of 95% confidence intervals of pretest probabilities and likelihood ratios.

If inadequate samples were regarded as negative results then LRs for all devices were 87.24 (95% CI 38.87-195.79) and 0.15 (95% CI 0.08-0.27) for positive and negative outpatient test results respectively. In this case the pre-test probability increased from 5.50% (95% CI 4.13% to 7.15%) to 83.6% (95% CI 62.4% to 93.8%) with a positive result and decreased to 0.9% (95% CI 0.3% to 2.1%) with a negative result. Homogeneity of diagnostic performance was confirmed across all studies by a non-significant (p = 0.996) χ^2 test. Subgroup analyses stratified for study quality did not affect the pooled LR estimates.

A funnel plot (not shown) indicated that larger studies tend to report better diagnostic test performance, though the correlation is not statistically significant (rank correlation r=0.4, p=0.17). Publication and related biases are therefore, unlikely to be a problem.

4.4 Results of systematic review of endometrial thickness measurement by ultrasound.

4.4.1 Question

What is the accuracy of outpatient endometrial ultrasonography in the diagnosis of endometrial cancer?

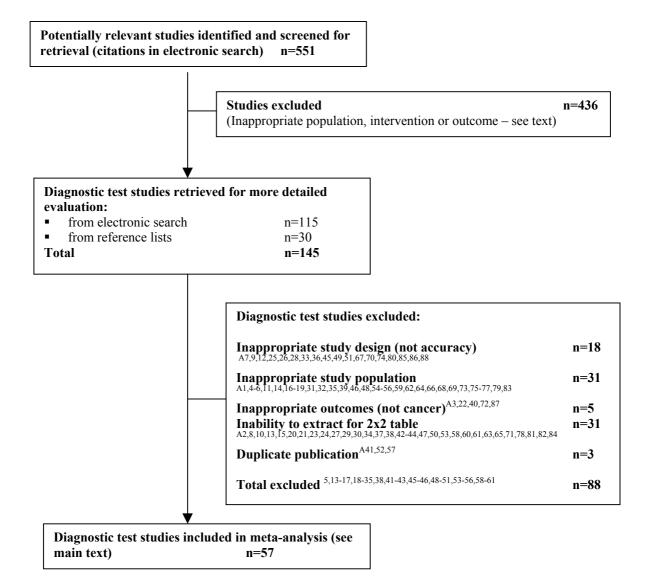
4.4.2 Study Selection

The initial electronic searches generated 551 citations, in which observer agreement was 518/551 (94%) with a kappa of 0.80. Eighty-two articles were thought to be relevant by both reviewers and 33 articles were considered relevant by one reviewer. The full manuscripts of these 115 articles were obtained for review. Another 30 articles were obtained from scanning the reference lists of known primary and review articles in our personal files. After reviewing the full manuscripts of a total of 145 articles, 35 English, ^{31,43,44,6,47,108,116,119,155-181}, 7 German, ¹⁸²⁻¹⁸⁸ 4 Italian, ¹⁸⁹⁻¹⁹², 2 French, ^{193,194} 2 Chinese, ^{195,196} 2 Bulgarian, ^{197,198} 1 Spanish, ¹⁹⁹ 1 Polish, ²⁰⁰ 1 Turkish, ²⁰¹ and 1 Dutch²⁰² articles were selected for inclusion in the overview. There were 6 articles in which the two reviewers initially disagreed on eligibility but this was resolved easily by consensus. These instances of disagreement were the result of an oversight on of one of the reviewers. Agreement concerning eligibility was 96% (kappa = 0.91). Characteristics of the 57 studies selected for meta-analysis are shown in Table 11.

Studies included in systematic review of ultrasound measurement of endometrial thickness for predicting endometrial hyperplasia and carcinoma

	Population	Population			est	Outcome			Quality
Study	Population enrolment	Length of amenorrhoea	Number of HRT users	Method of scanning	Transducer frequency	Blinding of results	Outcome measures	Verification	Level*
Measurement of both layers 6	endometrial thick	mess							
3 mm									
Auslender et al ¹⁵⁹ 1993	Consecutive	12 months	None	TVS	6.5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Zannoni et al ¹⁹⁰ 1994	Unreported	6 months	None	TVS	5-6.5 MHz	Unreported	Eca	>90%	IV
4 mm									
Bakour et al ^{178} 1999 ^a	Unreported	6 months	46/96	TVS	6.5 MHz	Unreported	Eca, Ehyp	>90%	IV
Botsis et al ¹⁵⁸ 1992 ^p	Unreported	Unreported	None	TVS	Unreported	Unreported	Eca, Ehyp	> 90%	IV
Fistonic et al 173 1997 ^a	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Garuti et al ¹⁸⁰ 1999 ^a	Unreported	12 months	51/419	TVS	7.5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Granberg et al ¹⁷² 1997 ^p	Unreported	Unreported	351/1168	TVS	5-7.5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Guner et al ^{168} 1996 ^{p}	Unreported	Unreported	Unreported	TVS	5-7.5 MHz	Unreported	Eca, Ehyp	>90%	IV
Haller et al ³¹ 1996 ^a	Unreported	Unreported	None	TVS	5.5 MHz	Unreported	Eca, Ehyp	>90%	IV
Tsuda et al ¹⁷⁶ 1997 ^p	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Varner et al ¹⁵⁷ 1991 ^p	Unreported	6 months	9/15	TVS	5 MHz	Unreported	Eca, Ehyp	>90%	IV
5 mm									
Abu-Ghazzeh et al ¹⁸¹ 1999 ^a	Unreported	6 months	Unreported	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Briley et al ¹⁰⁸ 1998 ^a	Unreported	Unreported	Unreported	TVS	5, 7.5 MHz	Unreported	Eca, Ehyp	< 80%	IV
Cacciatore et al ¹⁶¹ 1994 ^p	Unreported	Unreported	Unreported	TVS	5-6.5 MHz	Unreported	Eca	> 90%	IV
DeSilva et al ¹⁷¹ 1997 ^p	Consecutive	Unreported	6/50	TVS	7.5 MHz	Unreported	Eca, Ehyp	> 90%	III
Granberg et al ⁴³ 1991 ^p	Unreported	Unreported	30/205	TVS	7 MHz	Unreported	Eca, Ehyp	> 90%	IV
Grigoriou et al ¹⁶⁶ 1996 ^p	Unreported	Unreported	None	TVS	5 MHz	Yes	Eca, Ehyp	> 90%	II
Gu et al ¹⁹⁵ 1994 ^p	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	IV

	Population						_ Quality		
	Population	Length of	Number of	Method of	Transducer	Blinding of	Outcome		Level*
Study	enrolment	amenorrhoea	HRT users	scanning	frequency	results	measures	Verification	_
Gupta et al ¹¹⁹ 1996 ^p	Unreported	12 months	None	TVS	6.5 MHz	Yes	Eca, Ehyp	>90%	II
Hänggi et al ¹⁸⁴ 1995 ^a	Consecutive	Unreported	Unreported	TVS	6.5 MHz	No	Eca, Ehyp	< 80%	V
Ivanov et al ¹⁹⁷ 1998 ^p	Unreported	6 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	IV
Karlsson et al ¹⁶⁰ 1993 ^a	Unreported	Unreported	Unreported	TVS	7 MHz	Unreported	Eca, Ehyp	> 90%	4
Loverro et al ¹⁷⁹ 1999 ^p	Unreported	Unreported	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Malinova et al ¹⁶⁹ 1996 ^a	Unreported	24 months	None	TVS	7.5 MHz	Unreported	Eca, Ehyp	> 90%	4
Merz et al ¹⁸² 1990 ^{p}	Unreported	Unreported	> 8	TVS	5 MHz	Unreported	Eca, Ehyp	>90%	4
Nasri et al ⁴⁶ 1989 ^p	Unreported	12 months	None	ABS	3.5 MHz	Yes	Eca, Ehyp	>90%	2
Nasri et al ⁴⁴ 1991 ^p	Unreported	6 months	3/103	TVS	5 MHz	Unreported	Eca, Ehyp	81-90%	5
Pertl et al ¹⁸⁷ 1996 ^p	Unreported	Unreported	35/169	TVS	5 MHz	Unreported	Eca, Ehyp	81-90%	5
Suchocki et al ²⁰⁰ 1998 ^p	Unreported	Unreported	None	TVS+ABS	5, 6, 7.5 MHz	Unreported	Eca, Ehyp	> 90%	4
Taviani et al ¹⁹¹ 1995 ^p	Unreported	12 months	Unreported	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Weber et al ¹⁷⁷ 1998 ^a	Unreported	12 months	None	TVS	5, 7.5 MHz	Unreported	Eca	> 90%	4
Wolman et al ¹⁷⁰ 1996 ^a	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
6 mm									
Moreles et al ¹⁹⁹ 1998	Unreported	12 months	Unreported	TVS	5, 6, 7.5 MHz	Unreported	Eca, Ehyp	< 80%	5
Rudigoz et al ¹⁹⁴ 1993	Unreported	Unreported	None	TVS	5-7.5 MHz	Unreported	Eca, Ehyp	> 90%	4
0									
8 mm Todorova et al ¹⁹⁸ 1998	Unreported	Unreported	Unreported	TVS	7.5 MHz	No	Eca	> 90%	4
10001074 ct al 1998	Onreported	Onreported	Onreported	1 V 5	7.5 WIIIZ	110	Lua	> 9070	4
15 mm				TT 10			-	2.22.4	
Gruboeck et al ¹⁶⁷ 1996	Unreported	6 months	None	TVS	7.5 MHz	Unreported	Eca	> 90%	4
Single Layer endometrial thic	kness measurem	ent							
2 mm									
Chan et al ¹⁶² 1994	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	81-90%	5
Degenhardt et al ¹⁸³ 1991	Unreported	Unreported	2/137	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Dijkhuizen et al ¹⁶⁵ 1996	Consecutive	12 months	None	TVS	5 MHz	Yes	Eca, Ehyp	> 90%	2
3 mm									
Brolmann et al ²⁰² 1993	Arbitrary	Unreported	11/65	TVS	5 MHz	Yes	Eca, Ehyp	> 90%	4
Ceccini et al ¹⁶⁴ 1996	Unreported	12 months	Unreported	TVS+ABS	6, 3.5 MHz	Unreported	Eca	> 90%	4


	Population			Diagnostic T	est	Outcome			Quality
	Population	Length of	Number of	Method of	Transducer	Blinding of	Outcome		Level*
Study	enrolment	amenorrhoea	HRT users	scanning	frequency	results	measures	Verification	
Mortakis et al ¹⁷⁵ 1997	Unreported	12 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Schramm et al ¹⁸⁶ 1995	Unreported	Unreported	None	TVS	5-7.5 MHz	Yes	Eca, Ehyp	> 90%	4
Smith et al ¹⁵⁶ 1991	Arbitrary	Unreported	Unreported	TVS	5 MHz	Yes	Eca, Ehyp	> 90%	2
4 mm									
Osmers et al ¹⁹³ 1992	Unreported	24 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Seelbach-Göbel et al ¹⁸⁵ 1995	Unreported	6 months	Unreported	TVS	5-7.5 MHz	Unreported	Eca, Ehyp	> 90%	4
10 mm									
Altuncu et al ²⁰¹ 1992	Unreported	Unreported	13/68	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Unreported number of layers	for endometrial	thickness measu	rement						
4 mm									
Archer et al ²⁰³ 1999	Unreported	Unreported	38/38	TVS	5-7.5 MHz	Unreported	Ehyp	> 90%	4
Dorum et al ⁴⁷ 1993	Consecutive	12 months	Unreported	TVS	7 MHz	Unreported	Eca	> 90%	4
Gerber et al ¹⁸⁸ 1999	Unreported	Unreported	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
Li et al ¹⁹⁶ 1997	Unreported	12 months	None	TVS	3.5 MHz	Unreported	Eca, Ehyp	> 90%	4
Salmaggi et al ¹⁹² 1997	Unreported	Unreported	Unreported	TVS + ABS	3.5, 5 MHz	Unreported	Eca, Ehyp	> 90%	4
5 mm									
Goldstein et al ¹⁵⁵ 1990	Unreported	Unreported	18/30	TVS	5, 7.5 MHz	Unreported	Eca, Ehyp	> 90%	4
Malinova et al ¹⁶³ 1995	Unreported	24 months	None	TVS	7.5MHz	Unreported	Eca, Ehyp	> 90%	4
6 mm									
Mateos et al ¹⁷⁴ 1997	Unreported	6 months	None	TVS	5 MHz	Unreported	Eca, Ehyp	> 90%	4
7 mm									
Guisa-Chiferi et al ¹¹⁶ 1996	Unreported	Unreported	Unreported	TVS	5 MHz	Unreported	Eca	> 90%	4

TVS = transvaginal USS, ABS = abdominal USS, HRT = hormone replacement therapy, Eca = endometrial carcinoma, Ehyp = endometrial hyperplasia, ^a = cut-off for abnormality determined *a priori*, ^p = cut-off for abnormality determined *post hoc*, * see Methods section for details of quality

The reasons for excluding the remaining 88 manuscripts (Figure 14 and Appendix 3) included inappropriate study design (18 studies), inappropriate study population (31 studies), inappropriate clinical outcomes being reported (5 studies), the inability to extract data (31 studies). Three articles were also excluded due to duplicate publication.

Figure 14

Study selection process for systematic review of ultrasound scan.

4.4.3 Study quality

The observer agreement for the various components of study quality was 89-100%, kappa values were 0.64 for population enrolment, 1.0 for description of amenorrhoea and HRT use, 1.0 for description of analytical test and cut-off level, 0.88 for number of endometrial layers used in the ultrasonic measurement of endometrial thickness, 0.69 for blinding of test results and 1.0 for completeness of verification. The

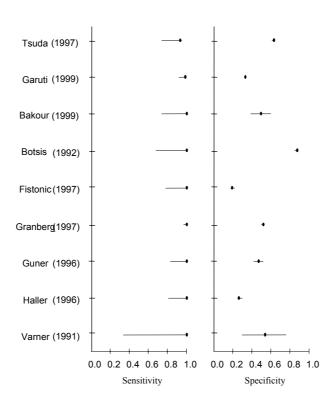
instances of disagreement were the result of an oversight on of one of the reviewers, and were resolved easily by consensus. The main features of the methodological qualities of those studies selected for meta-analysis are summarised in Table 12. A majority of the studies were quality level 4-5.

Table 12

Methodological quality of selected primary studies

Quality criteria*	Endometrial carcinoma <i>n/t</i> (%)
POPULATION	
Recruitment	
Consecutive	5/56 (9.0)
Arbitrary	2/56 (3.5)
Unclearly reported	49/56 (87.5)
Spectrum	19/00 (0/10)
With and without HRT	13/56 (23.0)
Narrow	27/56 (48.0)
Unreported	16/56 (29.0)
DIAGNOSTIC TEST	10/50 (29.0)
	a mothed and transducer frequency
Ideal	ig method and transducer frequency
	55/56 (98.2)
Unclearly reported	1/56 (1.8)
Ideal	of measuring endometrial thickness
	48/56 (85.7)
Unclearly reported	8/56 (14.3)
Description of cut-off leve	
A priori	4/9 (44.4)
Post hoc	5/9 (55.6)
Description of cut-off leve	el for ≤ 5 mm only
A priori	7/21 (33.3)
Post hoc	14/21 (66.7)
OUTCOME	
Reference Standard	
1]	0/56 (0)
2 > Ideal	38/56 (67.8)
3	3/56 (5.4)
1,2	3/56 (5.4)
2,3 > Non-ideal	· /
1,2,3	2/56 (3.6)
Blinding of test results	2,00 (0.0)
Blinded	7/56 (12.5)
Unclearly reported	49/56 (87.5)
Verification of diagnosis	19/00 (07:0)
>90%	50/56 (89.4)
81-90%	3/56 (5.3)
<80%	3/56 (5.3)
QUALITY LEVELS*	0/56
1	0/56
2 3	5/56 (8.9)
	1/56 (1.8)
4	45/56 (80.4)
5	5/56 (8.9)

HRT = hormone replacement therapy, Reference Standard: 1- Hysterectomy / directed biopsy under hysteroscopic vision, 2 - Inpatient Dilatation and Curettage (D&C), 3 - Outpatient biospy e.g. Pipelle, Novak


4.4.4 Data synthesis

The commonest cut-off levels for abnormality were based on the measurement of both layers of endometrial thickness: 4 mm (9 studies) and 5 mm (21 studies). Figure 15 and 16 presents the sensitivity and specificity of ultrasound in the diagnosis of endometrial cancer using 4mm and 5mm cut-offs respectively. The overall sensitivity was 99.2% (95% CI 97.2% to 99.9%) and specificity was 48.6% (95% CI 46.4% to 50.8%) according to the 9 studies of ultrasound using an endometrial thickness cut-off for endometrial cancer of 4mm. Taking the 5mm cut-off, pooled sensitivity was 97.3% (95% CI 95.0% to 98.8%) and specificity was 55.2% (95% CI 52.9% to 57.4%) for endometrial cancer. In view of the lack of an association between sensitivity and specificity, a summary receiver operating characteristic curve was not generated.⁷⁴

Figure 15

Sensitivity and specificity of ultrasound 4mm in the diagnosis of endometrial cancer

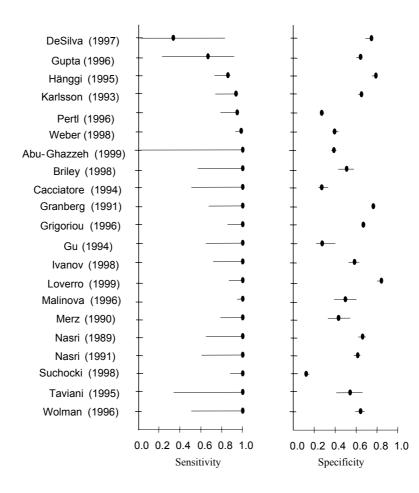

Results sorted according to estimated sensitivity and presented with 95% confidence interval

Figure 16

Sensitivity and specificity of ultrasound 5mm in the diagnosis of endometrial cancer

Results sorted according to estimated sensitivity and presented with 95% confidence interval

Estimates of LRs for individual studies for the various reported cut-off levels are shown in Table 13. Pooled estimates of pre-test probability, LRs and post-test probability are shown in Table 14. There were 1243 cases of endometrial cancer among 8890 patients giving a pre-test probability of 14.0% (95% CI 13.3 – 14.7%). As shown in Table 14, a negative test result reduced the post-test probability of cancer to 1.2% (95% CI 0.4-2.9) at \leq 4 mm and 2.3% (95% CI 1.2-4.8) at \leq 5 mm. The pooled estimates for \leq 4 mm negative results were homogeneous (p=0.65), although none of the 9 studies using the \leq 4 mm cut-off level were of good quality. The pooled estimates of LRs for \leq 5 mm were heterogeneous (p=0.0001 and p=0.02 for positive and negative test respectively), sensitivity analyses failed to produce an explanation as the confidence intervals of the LRs for the various subgroups overlapped (Table 15).

The pre-specified subgroups population spectrum and patient selection were found to be significant explanatory variables for heterogeneity in univariable analyses. A narrow population spectrum (i.e. not explicitly including postmenopausal women on

HRT) and the quality item non-consecutive patient selection were associated with significantly higher accuracy of ultrasound. Of the additional exploratory variables, a lower ultrasound probe transducer frequency (giving reduced image resolution) and a ≤ 5 mm cut-off level for abnormal endometrial thickening defined *post hoc* in advance were also predictive of higher accuracy. However, the effect of these features on diagnostic accuracy was not confirmed with multivariable analysis (Table 16). There were only 4 studies out of the 21 studies using the ≤ 5 mm cut-off level that employed the best quality criteria. Using the pooled estimates from these 4 studies only, a negative test result reduced the post-test probability of cancer to 2.5% (95% CI 0.9-6.4).

Statistical tests (not shown) to explore for publication and related biases, found that funnel plot asymmetry was not statistically significant.

Likelihood ratios (LR) for predicting endometrial carcinoma in primary studies

Measurement of both layers of endometrial thickness 3 mm Auslender et al ¹⁵⁹ 1993 16/16 $55/113$ 2.05 (1.70-2.48) 0/16 $58/113$ 0.06 (0.00-2.42) Annoni et al ¹⁵⁹ 1994 $55/5$ $331/705$ 2.09 (1.92-2.28) 1/56 $374/705$ 0.03 (0.00-4 4 mm Bakour et al ¹⁷⁸ 1999 $11/11$ $43/85$ 1.98 (1.60-2.44) $0/11$ $42/85$ 0.08 (0.01-160) Garati et al ¹⁷⁸ 1999 $11/11$ $43/85$ 1.98 (1.60-2.44) $0/11$ $42/85$ 0.08 (0.01-160) Garati et al ¹⁷⁸ 1999 $11/11$ $43/85$ 1.98 (1.60-2.44) $0/11$ $12/89$ 0.71 (0.01-160) Garati et al ¹⁷⁸ 1997 $14/14$ $480/96$ 0.01 (0.00-40) 0.01 $37/97$ 0.50 (0.06-170) Tsude at al ¹⁷⁶ 1997 $14/15$ $56/151$ 2.52 (1.96-322) $1/15$ 0.01 0.02 71.3 0.31 (0.02-2 Smm Abu-Ghazzeh et al ¹⁸¹ 1999 $1/1$ $60/97$ 1.62 (1	Method of measurement and		test results			Negative test results			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	cut-off level for abnormality	TPR	FPR	LR (95% CI)			LR (95% CI)		
3 nm Auslender et al ¹⁸⁹ 1993 16/16 55/113 2.05 (1.70-2.48) 0/16 58/113 0.06 (0.00- Zannoni et al ¹⁸⁹ 1994 55/56 331/705 2.09 (1.92-2.28) 1/56 574/705 0.33 (0.004 4 nm Bakour et al ¹⁷⁸ 1999 11/11 43/85 1.98 (1.60-2.44) 0/11 42/85 0.08 (0.01- Botis et al ¹⁸⁹ 1992 8/8 14/112 8.00 (4.90-13.06) 0/8 98/112 0.06 (0.00- Garniet et al ¹⁸⁹ 1999 59/60 240/359 1.47 (1.36-1.59) 1/60 119/359 0.17 (0.01- Garniet et al ¹⁸⁰ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.004 Guner et al ¹⁸¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.01 (0.004 Guner et al ¹⁸¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.01 (0.004 Tisda et al ¹⁸⁹ 1997 14/14 48/0996 2.02 (1.74-2.35) 0/2 7/13 0.31 (0.02- 5 nm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Silva et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-164) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1994 4/7 71 6/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Garaberg et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Caraberg et al ¹⁶¹ 1995 18/21 5/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶¹ 1996 2/3 2.67(72 1.85 (0.78.4.35) 1.13 46/72 0.52 (0.10- Granberg et al ¹⁶¹ 1993 14/15 31/88 2.65 (1.94-3.63) 1.14 55/70 0.18 (0.06- Marinova et al ¹⁶⁹ 1993 14/15 31/88 2.65 (1.94-3.63) 1.15 57/88 0.01 (8.00- Marinova et al ¹⁶⁹ 1993 14/15 31/88 2.65 (1.97-1.92) 1.75 57/80 0.10 (0.01- Marinova et al ¹⁶⁹ 1996 2/3 2.67 (2.13.3-1.90) 1/4 1.84/2 0.08 (0.00- Marinova et al ¹⁶⁹ 1996 4/4 2.85 (2.33 (3.79-10.25) 1/25 57/80 0.10 (0.01- Marinova et al ¹⁶⁹ 1998 1.27 2.18 (3.97-10.25) 1.75 57/80 0.10 (0.01- Marint et al ¹⁶⁹ 1996 1.27 2.18 (3.97-10.2	M		.14.11						
Auslender et al ¹⁵⁹ 1993, 16/16 $55/13$ 2.05 (1.70-2.48) 0/16 $58/113$ 0.06 (0.00- Zannoni et al ¹⁹⁹ 1994 $55/56$ $331/705$ 2.09 (1.92-2.28) 1/56 $374/705$ 0.03 (0.00- 4 nm Bakour et al ¹⁷⁸ 1992 $8/8$ 14/112 8.00 (4.90-13.06) 0/8 98/112 0.06 (0.00- Fistonic et al ¹⁶⁸ 1997 14/14 72/89 1.24 (1.12-1.37) 0/14 17/89 0.17 (0.01- Garauti et al ¹⁹⁰ 1997 14/114 48/85 1.98 (1.60-2.44) 0/11 42/85 0.08 (0.01- Garauti et al ¹⁹⁰ 1997 14/114 48/95 1.24 (1.12-1.37) 0/14 17/89 0.17 (0.01- Garauti et al ¹⁹⁰ 1997 14/114 48/95 1.24 (1.12-1.37) 0/14 17/89 0.05 (0.01- Granberg et al ¹⁷² 1997 114/114 48/95 2.08 (1.95-2.21) 0/114 51/996 0.01 (0.00- Haller et al ¹⁶¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/55 0.11 (0.01- Tsuda et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/15 0.11 (0.02- 5 mm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁶¹ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶¹ 1997 1.73 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1996 2/3 2.672 1.38 (1.06-1.78) 0/7 6/2 0.22 (0.01- Granberg et al ¹⁶¹ 1996 2/3 2.672 1.38 (1.06-1.78) 0/7 6/2 0.22 (0.01- Granberg et al ¹⁶¹ 1996 1.2/3 2.672 1.38 (1.06-1.78) 0/7 6/2 0.22 (0.01- Granberg et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.04- Gurant et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.88 (0.01- Karlsson et al ¹⁶⁹ 1993 1.4/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.08 (0.01- Karlsson et al ¹⁶⁹ 1996 2/3 2.87 (1.37-1.29) 0/2 56/8/81 0.02 (0.00- Marz et al ¹⁸¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.02- Karlsson et al ¹⁶⁹ 1996 2/3 2.82 (1.94-3.63) 1/15 57/88 0.10 (0.02- Karlsson et al ¹⁶⁹ 1993 1.4/15 31/88 2.55 (1.94-3.63) 1/15 57/88 0.10 (0.02- Karlsson et al ¹⁶⁹ 1993 1.4/15 31/88 2.55 (1.94-3.63) 1/15 57/88 0.02 (0.00- Marz et al ¹⁸¹ 1995 1.2/2 1.8/39 2.37 (1.53-2.27) 0/14 18/42 0.88 (0.00- Calor et al ¹⁶⁹ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.30 (0.09- Karlsson et al ¹⁶⁹ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8		endometri	al thickness	8					
Zannoni et al ¹⁹⁹ 1994 55/56 $331/705$ 2.09 (1.92-2.28) 1/56 $374/705$ 0.03 (0.04- 4 mm Bakour et al ¹⁷⁸ 1999 11/11 43/85 1.98 (1.60-2.44) 0/11 42/85 0.08 (0.01- Botis et al ¹⁸⁵ 1992 8/8 14/112 8.00 (4.90-13.06) 0/8 98/112 0.06 (0.04- Granberg et al ¹⁷⁹ 1997 14/14 72/89 1.24 (1.12-1.37) 0/14 17/89 0.17 (0.01- Garati et al ¹⁸⁰ 1999 59/60 240/359 1.47 (1.36-1.59) 1/60 119/359 0.05 (0.01- Granberg et al ¹⁸⁶ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.00- Haller et al ¹¹⁹ 1997 14/115 56/151 2.52 (1.96-3.22) 1/11 4 516/996 0.01 (0.00- Guner et al ¹⁸⁶ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Stude et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- Varner et al ¹⁸⁶ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.65 (0.06- Briley et al ¹⁶⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁸⁶ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Granberg et al ¹⁶¹ 1991 1/1 60/97 1.162 (1.38-1.89) 0/1 37/97 0.65 (0.06- Granberg et al ¹⁶¹ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Granberg et al ¹⁶¹ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Granberg et al ¹⁶¹ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Granberg et al ¹⁶¹ 1996 18/2 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Karlsson et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Mainov et al ¹⁶⁹ 1993 18/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Mainov et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Mainov et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Mainov et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Mainov et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Mainov et al ¹⁶¹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.00- Mainov et al ¹⁶¹ 1995 2.2/2 18/39 2.17 (1.54-3.04) 0/2 2.173 0.31 (0.02- Mainov et al ¹⁶¹ 1996 19/1 3/74 2.98 (1.64-2.53) 2/9 34/46 0.30 (0.09- 8 mm Gruboeck et al ¹⁶⁹ 1998 2/2 4/					0.14.6				
A mn Bakour et al ¹⁷⁸ 1999 $11/11$ $43/85$ 1.98 (1.60-2.44) $0/11$ $42/85$ 0.08 (0.01- Botis et al ¹⁸⁸ 1992 $8/8$ $14/112$ 8.00 (4.90-13.06) $0/8$ $98/112$ 0.06 (0.00- fistonic et al ¹⁷² 1997 $14/14$ 72.89 0.71 0.11 0.78 9.112 0.06 (0.00- fistonic et al ¹⁷⁸ 1997 $14/114$ $480/996$ 2.26 (1.22-2.1) $0/114$ $51/996$ 0.01 (0.00- fistonic et al ¹⁷⁶ 1997 $14/114$ $480/996$ 2.28 (1.95-2.21) $0/114$ $51/996$ 0.01 (0.00- fistonic et al ¹⁷⁶ 1997 $14/15$ $56/151$ 2.22 (1.66-3.22) $1/15$ $50/160$ $0/12$ $7/13$ 0.31 (0.02- fistonic et al ¹⁷⁸ 1997 $1/1$ $50/76$ $87/172$ 0.66 (0.06- fistonic et al ¹⁶⁸ 1996 $5/5$ $85/172$ 2.02 (1.74-2.35) $0/1$ $37/97$ 0.65 (0.06- fistonic et al ¹⁶⁸ 1994 $4/4$ $30/11$ $37/97$ 0.65 (0.06- fistonic et al ¹⁶⁸ 1994 $4/4$ $30/11$ $37/97$ 0.65 (0.06- fistonic et al ¹⁶⁸ 1994 $4/4$ $30/11$ $31/7172$ 0.16 (0.01- fistonic et al ¹⁶⁸ 1994 $30/11$ $30/11$							0.06 (0.00-0.88		
Bakour et al ¹⁷⁸ 1999 11/11 43/85 198 (1.60-2.44) 0/11 42/85 0.08 (0.01- Botsis et al ¹⁷³ 1997 14/14 72/89 1.24 (1.12-1.37) 0/14 17/89 0.07 (0.01- Garati et al ¹⁸⁰ 1999 59/60 240/359 1.47 (1.36-1.59) 1/60 119/359 0.05 (0.01- Granberg et al ¹⁷² 1997 114/114 480/996 2.08 (1.95-2.21) 0/114 516/996 0.01 (0.00- Guner et al ¹⁸¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Tsuda et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- Varner et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02- S mm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁸¹ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶⁴ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.13- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶⁴ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Granberg et al ¹⁶⁴ 1994 7/7 16/22 1.38 (0.61-3.78) 0/7 6/22 0.22 (0.01- Granberg et al ¹⁶⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁶⁴ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Loverno et al ¹⁷⁹ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.00- Nasri et al ¹⁶⁴ 1993 14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Nasri et al ¹⁶⁴ 1996 19/69 43/85 2.35 (1.55-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 18/19 9/6131 1.29 (1.11-1.50) 1/19 35/131 0.20 (0.03- Suchocki et al ¹⁷⁹ 1998 2/22 70/178 2.31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Marito et al ¹⁶⁹ 1998 20/22 70/178 2.31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Moreles et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.04- Mardingoz et al ¹⁶⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09-	Zannoni et al ¹⁵⁰ 1994	55/56	331/705	2.09 (1.92-2.28)	1/56	374/705	0.03 (0.00-0.24		
Bakour et al ¹⁷⁸ 1999 11/11 43/85 198 (1.60-2.44) 0/11 42/85 0.08 (0.01- Botsis et al ¹⁷³ 1997 14/14 72/89 1.24 (1.12-1.37) 0/14 17/89 0.07 (0.01- Grantier et al ¹⁸⁰ 1999 59/60 240/359 1.47 (1.36-1.59) 1/60 119/359 0.05 (0.01- Granter et al ¹⁸¹ 1997 114/114 480/996 2.08 (1.95-2.21) 0/114 516/996 0.01 (0.00- Guner et al ¹⁷⁵ 1997 114/114 480/996 2.08 (1.95-2.21) 0/114 516/996 0.01 (0.00- Haller et al ¹¹⁹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Tsuda et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- Varner et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02- Smm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶⁶ 1996 24/24 75/26 3.01 (2.57-3.83) 0/24 151/226 0.03 (0.04- Granberg et al ¹⁶⁶ 1996 24/24 75/26 3.01 (2.57-3.83) 0/24 151/226 0.03 (0.04- Granberg et al ¹⁶⁶ 1996 24/24 75/226 3.01 (2.57-3.83) 0/24 151/226 0.03 (0.04- Granberg et al ¹⁶⁶ 1996 24/24 75/226 3.01 (2.57-3.83) 0/7 6.22 0.22 (0.01- Gupt et al ¹⁰⁶ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hänggi et al ¹⁶⁶ 1996 2/3 26/72 1.38 (0.61-1.78) 0/7 622 0.22 (0.01- Gupt et al ¹⁰⁶ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Hänggi et al ¹⁶⁶ 1996 19/14 31/82 2.55 (1.57-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1998 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁸⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁸⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Naris et al ¹⁶⁶ 1996 24/24 7.75 (2.52 (1.53-2.27) 0/14 18/42 0.08 (0.00- Naris et al ¹⁶⁹ 1998 14/15 31/88 2.56 (1.94-3.63) 1/15 57/88 0.10 (0.02- Naris et al ¹⁶⁹ 1998 14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Naris et al ¹⁶⁹ 1998 2/2 70/178 2.35 (1.53-2.4) 0/6 51/83 0.02 (0.004 Malinova et al ¹⁶⁹ 1998 2/2 70/178 2.31 (1.85-2.90) 2/22 108/178 0.15 (0.04- R	4 mm								
Botsis et al ¹⁸⁸ 1992 8/8 14/112 8.00 (4.90-13.06) 0/8 98/112 0.06 (0.004- Fistonic et al ¹⁷² 1997 14/14 72/89 1.24 (1.12-1.37) 0/14 17/89 0.17 (0.01- Garanti et al ¹⁸⁶ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.004- Haller et al ¹⁷² 1997 14/114 480/996 2.08 (195-2.21) 0/114 516/996 0.01 (0.004- Guner et al ⁶⁸ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.004- Haller et al ¹⁷⁵ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- Varner et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02- S nm Abu-Ghazzeh et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- S nm Abu-Ghazzeh et al ¹⁶⁶ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁶⁶ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Grapberg et al ¹⁶⁸ 1996 2/3 26/72 1.88 (106-1.78) 0/7 6/22 0.22 (0.10- Garaberg et al ¹⁶⁹ 1996 2/3 26/72 1.88 (106-1.78) 0/7 6/22 0.22 (0.10- Gut et al ¹⁶⁹ 1996 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Karlsson et al ¹⁶⁹ 1993 14/15 31/88 2.65 (194-3.63) 1/3 46/72 0.52 (0.10- Karlsson et al ¹⁶⁹ 1993 14/15 31/88 2.65 (194-3.63) 1/15 57/88 0.10 (0.02- Karlsson et al ¹⁶⁹ 1998 19/1 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁴⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hanggi et al ¹⁴⁹ 1996 2/3 26/72 1.83 (106-1.78) 0/7 6/22 0.02 (0.00- Matrix et al ¹⁶⁹ 1993 14/15 31/88 2.65 (194-3.63) 1/15 57/88 0.10 (0.02- Karlsson et al ¹⁶⁹ 1993 14/15 31/88 2.65 (194-3.63) 1/15 57/88 0.00 (0.02- Hanggi et al ¹⁴⁴ 1991 6/6 32/33 2.59 (1.57-3.14) 0/6 51/33 0.12 (0.01- Nasri et al ¹⁶⁹ 1998 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.01 0(0.01- Karlsson et al ¹⁶⁹ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01- Taviani et al ¹⁶⁹ 1998 28/28 89/101 1.13 (1.61-2.2) 0/28 12/101 0.14 (0.01- Suchock et al ¹⁷⁹ 1996 4/4 18/50 2.78 (1.52-90) 2/22 108/178 0.15 (0.044 Rudigoz et al ¹⁹⁹ 1998 2/2 70/178 2.31 (1.		11/11	43/85	1.98 (1.60-2.44)	0/11	42/85	0.08 (0.01-1.28		
Fistonic et al. ¹⁷² 1997 14/14 72/89 124 (112-137) 0/14 17/89 0.17 (0.01- Garuti et al. ¹⁸⁰ 1999 59/60 240/359 1.47 (1.361.39) 1/60 119/359 0.05 (0.01- Granberg et al. ¹⁸² 1997 114/114 480/996 2.08 (195-2.21) 0/114 516/996 0.01 (0.00- Guner et al. ¹⁶⁸ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.00- Haller et al. ¹¹⁷ 1997 14/15 56/151 2.52 (196-3.22) 1/15 95/151 0.11 (0.02- S mm Abu-Ghazzeh et al. ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al. ¹⁶⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al. ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Cacciatore et al. ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al. ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al. ¹⁶¹ 1994 7/7 16/22 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.04- Granberg et al. ¹⁶¹ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.04- Granberg et al. ¹⁶¹ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.01- Gupta et al. ¹⁹⁵ 1996 7/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.01- Gupta et al. ¹⁹⁶ 1996 18/2 11 5/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- lvanov et al. ¹⁹⁶ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Marrison et al. ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Loverno et al. ¹⁹⁹ 1999 25/25 13/81 6.23 (3.79-10.25) 0/25 68/81 0.02 (0.00- Marris et al. ¹⁶¹ 1991 6/6 2/3 2.59 (1.93-3.63) 1/15 57/88 0.10 (0.01- Rarrison et al. ¹⁶⁹ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.01- Nasri et al. ¹⁶¹ 1991 6/6 32/83 2.59 (1.57-3.14) 0/6 42/85 0.02 (0.00- Marrison et al. ¹⁶⁹ 1998 2.4/24 175 (1.35-2.27) 0/14 18/42 0.08 (0.01- Rarrison et al. ¹⁶⁹ 1998 2.4/24 175 (1.35-2.27) 0/14 18/42 0.08 (0.01- Nasri et al. ¹⁶¹ 1991 6/6 32/83 2.59 (1.93-3.63) 1/15 57/86 0.10 (0.01- Nasri et al. ¹⁶¹ 1991 6/6 32/83 2.59 (1.54-3.40) 0/2 2.1/39 0.31 (0.02- Weber et al. ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 3.8/97 0.04 (0.01- Surabicki et al. ¹⁶⁷ 1996 4/4 18/50 2	Botsis et al ¹⁵⁸ 1992			· · · · · · · · · · · · · · · · · · ·			0.06 (0.00-0.94		
Garuti et al ¹⁸⁰ 1999 59/60 240/359 1.47 (1.36-1.59) 1/60 119/359 0.05 (0.01- Granberg et al ¹⁷² 1997 114/114 480/996 2.08 (1.95-2.21) 0/114 516/996 0.01 (0.00- Haller et al ¹⁸¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Tsuda et al ¹⁷⁰ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.02- S mm Abu-Ghazzh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁰⁶ 1998 5/5 85/172 2.02 (1.74-2.35) 0/2 7/13 0.31 (0.02- S caciatore et al ¹⁸¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.3- Cacciatore et al ¹⁸¹ 1994 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Grapherg et al ¹⁰⁶ 1998 2/2 42/4 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Grigoriou et al ¹⁰⁶ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Grigoriou et al ¹⁰⁶ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.22 (0.01- Gupta et al ¹⁰⁷ 1997 1/3 12/47 1.21 (0.24-6.96) 2/3 35/47 0.90 (0.40- Grapherg et al ¹⁰⁸ 1998 5/5 85/172 0.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hänggi et al ¹¹⁸ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Hänggi et al ¹¹⁸ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Malinova et al ¹¹⁹ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.01- Karlsson et al ¹⁰⁹ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.01- Mari et al ¹⁶⁶ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Mari et al ¹⁶⁹ 1998 10/10 31/74 2.99 (1.31 1.29 (1.11-1.50) 1/19 35/131 0.20 (0.31- Mari et al ¹⁶¹ 1989 7/7 19/56 2.95 (2.55-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ¹⁶¹ 1998 20/22 18/39 2.17 (1.54-3.04) 0/2 21/39 0.31 (0.02- Taviani et al ¹⁹¹ 1995 2/2 18/39 2.17 (1.54-3.04) 0/2 21/39 0.31 (0.02- Moreles et al ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.04 (0.01- Taviani et al ¹⁹² 1998 20/22 70/178 2.31 (1.85-2.90) 2/22 108/178 0.15 (0.04-4 Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09- 8 mm Gruboeck et al ¹⁶⁷ 19							0.17 (0.01-2.70		
Granberg et al ¹⁷² 1997 114/114 480/996 2.08 (1.95-2.21) 0/114 516/996 0.01 (0.00-Guner et al ¹⁶⁸ 1996 19/19 92/173 1.88 (1.64-2.16) 0/19 81/173 0.05 (0.00-Guner et al ¹⁶⁷ 1997 Halle et al ¹⁷¹ 1996 16/16 48/65 1.55 (1.17-1.56) 0/16 17/65 0.11 (0.02-Guner et al ¹⁵⁷ 1991 Yamer et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02-Guner et al ¹⁶¹ 1994 Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06-Guner et al ¹⁶¹ 1994 Granberg et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03-Guner et al ¹⁶¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40-Guner et al ¹⁶¹ 1994 0/7 1.62 (1.38-1.89) 0/24 151/226 0.30 (0.04-Guner et al ¹⁶¹ 1997 0.77 (0.00-Guner et al ¹⁶³ 1997 1/6 2/7 35/47 0.90 (0.40-Guner et al ¹⁶¹ 1997 0.77 (0.00-Guner et al ¹⁶¹ 1996 2/3 (2.67-2 1.88 (1.66-1.78) 0/7 (2.2 (0.01-Guner et al ¹⁶¹ 1996 2/3 (2.67-2 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.10-Guner et al ¹⁶¹ 1996 1/	Garuti et al ¹⁸⁰ 1999						0.05 (0.01-0.35		
Guner et al ¹⁶⁸ 1996 19/19 92/173 1.88 (1.64.2.16) 0/19 81/173 0.05 (0.004) Haller et al ³¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Sumer et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02- Smm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Desilva et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Granberg et al ¹⁶¹ 1997 1/3 12/47 1.31 (0.24-696) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 15/1226 0.03 (0.00- Grigoriou et al ¹⁶⁶ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 15/1226 0.03 (0.00- Gu et al ¹⁶⁹ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Hanggi et al ¹⁹⁵ 1994 7/7 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Varlsov et al ¹⁷⁹ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.01- Varlsov et al ¹⁶⁹ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Marizson et al ¹⁶⁶ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.02 (0.00- Marz et al ¹⁶⁹ 1996 59/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Marz et al ¹⁶⁹ 1996 69/69 43/85 2.25 (1.55-2.27) 0/14 18/42 0.08 (0.00- Marz et al ¹⁶⁹ 1996 14/14 24/42 1.75 (1.55-2.27) 0/14 18/42 0.08 (0.00- Marz et al ¹⁶⁹ 1996 69/69 43/85 2.25 (1.98-3.40) 0/6 51/83 0.12 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.5-4.25) 0/7 37.56 0.10 (0.01- Nasri et al ¹⁶⁹ 1996 69/69 43/83 2.259 (1.98-3.40) 0/6 51/83 0.12 (0.01- Nasri et al ¹⁶⁹ 1996 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.0.10 (0.01- Nasri et al ¹⁶⁹ 1998 20/22 70/178 231 (1.85-2.90) 2/22 108/178 0.15 (0.044 Rudigoz et al ¹⁷⁹ 1998 20/22 70/178 231 (1.85-2.90) 2/22 108/178 0.15 (0.044 Rudigoz et al ¹⁹⁹ 1998 2/22 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02- 15 mm Grubocck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.064- Single layer endometrial thickness measurement	Granberg et al 172 1997						0.01 (0.00-0.13		
Haller et al ³¹ 1996 16/16 48/65 1.35 (1.17-1.56) 0/16 17/65 0.11 (0.01- Tsuda et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96.3.22) 1/15 95/151 0.11 (0.02- S mm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁰⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.33- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹³⁶ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 15/1/226 0.03 (0.00- Gigpta et al ¹⁹⁵ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Gupta et al ¹⁹⁵ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Vanov et al ¹⁹⁶ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.01- Karlsson et al ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Hanggi et al ¹⁴⁶ 1999 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Havaro et al ¹⁶⁶ 1996 25/25 13/81 6.23 (3.79-10.25) 0/25 68/81 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 19/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 19/14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴¹⁰ 1996 16/62 59/97 1.62 (1.37-1.90) 1/19 35/131 0.20 (0.03- Suchocki et al ²⁰⁰ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01- Taviani et al ⁴¹⁰ 1995 2/2 18/39 2.17 (1.54-3.04) 0/2 21/39 0.31 (0.02- Moreles et al ¹⁰⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09- 8 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-4- Single layer endometrial thickness measurement	Guner et al 168 1996						0.05 (0.00-0.83		
Tsuda et al ¹⁷⁶ 1997 14/15 56/151 2.52 (1.96-3.22) 1/15 95/151 0.11 (0.024) Varner et al ¹⁵⁷ 1991 2/2 6/13 2.17 (1.20-3.90) 0/2 7/13 0.31 (0.02- 5 mm Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/141 0.37 (0.03- Cacciatore et al ¹⁶¹ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Grigoriou et al ¹⁶⁹ 1996 2/4 75/26 3.01 (2.50-3.63) 1/15 57/88 0.10 (0.22- Hangi et al ¹¹⁸¹ 1995 18/21 15/70 4.40 (2.47-6.47) 3/21 55/70 0.18 (0.06-				· · · · · · · · · · · · · · · · · · ·					
Varner et al $2/2$ $6/13$ 2.17 (1.20-3.90) $0/2$ $7/13$ 0.31 (0.02-4S mmAbu-Ghazzeh et al 18^{11} 1999 $1/1$ $60/97$ 1.62 (1.38-1.89) $0/1$ $37/97$ 0.65 (0.06-5Briley et al 10^{108} 1998 $5/5$ $85/172$ 2.02 (1.74-2.35) $0/5$ $87/172$ 0.16 (0.01-5Cacciatore et al 11^{10} 1994 $4/4$ $30/41$ 1.37 (1.14-1.64) $0/4$ $11/41$ 0.37 (0.03-5Desilva et al 11^{10} 1997 $1/3$ $12/47$ 1.31 (0.24-6.96) $2/3$ $35/47$ 0.90 (0.40-5Granberg et al 11^{10} 1996 $24/24$ $75/226$ 3.01 (2.50-3.63) $0/24$ $151/226$ 0.03 (0.00-4Gupta et al 11^{10} 1996 $24/24$ $75/226$ 3.01 (2.50-3.63) $0/24$ $151/226$ 0.03 (0.00-4Gupta et al 11^{10} 1996 $24/24$ $75/226$ 3.01 (2.50-3.63) $0/74$ $151/226$ 0.02 (0.01-1Gupta et al 11^{10} 1996 $24/24$ $75/226$ 3.01 (2.50-3.63) $0/74$ $151/226$ 0.22 (0.01-1Hanggi et al 18^{19} 1995 $18/21$ $15/70$ 4.00 (2.47-6.47) $33.746/72$ 0.52 (0.10-6Maron et al 10^{10} 1998 $10/10$ $31/74$ 2.39 (1.83-3.12) $0/10$ $43/74$ 0.08 (0.01-1Karlsson et al 10^{10} 1993 $14/15$ $31/88$ 2.65 (1.94-3.63) $1/15$ $57/88$ 0.10 (0.02-1Marine et al 11^{10} 1996 $69/69$							0.11 (0.02-0.71		
5 mn Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06-7) Briley et al ¹⁰⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01-7) Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03-7) DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40-7) Granberg et al ¹³⁵ 1991 8/8 47/197 4.19 (3.27-5.38) 0/8 150/197 0.07 (0.00-7) Gupta et al ¹⁹⁶ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00-4) Gupta et al ¹⁹⁹ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.10-7) Hanggi et al ¹⁸⁹ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06-1) Karlsson et al ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02-4) Loverot et al ¹⁷⁹ 1998 10/10 31/74 2.95 (1.55-3.14) 0/69 42/85 0.02 (0.00									
Abu-Ghazzeh et al ¹⁸¹ 1999 1/1 60/97 1.62 (1.38-1.89) 0/1 37/97 0.65 (0.06- Briley et al ¹⁰⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁶¹ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Grigoriou et al ¹⁶⁶ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Gupta et al ¹⁹¹ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Gupta et al ¹⁹¹ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.10- Hanggi et al ¹⁸⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Ivanov et al ¹⁶⁹ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Loverro et al ¹⁶⁹ 1993 14/15 31/88 2.36 (1.75-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Malinova et al ¹⁶⁹ 1996 14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Nasri et al ¹⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ¹⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ¹⁴⁷ 1991 6/6 32/83 2.59 (1.98-3.40) 0/6 51/83 0.12 (0.01- Pertl et al ¹⁵⁷ 1996 18/19 96/131 1.29 (1.11-1.50) 1/19 35/131 0.20 (0.32- Taviani et al ¹⁴⁹ 1995 2/2 18/39 2.17 (1.54-3.04) 0/2 21/39 0.31 (0.02- Weber et al ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.04 (0.01- Taviani et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Rudigoz et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- 6 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06- 5 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06- 5 mm		<i>L</i> <i>L</i>	0/13	2.17 (1.20-3.90)	0/2	1113	0.51 (0.02-4.09)		
Briley et al ¹⁰⁸ 1998 5/5 85/172 2.02 (1.74-2.35) 0/5 87/172 0.16 (0.01- Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03- DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁸⁹ 1996 2/4/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Gu et al ¹⁹⁵ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.22 (0.01- Gupta et al ¹⁹⁹ 1998 1/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Hanggi et al ¹⁸⁴ 1995 18/21 15/70 4.00 (2.47-6.47) 3/21 55/70 0.18 (0.06- Ivanov et al ¹⁹⁷ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.01- Karlsson et al ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Malinova et al ¹⁶⁹ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Merz et al ¹⁸² 1990 14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/14 18/42 0.08 (0.00- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/14 18/42 0.08 (0.00- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/14 18/42 0.08 (0.00- Suchocki et al ²⁰⁰ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01- Suchocki et al ²⁰⁰ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01- Taviani et al ⁴⁷ 1996 41/4 18/50 2.78 (1.92-4.02) 0/4 32/50 0.16 (0.01- Grand et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Smm Gruboeck et al ¹⁹⁹ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02- Smm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06- Single layer endometrial thickness measurement		1 /1	(0/07	1 (2 (1 20 1 00)	0/1	27/07	0 (5 (0 0) 7 20		
Cacciatore et al ¹⁶¹ 1994 4/4 30/41 1.37 (1.14-1.64) 0/4 11/41 0.37 (0.03-1) DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 (0.24-6.96) 2/3 35/47 0.90 (0.40- Granberg et al ¹⁴³ 1991 8/8 47/197 4.19 (3.27-5.38) 0/8 150/197 0.07 (0.00- Grigoriou et al ¹⁶⁶ 1996 24/24 75/226 3.01 (2.50-3.63) 0/24 151/226 0.03 (0.00- Gu et al ¹⁹⁵ 1994 7/7 16/22 1.38 (1.06-1.78) 0/7 6/22 0.22 (0.01- Gupta et al ¹¹⁹ 1996 2/3 26/72 1.85 (0.78-4.35) 1/3 46/72 0.52 (0.10- Vanov et al ¹⁹⁷ 1998 10/10 31/74 2.39 (1.83-3.12) 0/10 43/74 0.08 (0.01- Karlsson et al ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Loverro et al ¹⁶⁰ 1993 14/15 31/88 2.65 (1.94-3.63) 1/15 57/88 0.10 (0.02- Loverro et al ¹⁶⁹ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00- Matri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴¹⁹ 1996 18/19 96/131 1.29 (1.11-1.50) 1/19 35/131 0.20 (0.03- Suchocki et al ¹⁰⁹ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01- Weber et al ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.04 (0.01- Wolman et al ¹⁷⁹ 1995 2/2 18/39 2.77 (1.54-3.04) 0/2 21/39 0.31 (0.02- Weber et al ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.04 (0.01- Wolman et al ¹⁷⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Rudigoz et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Rudigoz et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04- Single layer endometrial thickness measurement				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
DeSilva et al ¹⁷¹ 1997 1/3 12/47 1.31 ($0.24-6.96$) 2/3 35/47 0.90 ($0.40-5$ Granberg et al ¹⁸³ 1991 8/8 47/197 4.19 ($3.27-5.38$) 0/8 150/197 0.07 ($0.00-6$ Grigoriou et al ¹⁶⁶ 1996 24/24 75/226 3.01 ($2.50-3.63$) 0/24 151/226 0.03 ($0.00-6$ Gu et al ¹⁵⁹ 1994 7/7 16/22 1.38 ($10.6-1.78$) 0/7 6/22 0.22 ($0.11-6$ Gupta et al ¹⁸¹ 1995 18/21 15/70 4.00 ($2.47-6.47$) 3/21 55/70 0.18 ($0.06-1$ Karlsson et al ¹⁶⁰ 1993 14/15 31/88 2.65 ($19.43-63$) 1/15 57/88 0.10 ($0.02-4$ Loverro et al ¹⁷⁹ 1998 10/10 31/74 2.39 ($1.83-3.12$) 0/10 43/74 0.08 ($0.01-4$ Loverro et al ¹⁷⁹ 1999 25/25 13/81 6.23 ($3.79-10.25$) 0/25 68/81 0.02 ($0.00-4$ Malinova et al ¹⁶⁹ 1996 69/69 43/85 2.35 ($1.75-3.14$) 0/69 42/85 0.02 ($0.00-4$ Malinova et al ¹⁶⁹ 1990 14/14 24/42 1.75 ($1.35-2.27$) 0/14 18/42 0.08 ($0.00-4$ Nasri et al ¹⁴⁶ 1989 7/7 19/56 2.95 ($2.054.25$) 0/7 37/56 0.10 ($0.01-6$ Nasri et al ¹⁴⁴ 1991 6/6 32/83 2.59 ($1.98-3.40$) 0/6 51/83 0.12 ($0.01-6$ Nasri et al ¹⁴⁴ 1991 6/6 32/83 2.59 ($1.98-3.40$) 0/6 51/83 0.12 ($0.01-6$ Nasri et al ¹⁶⁹ 1996 18/19 96/131 1.29 ($1.11-1.50$) 1/19 35/131 0.20 ($0.03-6$ Suchocki et al ¹⁰⁹ 1998 28/28 89/101 1.13 ($1.06-1.22$) 0/28 12/101 0.14 ($0.01-7$ Taviani et al ¹⁹¹ 1995 2/2 18/39 2.17 ($1.54-3.04$) 0/2 21/39 0.31 ($0.02-6$ Weber et al ¹⁷⁷ 1998 61/62 59/97 1.62 ($1.37-1.90$) 1/62 38/97 0.04 ($0.01-7$ Wolman et al ¹⁷⁰ 1998 20/22 70/178 2-31 ($1.85-2.90$) 2/22 108/178 0.15 ($0.04-6$ Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 ($1.85-2.90$) 2/22 108/178 0.15 ($0.04-7$ Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 ($1.64-5.43$) 2/9 34/46 0.30 ($0.02-6$ 5 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 ($3.69-13.42$) 2/11 76/86 0.21 ($0.06-6$ Single layer endometrial thickness measurement							0.16 (0.01-2.35		
Granberg et al Grigoriou et al 1661996 $24/24$ $7/197$ 4.19 ($3.27-5.38$) $0/8$ $150/197$ 0.07 ($0.00-$ Grigoriou et al 166Gu et al 1994 $7/7$ $16/22$ 3.01 ($2.50-3.63$) $0/24$ $151/226$ 0.03 ($0.00-$ Gu et al 1994 $7/7$ $16/22$ 1.38 ($1.06-1.78$) $0/7$ $6/22$ 0.22 ($0.10-$ Hanggi et al 1994 119 1996 $2/3$ $26/72$ 1.85 ($0.784.35$) $1/3$ $46/72$ 0.52 ($0.10-$ Hanggi et al 1995 $18/21$ $15/70$ 4.00 ($2.47-6.47$) $3/21$ $55/70$ 0.18 ($0.06-$ Ivanov et al 1998 $10/10$ $31/74$ 2.39 ($1.83-3.12$) $0/10$ $43/74$ 0.08 ($0.01-$ Karlsson et al Halinova et al 1999 $25/25$ $13/81$ 6.23 ($3.79-10.25$) $0/25$ $68/81$ 0.02 ($0.00-$ Matinova et al Halinova et al 1996 $69/69$ $43/85$ 2.35 ($1.75-3.14$) $0/69$ $42/85$ 0.02 ($0.00-$ Marinova et al Halinova et al 1996 $14/14$ $24/42$ 1.75 ($1.35-2.27$) $0/14$ $18/42$ 0.08 ($0.00-$ Nasri et al Hali 1919 $6/6$ $32/83$ 2.59 ($1.98-3.40$) $0/6$ $51/83$ 0.12 ($0.01-$ Nasri et al Hali 1991 $6/6$ $32/83$ 2.59 ($1.54-3.14$) $0/2$ $1/31$ 0.20 ($0.02-$ Nasri et al Hali 1991 $6/6$ $32/83$ 2.59 ($1.54-3.20$) $0/2$ $1/21/01$ 0.14 ($0.01-$ Nucri et al Hali 1991									
Grigoriou et al 166 1996 $24/24$ $75/226$ 3.01 ($2.50-3.63$) $0/24$ $151/226$ 0.03 ($0.00-4$ Gu et al 119 1994 $7/7$ $16/22$ 1.38 ($1.06-1.78$) $0/7$ $6/22$ 0.22 ($0.01-5$)Gupta et al 119 1996 $2/3$ $26/72$ 1.85 ($0.78-4.35$) $1/3$ $46/72$ 0.52 ($0.10-5$)Wanov et al 199 1995 $18/21$ $15/70$ 4.00 ($2.47-6.47$) $3/21$ $55/70$ 0.18 ($0.06-1$)Karlsson et al 160 1993 $14/15$ $31/74$ 2.39 ($1.83-3.12$) $0/10$ $43/74$ 0.08 ($0.01-6$)Karlsson et al 160 1993 $14/15$ $31/88$ 2.65 ($1.94-3.63$) $1/15$ $57/88$ 0.10 ($0.02-4$ Loverro et al 179 1999 $25/25$ $13/81$ 6.23 ($3.79-10.25$) $0/25$ $68/81$ 0.02 ($0.00-6$ Malinova et al 160 1996 $69/69$ $43/85$ 2.35 ($1.75-3.14$) $0/69$ $42/85$ 0.02 ($0.00-6$ Masri et al 46 1989 $7/7$ $19/56$ 2.95 ($2.05-4.25$) $0/7$ $37/56$ 0.10 ($0.01-7$ Nasri et al 49 1991 $6/6$ $32/83$ 2.59 ($1.98-3.40$) $0/6$ $51/83$ 0.12 ($0.01-7$ Nasri et al 199 1998 $28/28$ $89/101$ 1.13 ($1.06-1.22$) $0/28$ $12/101$ 0.14 ($0.01-7$ Variani et al 199 1998 $2/22$ $18/39$ 2.17 ($1.54-3.04$) $0/2$ $21/39$ 0.31 ($0.02-7$ Weber							0.90 (0.40-2.03		
Gu et al19519947/716/221.38 (1.06-1.78)0/76/220.22 (0.01-2)Gupta et al1919962/326/721.85 (0.78-4.35)1/346/720.52 (0.10-2)Hänggi et al184199518/2115/704.00 (2.47-6.47)3/2155/700.18 (0.06-4)Ivanov et al197199810/1031/742.39 (1.83-3.12)0/1043/740.08 (0.01-2)Loverro et al199199314/1531/882.65 (1.94-3.63)1/1557/880.10 (0.02-4)Loverro et al199199669/6943/852.35 (1.75-3.14)0/6942/850.02 (0.00-4)Malinova et al169199669/6943/852.35 (1.75-3.14)0/6942/850.02 (0.00-4)Marri et al181199014/1424/421.75 (1.35-2.27)0/1418/420.08 (0.00-7)Nasri et al14419916/632/832.59 (1.98-3.40)0/651/830.12 (0.01-7)Pertl et al187199618/1996/1311.29 (1.11-1.50)1/1935/1310.20 (0.03-7)Suchocki et al200199828/2889/1011.13 (1.06-1.22)0/2812/1010.14 (0.01-7)Taviani et al19119952/218/392.17 (1.54-3.04)0/221/390.31 (0.02-7)Weber et al 177199861/6259/971.62 (1.37-1.90)1/6238/970.04 (0.01-4)Wolman et al17019964/418/502.78 (1.92-4.02)0/432/500.	Granberg et al ⁴⁵ 1991						0.07 (0.00-1.08		
Gupta et al 1^{119} $2/3$ $26/72$ 1.85 $(0.78-4.35)$ $1/3$ $46/72$ 0.52 $(0.10-4)$ Hänggi et al 1^{184} 1995 $18/21$ $15/70$ 4.00 $(2.47-6.47)$ $3/21$ $55/70$ 0.18 $(0.06-4)$ Ivanov et al 1^{199} 1998 $10/10$ $31/74$ 2.39 $(1.83-3.12)$ $0/10$ $43/74$ 0.08 $(0.01-6)$ Karlsson et al 1^{169} 1993 $14/15$ $31/88$ 2.65 $(1.94-3.63)$ $1/15$ $57/88$ 0.10 $(0.02-6)$ Malinova et al 1^{169} 1996 $69/69$ $43/85$ 2.35 $(1.75-3.14)$ 0.69 $42/85$ 0.22 $(0.00-6)$ Marri et al 1^{182} 1990 $14/14$ $24/42$ 1.75 $(1.35-2.27)$ $0/14$ $18/42$ 0.08 $(0.00-7)$ Nasri et al 1^{49} 1996 $18/19$ $96/131$ 1.29 $(1.1-50)$ $1/19$ $35/131$ 0.20 $(0.03-7)$ Nasri et al 1^{20} 1998 $28/28$ $89/101$ 1.13 $(1.66-1.22)$ $0/28$ $12/101$ 0.14 $(0.01-7)$ Nasri et al 1^{19} 1995 $2/2$ $18/39$ 2.17 $(1.54-3.04)$ $0/2$ $21/39$ 0.31 (0.22) Nuch et al 1^{179} 1998 $61/62$ $59/97$ 1.62 $(1.37-1.90)$ $1/62$ $38/97$ 0.04 $(0.01-4)$ Wolman et al 1^{179} 1998 $20/22$ $70/178$ $2-31$ <	Grigoriou et al ¹⁶⁶ 1996						0.03 (0.00-0.47		
Hänggi et al18/115/704.00(2.47-6.47)3/2155/700.18(0.06-4)Ivanov et al197199810/1031/742.39(1.83-3.12)0/1043/740.08(0.01-Karlsson et al199314/1531/882.65(1.94-3.63)11/1557/880.10(0.02-4)Loverro et al179199925/2513/816.23(3.79-10.25)0/2568/810.02(0.00-4)Malinova et al169199669/6943/852.35(1.75-3.14)0/6942/850.02(0.00-4)Marie et al182199014/1424/421.75(1.35-2.27)0/1418/420.08(0.00-Nasri et al18997/719/562.95(2.05-4.25)0/737/560.10(0.01-Nasri et al18/1996/1311.29(1.11-1.50)1/1935/1310.20(0.03-Suchocki et al1200199828/2889/1011.13(1.06-1.22)0/2812/1010.14(0.01-2)Weber et al11952/218/392.17(1.54-3.04)0/221/390.31(0.02-2)Weber et al1199199820/2270/1782-31(1.85-2.90)2/22108/1780.15(0.04-4)Rudigoz et al1199199820/2270/1782-31(1.85-2.90)2/22108/1780.15(0.04-4)Rudigoz et al11991	Gu et al ¹⁹⁵ 1994						0.22 (0.01-3.50		
Ivanov et al 19^{17} 1998 $10/10$ $31/74$ 2.39 (1.83- 3.12) $0/10$ $43/74$ 0.08 (0.01-Karlsson et al 16^{10} 1993 $14/15$ $31/88$ 2.65 (1.94- 3.63) $1/15$ $57/88$ 0.10 (0.02-4Loverro et al 1^{19} 1999 $25/25$ $13/81$ 6.23 ($3.79-10.25$) $0/25$ $68/81$ 0.02 (0.00-4Malinova et al 16^{19} 1996 $69/69$ $43/85$ 2.35 ($1.75-3.14$) $0/69$ $42/85$ 0.02 (0.00-4Merz et al 18^{12} 1990 $14/14$ $24/42$ 1.75 ($1.35-2.27$) $0/14$ $18/42$ 0.08 (0.00 -Nasri et al 14^{41} 1991 $6/6$ $32/83$ 2.59 ($1.98-3.40$) $0/6$ $51/83$ 0.12 (0.01 -Pertl et al 18^{19} 96/131 1.29 ($1.11-1.50$) $1/19$ $35/131$ 0.20 (0.03 -Suchocki et al 10^{20} 1998 $28/28$ $89/101$ 1.13 ($1.06-1.22$) $0/28$ $12/101$ 0.14 ($0.01-7$ Taviani et al 1^{101} 1995 $2/2$ $18/39$ 2.17 ($1.54-3.04$) $0/2$ $21/39$ 0.31 ($0.02-7$ Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 ($1.37-1.90$) $1/62$ $38/97$ 0.04 ($0.01-7$ Wolman et al 1^{101} 1996 $4/4$ $18/50$ 2.78 ($1.92-4.02$) $0/4$ $32/50$ 0.16 ($0.01-7$ 6 mm 10^{199} 1998 $20/22$ $70/178$ 2.31 ($1.85-2.90$) $2/22$ $108/178$ 0.15 ($0.02-7$ S mm <td cols<="" td=""><td>Gupta et al¹¹⁹ 1996</td><td></td><td></td><td></td><td></td><td></td><td>0.52 (0.10-2.61</td></td>	<td>Gupta et al¹¹⁹ 1996</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.52 (0.10-2.61</td>	Gupta et al ¹¹⁹ 1996						0.52 (0.10-2.61	
Karlsson et al $14/15$ $31/88$ 2.65 $(1.94-3.63)$ $1/15$ $57/88$ 0.10 $(0.02-4)$ Loverro et al 1^{79} 1999 $25/25$ $13/81$ 6.23 $(3.79-10.25)$ $0/25$ $68/81$ 0.02 $(0.00-4)$ Malinova et al 1^{169} 1996 $69/69$ $43/85$ 2.35 $(1.75-3.14)$ $0/69$ $42/85$ 0.02 $(0.00-4)$ Merz et al 182 1990 $14/14$ $24/42$ 1.75 $(1.35-2.27)$ $0/14$ $18/42$ 0.08 $(0.00-1)$ Nasri et al 1999 $7/7$ $19/56$ 2.95 $(2.05-4.25)$ $0/7$ $37/56$ 0.10 $(0.01-7)$ Nasri et al 1991 $6/6$ $32/83$ 2.59 $(1.98-3.40)$ $0/6$ $51/83$ 0.12 $(0.01-7)$ Nasri et al 1^{191} 1996 $18/19$ $9/6/131$ 1.29 $(1.11-1.50)$ $1/19$ $35/131$ 0.20 $(0.03-7)$ Suchocki et al 1^{200} 1998 $28/28$ $89/101$ 1.13 $(1.06-1.22)$ $0/28$ $12/101$ 0.14 $(0.01-7)$ Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 $(1.54-3.04)$ $0/2$ $21/39$ 0.31 $(0.2-6)$ Weber et al 1^{170} 1998 $61/62$ $59/97$ 1.62 $(1.37-1.90)$ $1/62$ $38/97$ 0.04 $(0.01-7)$ Wolman et al 1^{199} 1993 $7/9$ $12/46$ 2.98 $(1.64-5.43)$ $2/9$	Hänggi et al ¹⁸⁴ 1995	18/21	15/70	4.00 (2.47-6.47)	3/21	55/70	0.18 (0.06-0.52		
Loverro et al ¹⁷⁹ 1999 25/25 13/81 6.23 (3.79-10.25) 0/25 68/81 0.02 (0.00-4 Malinova et al ¹⁶⁹ 1996 69/69 43/85 2.35 (1.75-3.14) 0/69 42/85 0.02 (0.00-4 Merz et al ¹⁸² 1990 14/14 24/42 1.75 (1.35-2.27) 0/14 18/42 0.08 (0.00- Nasri et al ⁴⁶ 1989 7/7 19/56 2.95 (2.05-4.25) 0/7 37/56 0.10 (0.01- Nasri et al ⁴⁴ 1991 6/6 32/83 2.59 (1.98-3.40) 0/6 51/83 0.12 (0.01- Pertl et al ¹⁸⁷ 1996 18/19 96/131 1.29 (1.11-1.50) 1/19 35/131 0.20 (0.03- Suchocki et al ²⁰⁰ 1998 28/28 89/101 1.13 (1.06-1.22) 0/28 12/101 0.14 (0.01-2 Taviani et al ¹⁹¹ 1995 2/2 18/39 2.17 (1.54-3.04) 0/2 21/39 0.31 (0.02-2 Weber et al ¹⁷⁷ 1998 61/62 59/97 1.62 (1.37-1.90) 1/62 38/97 0.04 (0.01- Wolman et al ¹⁷⁰ 1996 4/4 18/50 2.78 (1.92-4.02) 0/4 32/50 0.16 (0.01-2 6 mm Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04-4 Rudigoz et al ¹⁹⁸ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09- 8 mm Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-4 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-4 Single layer endometrial thickness measurement		10/10	31/74	2.39 (1.83-3.12)	0/10	43/74	0.08 (0.01-1.18		
Malinova et al 1^{169} 1996 $69/69$ $43/85$ 2.35 (1.75-3.14) $0/69$ $42/85$ 0.02 (0.00-4Merz et al 1^{182} 1990 $14/14$ $24/42$ 1.75 (1.35-2.27) $0/14$ $18/42$ 0.08 (0.00-Nasri et al 4^{14} 1991 $6/6$ $32/83$ 2.59 (2.05-4.25) $0/7$ $37/56$ 0.10 (0.01-Nasri et al 1^{44} 1991 $6/6$ $32/83$ 2.59 (1.98-3.40) $0/6$ $51/83$ 0.12 (0.01-Pertl et al 1^{187} 1996 $18/19$ $96/131$ 1.29 (1.11-1.50) $1/19$ $35/131$ 0.20 (0.03-Suchocki et al 1^{200} 1998 $28/28$ $89/101$ 1.13 (1.06-1.22) $0/28$ $12/101$ 0.14 (0.01-2Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 (1.54-3.04) $0/2$ $21/39$ 0.31 (0.02-2Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 (1.37-1.90) $1/62$ $38/97$ 0.04 (0.01-4Wolman et al 1^{100} 1996 $4/4$ $18/50$ 2.78 (1.92-4.02) $0/4$ $32/50$ 0.16 (0.01-26 mm 0.212 $70/178$ $2-31$ (1.85-2.90) $2/22$ $108/178$ 0.15 (0.04-4Rudigoz et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ (1.85-2.90) $2/22$ $108/178$ 0.33 (0.02-47 fodorova et al 1^{198} 1993 $7/9$ $12/46$ 2.98 (1.64-5.43) $2/9$ $34/46$ 0.33 (0.02-415 mmGruboeck et al 1^{167} 1996 $9/11$		14/15	31/88	2.65 (1.94-3.63)	1/15	57/88	0.10 (0.02-0.69		
Merz et al 1122 1990 $14/14$ $24/42$ 1.75 ($1.35-2.27$) $0/14$ $18/42$ 0.08 ($0.00-$ Nasri et al 146 1989 $7/7$ $19/56$ 2.95 ($2.05-4.25$) $0/7$ $37/56$ 0.10 ($0.01-$ Nasri et al 1491 $6/6$ $32/83$ 2.59 ($1.98-3.40$) $0/6$ $51/83$ 0.12 ($0.01-$ Pertl et al 1871 996 $18/19$ $96/131$ 1.29 ($1.11-1.50$) $1/19$ $35/131$ 0.20 ($0.03-$ Suchocki et al 1200 1998 $28/28$ $89/101$ 1.13 ($1.06-1.22$) $0/28$ $12/101$ 0.14 ($0.01-2$ Taviani et al 1991 1995 $2/2$ $18/39$ 2.17 ($1.54-3.04$) $0/2$ $21/39$ 0.31 ($0.02-2$ Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 ($1.37-1.90$) $1/62$ $38/97$ 0.04 ($0.01-4$ Wolman et al 1^{100} 1996 $4/4$ $18/50$ 2.78 ($1.92-4.02$) $0/4$ $32/50$ 0.16 ($0.01-2$ 6 mm $Moreles et al^{199}$ 1998 $20/22$ $70/178$ $2-31$ ($1.85-2.90$) $2/22$ $108/178$ 0.15 ($0.04-6$ Rudigoz et al 1^{199} 1993 $7/9$ $12/46$ 2.98 ($1.64-5.43$) $2/9$ $34/46$ 0.30 ($0.02-6$ 8 mm T T $10/86$ 7.04 ($3.69-13.42$) $2/11$ $76/86$ 0.21 ($0.06-6$ Single layer endometrial thickness measurement		25/25	13/81	6.23 (3.79-10.25)	0/25	68/81	0.02 (0.00-0.36		
Nasri et al 46 1989 $7/7$ $19/56$ 2.95 ($2.05-4.25$) $0/7$ $37/56$ 0.10 ($0.01-$ Nasri et al 44 1991 $6/6$ $32/83$ 2.59 ($1.98-3.40$) $0/6$ $51/83$ 0.12 ($0.01-$ Pertl et al 187 1996 $18/19$ $96/131$ 1.29 ($1.11-1.50$) $1/19$ $35/131$ 0.20 ($0.03-$ Suchocki et al 200 1998 $28/28$ $89/101$ 1.13 ($1.06-1.22$) $0/28$ $12/101$ 0.14 ($0.01-7$ Taviani et al 191 1995 $2/2$ $18/39$ 2.17 ($1.54-3.04$) $0/2$ $21/39$ 0.31 ($0.02-7$ Weber et al 177 1998 $61/62$ $59/97$ 1.62 ($1.37-1.90$) $1/62$ $38/97$ 0.04 ($0.01-7$ Wolman et al 170 1996 $4/4$ $18/50$ 2.78 ($1.92-4.02$) $0/4$ $32/50$ 0.16 ($0.01-7$ 6 mm M M $1.92-4.02$ $0/4$ $32/50$ 0.16 ($0.01-7$ Rudigoz et al 199 1998 $20/22$ $70/178$ $2-31$ ($1.85-2.90$) $2/22$ $108/178$ 0.15 ($0.04-6$ 8 mm T T $2/2$ $4/8$ 2.00 ($1.00-4.00$) $0/2$ $4/8$ 0.33 ($0.02-6$ 15 mm G $9/11$ $10/86$ 7.04 ($3.69-13.42$) $2/11$ $76/86$ 0.21 ($0.06-6$ Single layer endometrial thickness measurement	Malinova et al ¹⁶⁹ 1996	69/69	43/85	2.35 (1.75-3.14)	0/69	42/85	0.02 (0.00-0.24		
Nasri et al $6/6$ $32/83$ 2.59 $(1.98-3.40)$ $0/6$ $51/83$ 0.12 $(0.01-9)$ Pertl et al 187 1996 $18/19$ $96/131$ 1.29 $(1.11-1.50)$ $1/19$ $35/131$ 0.20 $(0.03-9)$ Suchocki et al 200 1998 $28/28$ $89/101$ 1.13 $(1.06-1.22)$ $0/28$ $12/101$ 0.14 $(0.01-7)$ Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 $(1.54-3.04)$ $0/2$ $21/39$ 0.31 $(0.02-7)$ Weber et al 1^{170} 1998 $61/62$ $59/97$ 1.62 $(1.37-1.90)$ $1/62$ $38/97$ 0.04 $(0.01-7)$ Wolman et al 1^{170} 1996 $4/4$ $18/50$ 2.78 $(1.92-4.02)$ $0/4$ $32/50$ 0.16 $(0.01-7)$ 6mmMoreles et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ $(1.85-2.90)$ $2/22$ $108/178$ 0.15 $(0.04-6)$ Rudigoz et al 1^{194} 1993 $7/9$ $12/46$ 2.98 $(1.64-5.43)$ $2/9$ $34/46$ 0.30 $(0.02-6)$ 8mm $10/86$ 7.04 $(3.69-13.42)$ $2/11$ $76/86$ 0.21 $(0.06-6)$ Single layer endometrial thickness measurement	Merz et al ¹⁸² 1990	14/14	24/42	1.75 (1.35-2.27)	0/14	18/42	0.08 (0.00-1.21		
Nasri et al $6/6$ $32/83$ 2.59 (1.98-3.40) $0/6$ $51/83$ 0.12 (0.01-Pertl et al 11^{187} 1996 $18/19$ $96/131$ 1.29 (1.11-1.50) $1/19$ $35/131$ 0.20 (0.03-Suchocki et al 2^{00} 1998 $28/28$ $89/101$ 1.13 (1.06-1.22) $0/28$ $12/101$ 0.14 (0.01-7Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 (1.54-3.04) $0/2$ $21/39$ 0.31 (0.02-7Weber et al 1^{77} 1998 $61/62$ $59/97$ 1.62 (1.37-1.90) $1/62$ $38/97$ 0.04 (0.01-7Wolman et al 1^{70} 1996 $4/4$ $18/50$ 2.78 (1.92-4.02) $0/4$ $32/50$ 0.16 (0.01-76 mmMoreles et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ (1.85-2.90) $2/22$ $108/178$ 0.15 (0.04-6Rudigoz et al 1^{194} 1993 $7/9$ $12/46$ 2.98 (1.64-5.43) $2/9$ $34/46$ 0.30 (0.09-88 mmTodorova et al 1^{198} 1998 $2/2$ $4/8$ 2.00 (1.00-4.00) $0/2$ $4/8$ 0.33 (0.02-415 mmGruboeck et al 1^{167} 1996 $9/11$ $10/86$ 7.04 ($3.69-13.42$) $2/11$ $76/86$ 0.21 ($0.06-6$ Single layer endometrial thickness measurement	Nasri et al ⁴⁶ 1989	7/7	19/56		0/7	37/56	0.10 (0.01-1.40		
Pertl et al 1^{187} 1996 $18/19$ $96/131$ 1.29 $(1.11-1.50)$ $1/19$ $35/131$ 0.20 $(0.03-5)$ Suchocki et al 2^{200} 1998 $28/28$ $89/101$ 1.13 $(1.06-1.22)$ $0/28$ $12/101$ 0.14 $(0.01-2)$ Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 $(1.54-3.04)$ $0/2$ $21/39$ 0.31 $(0.02-3)$ Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 $(1.37-1.90)$ $1/62$ $38/97$ 0.04 $(0.01-4)$ Wolman et al 1^{170} 1996 $4/4$ $18/50$ 2.78 $(1.92-4.02)$ $0/4$ $32/50$ 0.16 $(0.01-4)$ 6 mmMoreles et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ $(1.85-2.90)$ $2/22$ $108/178$ 0.15 $(0.04-4)$ Rudigoz et al 1^{194} 1993 $7/9$ $12/46$ 2.98 $(1.64-5.43)$ $2/9$ $34/46$ 0.30 $(0.02-4)$ 8 mmTodorova et al 1^{198} 1998 $2/2$ $4/8$ 2.00 $(1.00-4.00)$ $0/2$ $4/8$ 0.33 $(0.02-4)$ 15 mmGruboeck et al 1^{167} 1996 $9/11$ $10/86$ 7.04 $(3.69-13.42)$ $2/11$ $76/86$ 0.21 $(0.06-6)$ Single layer endometrial thickness measurement $10/86$ 7.04 $(3.69-13.42)$ $2/11$ $76/86$ 0.21 $(0.06-6)$	Nasri et al ⁴⁴ 1991	6/6	32/83				0.12 (0.01-1.69		
Suchocki et $a1^{200}$ 199828/2889/1011.13 (1.06-1.22)0/2812/1010.14 (0.01-7)Taviani et $a1^{191}$ 19952/218/392.17 (1.54-3.04)0/221/390.31 (0.02-7)Weber et $a1^{177}$ 199861/6259/971.62 (1.37-1.90)1/6238/970.04 (0.01-7)Wolman et $a1^{170}$ 19964/418/502.78 (1.92-4.02)0/432/500.16 (0.01-7)6 mmMoreles et $a1^{199}$ 199820/2270/1782-31 (1.85-2.90)2/22108/1780.15 (0.04-6)Rudigoz et $a1^{194}$ 19937/912/462.98 (1.64-5.43)2/934/460.30 (0.09-7)8 mmTodorova et $a1^{198}$ 19982/24/82.00 (1.00-4.00)0/24/80.33 (0.02-6)15 mmGruboeck et $a1^{167}$ 19969/1110/867.04 (3.69-13.42)2/1176/860.21 (0.06-6)Single layer endometrial thickness measurement							0.20 (0.03-1.36		
Taviani et al 1^{191} 1995 $2/2$ $18/39$ 2.17 ($1.54-3.04$) $0/2$ $21/39$ 0.31 ($0.02-3$)Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 ($1.37-1.90$) $1/62$ $38/97$ 0.04 ($0.01-6$)Wolman et al 1^{170} 1996 $4/4$ $18/50$ 2.78 ($1.92-4.02$) $0/4$ $32/50$ 0.16 ($0.01-2$)6 mmMoreles et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ ($1.85-2.90$) $2/22$ $108/178$ 0.15 ($0.04-6$)8 mmTodorova et al 1^{198} 1998 $2/2$ $4/8$ 2.00 ($1.00-4.00$) $0/2$ $4/8$ 0.33 ($0.02-6$)8 mmGruboeck et al 1^{167} 1996 $9/11$ $10/86$ 7.04 ($3.69-13.42$) $2/11$ $76/86$ 0.21 ($0.06-6$)Single layer endometrial thickness measurement							0.14 (0.01-2.31		
Weber et al 1^{177} 1998 $61/62$ $59/97$ 1.62 $(1.37-1.90)$ $1/62$ $38/97$ 0.04 $(0.01-4)$ Wolman et al 1^{170} 1996 $4/4$ $18/50$ 2.78 $(1.92-4.02)$ $0/4$ $32/50$ 0.16 $(0.01-4)$ 6 mmMoreles et al 1^{199} 1998 $20/22$ $70/178$ $2-31$ $(1.85-2.90)$ $2/22$ $108/178$ 0.15 $(0.04-6)$ 8 mmTodorova et al 1^{198} 1998 $2/2$ $4/8$ 2.00 $(1.00-4.00)$ $0/2$ $4/8$ 0.33 $(0.02-4)$ 8 mmTodorova et al 1^{198} 1998 $2/2$ $4/8$ 2.00 $(1.00-4.00)$ $0/2$ $4/8$ 0.33 $(0.02-4)$ 5 mmGruboeck et al 1^{167} 1996 $9/11$ $10/86$ 7.04 $(3.69-13.42)$ $2/11$ $76/86$ 0.21 $(0.06-6)$ Single layer endometrial thickness measurement							0.31 (0.02-3.96		
Wolman et al ¹⁷⁰ 1996 4/4 18/50 2.78 (1.92-4.02) 0/4 32/50 0.16 (0.01-2) 6 mm Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04-6) Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09-5) 8 mm Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-6) 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-6) Single layer endometrial thickness measurement 5 5 5 5 5 5 5 5	Weber et al^{177} 1998						0.04 (0.01-0.29		
Moreles et al 199 1998 Rudigoz et al 194 1993 $20/22$ $7/9$ $70/178$ $12/46$ $2-31$ (1.85-2.90) 2.98 (1.64-5.43) $2/22$ $2/9$ $108/178$ $34/46$ 0.15 (0.04-6 0.30 (0.09-8 mm Todorova et al 198 1998 $2/2$ $4/8$ 2.00 (1.00-4.00) $0/2$ $4/8$ 0.33 (0.02-415 mm Gruboeck et al 167 1996 $9/11$ $10/86$ 7.04 (3.69-13.42) $2/11$ $76/86$ 0.21 (0.06-6Single layer endometrial thickness measurement							0.16 (0.01-2.19		
Moreles et al ¹⁹⁹ 1998 20/22 70/178 2-31 (1.85-2.90) 2/22 108/178 0.15 (0.04-6 Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09-6 8 mm Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-6 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-6 Single layer endometrial thickness measurement 500 (1.00-100) 500 (1.00-100) 500 (1.00-100)	6 mm								
Rudigoz et al ¹⁹⁴ 1993 7/9 12/46 2.98 (1.64-5.43) 2/9 34/46 0.30 (0.09-1000) 8 mm Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-400) 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-600) Single layer endometrial thickness measurement		20/22	70/179	2_31 (1.85, 2.00)	2/22	108/178	0 15 (0 04 0 56		
8 mm Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-4 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-6 Single layer endometrial thickness measurement							· · · · ·		
Todorova et al ¹⁹⁸ 1998 2/2 4/8 2.00 (1.00-4.00) 0/2 4/8 0.33 (0.02-4 15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-6 Single layer endometrial thickness measurement 5 5 10 <td>Ruuiguz et al 1993</td> <td>119</td> <td>12/40</td> <td>2.70 (1.04-3.43)</td> <td>219</td> <td>34/40</td> <td>0.50 (0.09-1.03</td>	Ruuiguz et al 1993	119	12/40	2.70 (1.04-3.43)	219	34/40	0.50 (0.09-1.03		
15 mm Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-0 Single layer endometrial thickness measurement		2 (2	4.10		0.15	4/0			
Gruboeck et al ¹⁶⁷ 1996 9/11 10/86 7.04 (3.69-13.42) 2/11 76/86 0.21 (0.06-0 Single layer endometrial thickness measurement	Todorova et al ¹⁹⁰ 1998	2/2	4/8	2.00 (1.00-4.00)	0/2	4/8	0.33 (0.02-4.55		
Single layer endometrial thickness measurement									
	Gruboeck et al ¹⁶⁷ 1996	9/11	10/86	7.04 (3.69-13.42)	2/11	76/86	0.21 (0.06-0.72		
2 mm		ness measu	rement						
	2 mm Chan et al ¹⁶² 1994	17/17	19/50	2 63 (1 85-3 75)	0/17	31/50	0.04 (0.00-0.70		

Method of measurement and	Positive t	test results		Negati	ve test resu	lts
cut-off level for abnormality	TPR	FPR	LR (95% CI)	FNR	TNR	LR (95% CI)
Degenhardt et al ¹⁸³ 1991	32/37	33/96	2.52 (1.86-3-41)	5/37	63/96	0.21 (0.09-0.47)
Dijkhuizen et al ¹⁶⁵ 1996	8/8	31/61	1.97 (1.54-2.52)	0/8	30/61	0.11 (0.01-1.69)
3 mm						
Brolmann et al ²⁰² 1993	10/10	26/55	2.12 (1.60-2.80)	0/10	29/55	0.09 (0.01-1.31)
Ceccini et al ¹⁶⁴ 1996	15/16	101/352	3.27 (2.65-4.02)	1/16	251/352	0.09 (0.01-0.59)
Masearetti et al ¹⁸⁹ 1993	3/3	8/19	1.98 (1.60-2.44)	0/3	11/19	0.01 (0.00-0.23)
Mortakis et al ¹⁷⁵ 1997	7/7	30/71	2.37 (1.80-3.11)	0/7	41/71	0.11 (0.01-1.60)
Schramm et al ¹⁸⁶ 1995	18/29	83/166	1.24 (0.90-1.71)	11/29	83/166	0.76 (0.46-1.24)
Smith et al ¹⁵⁶ 1991	4/4	19/41	2.16 (1.55-3.00)	0/4	22/41	0.19 (0.01-2.63)
4 mm						
Osmers et al ¹⁹³ 1992	27/27	103/206	2.00 (1.74-2.29)	0/27	103/206	0.04 (0.00-0.56)
Seelbach-Göbel et al ¹⁸⁵ 1995	37/39	109/193	1.68 (1.45-1-94)	2/39	84/193	0.12 (0.03-0.46)
10 mm						
Altuncu et al ²⁰¹ 1992	5/6	1/35	29.17 (4.09- 208.03)	1/6	34/35	0.17 (0.03-1.03)
Unreported number of layers f	for endome	trial thickn	ess measurement			
4 mm						
Dorum et al ⁴⁷ 1993	11/13	35/87	2.10 (1.49-2.97)	2/13	52/87	0.26 (0.07-0.93)
Gerber et al ¹⁸⁸ 1999	148/154	375/725	1.86 (1.72-2.01)	6/154	350/725	0.08 (0.04-0.18)
Li et al ¹⁹⁶ 1997	59/62	56/130	2.21 (1.80-2.71)	3/62	74/130	0.09 (0.03-0.26)
Salmaggi et al ¹⁹² 1997	4/4	13/21	1.62 (1.15-2.26)	0/4	8/21	0.26 (0.02-3.78)
5 mm						
Goldstein et al ¹⁵⁵ 1990	1/1	16/27	1.69 (1.23-2.31)	0/1	11/27	0.61 (0.05-6.99)
Malinova et al ¹⁶³ 1995	57/57	26/61	2.38 (1.40-4.02)	0/57	35/61	0.22 (0.02-2.99)
6 mm						
Mateos et al ¹⁷⁴ 1997	18/18	43/140	3.26 (2.54-4.18)	0/18	97/140	0.04 (0.00-0.59)
7 mm						
Guisa-Chiferi et al ¹¹⁶ 1996	19/19	23/61	2.65 (1.92-3.66)	0/19	38/61	0.04 (0.00-0.63)

LR = likelihood ratio, CI = confidence interval, TPR = True positive rate, FPR = False positive rate, FNR = False negative rate, TNR = True negative rate

Pooled estimates of pre-test probability, likelihood ratio and post-test probability for ultrasound measurement of endometrial thickness in predicting endometrial carcinoma.

Method of measurement and cut-off level for abnormality	Pre-test probability % (95% CI)	Likelihood ratio (95% CI)	Post-test probability % (95% CI)
Measurement of both layers ET thickness			
\leq 3 mm (n = 2 studies)			
Positive test result	14.0 (13.3-14.7)	2.1 (1.9-2.3)	25.3 (22.8-27.9)
Negative test result	14.0 (13.3-14.7)	0.04 (0.01-0.19)	0.7 (0.2-3.2)
$\leq 4 \text{ mm} (n = 9 \text{ studies})$	11.0 (15.5 11.7)	0.01 (0.01 0.15)	0.7 (0.2 5.2)
Positive test result	14.0 (13.3-14.7)	1.96 (1.60-2.4)*	24.2 (19.7-29.2)
Negative test result	14.0 (13.3-14.7)	0.08 (0.03-0.17)	1.2 (0.4-2.9)
\leq 5 mm (n = 21 studies)	14.0 (15.5 14.7)	0.00 (0.05 0.17)	1.2 (0.4 2.7)
Positive test result	14.0 (13.3-14.7)	2.17 (1.75-2.68)*	26.1 (21.1-31.6)
Negative test result	14.0 (13.3-14.7)	0.15 (0.08-0.29)*	2.3 (1.2-4.8)
$\leq 6 \text{ mm} (n = 2 \text{ studies})$	14.0 (15.5-14.7)	0.15 (0.06-0.27)	2.5 (1.2-4.0)
\geq 6 mm (II – 2 studies) Positive test result	14.0 (13.3-14.7)	2.5 (2.0-3.1)	28.5 (23.1-34.5)
Negative test result	14.0 (13.3-14.7)	0.2(0.08-0.5)	28.5 (25.1-54.5) 3.2 (1.2-7.9)
$\leq 8 \text{ mm} (n = 1 \text{ study})$	14.0 (13.3-14.7)	0.2 (0.00-0.3)	J.2(1.2-1.7)
$\leq \delta \operatorname{mm}(n-1 \operatorname{study})$ Positive test result	14.0 (13.3-14.7)	2.0 (1.0-4.0)	24.6 (13.3-40.8)
Negative test result	14.0 (13.3-14.7)	2.0 (1.0-4.0) 0.3 (0.02-4.55)	24.0 (13.3-40.8) 5.1 (0.3-4.4)
	14.0 (15.3-14.7)	0.5 (0.02-4.55)	5.1 (0.5-4.4)
\leq 15 mm (n = 1 study)	140(122147)	70(27124)	52 1 (26 2 60 9)
Positive test result	14.0 (13.3-14.7) 14.0 (13.3-14.7)	7.0 (3.7-13.4) 0.2 (0.06-0.7)	53.4 (36.2-69.8) 3.3 (0.9-11.0)
Negative test result	14.0 (13.3-14.7)	0.2 (0.06-0.7)	3.3 (0.9-11.0)
Single layer ET measurement			
\leq 2 mm (n = 3 studies)			
Positive test result	14.0 (13.3-14.7)	2.4 (2.0-3.0)	28.4 (23.5-33.8)
Negative test result	14.0 (13.3-14.7)	0.15 (0.1-0.3)	2.4 (1.1-5.2)
\leq 3 mm (n = 6 studies)			
Positive test result	14.0 (13.3-14.7)	1.9 (1.7-2.2)*	24.0 (20.5-27.9)
Negative test result	14.0 (13.3-14.7)	0.3 (0.2-0.5)*	5.1 (3.0-8.5)
\leq 4 mm (n = 2 studies)			
Positive test result	14.0 (13.3-14.7)	1.8 (1.6-2.0)	22.8 (20.0-25.6)
Negative test result	14.0 (13.3-14.7)	0.08 (0.02-0.27)	1.3 (0.3-4.5)
$\leq 10 \text{ mm} (n = 1 \text{ study})$. ,	*	
Positive test result	14.0 (13.3-14.7)	29.2 (4.1-208.0)	82.6 (38.6-97.3)
Negative test result	14.0 (13.3-14.7)	0.17 (0.03-1.0)	2.7 (0.5-15.1)
Unreported number of layers for ET measured	urement		
\leq 4 mm (n = 4 studies)			
Positive test result	14.0 (13.3-14.7)	1.9 (1.8-2.1)	23.9 (21.6-26.4)
Negative test result	14.0 (13.3-14.7)	0.1 (0.06-0.2)	1.6 (0.9-2.9)
\leq 5 mm (n = 2 studies)		-	
Positive test result	14.0 (13.3-14.7)	2.3 (1.8-3.1)*	27.4 (21.2-34.6)
Negative test result	14.0 (13.3-14.7)	0.04 (0.01-0.2)*	0.7 (0.2-3.5)
$\leq 6 \text{ mm} (n = 1 \text{ study})$			
Positive test result	14.0 (13.3-14.7)	3.3 (2.5-4.2)	34.7-28.0-41.9)
Negative test result	14.0 (13.3-14.7)	0.04 (0.00-0.6)	0.7 (0.1-9.2)
\leq 7 mm (n = 1 study)	· /	` '	× /
Positive test result	14.0 (13.3-14.7)	2.7 (1.9-3.7)	30.1 (22.8-38.7)
Negative test result	14.0 (13.3-14.7)	0.04 (0.00-0.6)	0.7 (0.0-9.8)

ET = endometrial thickness, *heterogeneity P<0.05 (chi-squared test for heterogeneity used)

Sensitivity analyses: Studies of ultrasound measurement of both layers \leq 4 mm or \leq 5 mm endometrial thickness for endometrial carcinoma or disease with pooled LRs stratified according to study characteristics and quality.

		Carcinoma				_
		≤ 4 mm		≤ 5 mm		
Quality Criteria*		Positive test		Positive test	Negative test	
	n	LR (95% CI)	n	LR (95% CI)	LR (95% CI)	n
POPULATION						
Recruitment						
Consecutive	0	-	2	3.5 (2.4-5.6)	0.3 (0.1-0.6)	0
Arbitrary	0	-	0	-	-	0
Unclearly reported	9	1.83 (1.76-1.9)	19	1.9 (1.8-2.1)	0.08 (0.05-0.14)	9
Longth of an an and a a						
Length of amenorrhoea	2	1.5 (1.4-1.6)	7	19(1621)	0.1 (0.03-0.2)	2
\geq 12 months < 12 months	3		ר י	1.8 (1.6-2.1) 2.1 (2.0-2.3)		$\left\{\begin{array}{c}3\\2\\4\end{array}\right\}$
	2 7	2.0 (1.9-2.1)	3	2.1 (2.0-2.3)	0.1 (0.07-0.2)	$\frac{2}{4}$
Unreported	4_	J · ·	11)			4 J
Spectrum						
With and without HRT	4	1.8 (1.75-1.9)	5	1.8 (1.6-2.0)	0.2 (0.1-0.4)	4
Narrow	4	1.8 (1.6-2.0)	10	2.0 (1.8-2.1)	0.06 (0.03-0.12)	4
Unreported	1	1.9 (1.6-2.2)	6	2.6 (2.1-3.1)	0.2 (0.1-0.4)	1
o meporteu	•	1.5 (1.0 2.2)	Ũ	2.0 (2.1 0.1)	0.2 (0.1 0.1)	-
DIAGNOSTIC TEST						
Cut-off level for abnormality						
A priori	4	1.46 (1.37-1.54)	7	2.0 (1.8-2.3)	0.1 (0.05-0.2)	4
Post-hoc	5	2.2 (2.0-2.3)	14	2.0 (1.8-2.1)	0.1 (0.06-0.2)	5
OUTCOME						
Reference Standard			-			~
1	0		0			0
2 Ideal	} 4	2.0 (1.9-2.1)	15 }	1.9 (1.8-2.0)	0.12 (0.07-0.2)	4 }
1,2	0		3			0]
3	1		1			1
2,3 Non-ideal	<u>}</u> 4	2.0 (1.9-2.1) 1.6 (1.5-1.7)	1 }	3.6 (2.8-4.5)	0.05 (0.01-0.2)	$ \begin{array}{c} 4 \\ 0 \\ 1 \\ 4 \\ 0 \end{array} $
1,2,3	JO		IJ			0]
Blinding of test results Blinded	0		2	20(2424)	0.1(0.02,0.2)	0
	0 9	-	3 18	2.9 (2.4-3.4)	0.1 (0.02-0.3)	0 9
Unclearly reported	9	1.83 (1.76-1.9)	18	1.9 (1.8-2.0)	0.1 (0.07-0.2)	9
Verification of diagnosis						
>90%	9	1.83 (1.76-1.9)	17	2.0 (1.9-2.1)	0.1 (0.05-0.2)	9
81-90%	9 0	1.65 (1.70-1.9)			· · · · ·	9
<80%	0	-	$\binom{2}{2}$	2.0 (1.7-2.3)	0.2 (0.1-0.4)	0
~0070	0	-	ر ۲			U
QUALITY LEVEL						
I-III	0	-	4	2.8 (2.3-3.3)	0.16 (0.06-0.4)	0
IV-VI	9	1.83 (1.76-1.9)	17	1.9 (1.8-2.1)	0.09 (0.05-0.2)	9 9
	-	(- '		(-
REFERENCE STANDARD	AND	QUALITY LEVEL				
Ideal and I-III	0	-	4	2.8 (2.3-3.3)	0.16 (0.06-0.4)	0
Ideal and IV-VI	4	2.0 (1.9-2.1)	14	1.8 (1.6-1.9)	0.1 (0.06-0.2)	4
Non-ideal and IV-VI	5	1.6 (1.5-1.7)	3	3.6 (2.8-4.5)	0.05 (0.01-0.2)	5
Reference Standard: 1- Hysterecto	mv / d		sterosco			

Reference Standard: 1- Hysterectomy / directed biopsy under hysteroscopic vision, 2 - Inpatient D&C (D&C), 3 - Outpatient biospy e.g. Pipelle, Novak, *see Methods section for details

Exploration of heterogeneity in estimation of accuracy of ultrasound (≤5mm double layer endometrial thickness) for diagnosis of endometrial cancer and disease: Results of meta-regression analysis

Outcome Explanatory variables	Univariable analy	vsis	Multivariable an (Hypothesis testi	·	Multivariable analysis II (Hypothesis generating)	
	Coefficient (standard error)†	P value	Coefficient (standard error)†	P value	Coefficient (standard error)†	P value
ENDOMETRIAL CANCER						
Clinical features						
Population spectrum (Wide vs. narrow)*	-0.34 (0.14)	0.02	-0.06 (0.25)	0.80	-0.37 (0.80)	0.65
Study quality‡						
Items:						
Patient selection (Consecutive vs. non-consecutive)	-0.48 (0.15)	0.01	-	-	-	-
Reference standard (Outpatient biopsy vs. other)	1.17 (0.91)	0.21	-	-	-	-
Complete verification (Present vs. absent)	0.38 (0.14)	0.02	-	-	-	-
Blinding (Blind vs. not blind)	0.14 (0.24)	0.56	-	-	-	-
Levels: (1-3 vs. 4-5)	0.08 (0.20)	0.69	-0.13 (0.32)	0.68	-0.28 (0.99)	0.78
Ultrasonic procedure						
Transducer frequency(high (>5MHz) vs. low (\leq 5MHz))	-0.35 (0.14)	0.02	-	-	-0.43 (0.75)	0.57
Additional items of study quality	0.00 (0.11)	0.0 2			0.10 (0.70)	0.07
Length of amenorrhoea (Adequate vs. inadequate) [#]	0.11 (0.17)	0.53			-0.13 (0.80)	0.88
			-	-	. ,	
Definition of abnormal result (5mm) (A-priori vs. post hoc)	-0.34 (0.14)	0.02	-	-	0.13 (0.91)	0.89

* Wide population spectrum meant that the study population included postmenopausal women on HRT, whereas studies categorised as having a narrow population spectrum did not include postmenopausal women on HRT or where the use of HRT was unreported.

[†]The dependent variable is the log diagnostic odds ratio, a positive coefficient means that the diagnostic accuracy as measured by the odds ratio is increased and a negative coefficient means that it is reduced in relation to the variable. P values <0.05 considered statistically significant.

‡ Quality levels (1-5) rather than individual quality items used for multivariable analysis²⁰⁴ (see text)

The length of amenorrhoea indicating that the woman was menopausal was considered ideal if it was \geq 12 months, and inadequate if it was < 12 months or unreported.

4.5 Results of systematic review of hysteroscopy.

4.5.1 Question

What is the accuracy of OPH in the diagnosis of endometrial cancer?

4.5.2 Study selection

A total of 65 primary studies (20 non-English studies), including 26,346 women, assessed the diagnostic accuracy of hysteroscopy in detecting serious endometrial disease and met the criteria for inclusion. (Figure 17 and Appendix 4)

Figure 17

Study selection process for systematic review of hysteroscopy

Potentially relevant studies identified and screened for retrieval (citations in electronic search) n=3484

> Studies excluded (Duplicates or inappropriate population, intervention or outcome - see text)

> > n=208

n=3280

Dia	agnostic test studies retrieved for mo	ore detailed
eva	aluation:	
•	from electronic search (above)	n=204
•	from reference lists	n=4

from reference lists

Population:	duplicate publication / more complete data sets ^{A1-9}
	Indeterminable ^{A10}
	Restricted recruitment (endometrial cancer) ^{A11-13}
	Subtotal
Intervention:	Hysteroscopy findings not presented ^{A14-21}
Outcome:	Lack of data to construct 2x2 table ^{A22-59}
	Histology not separated from hysteroscopy ^{A60-67}
	Not correlated with histology ^{A68-98}
	No cases of cancer/hyperplasia A99-101
	Lack of original data = reviews, letter ^{A111-137}
	Subtotal
Design:	Case report ^{A138}
Other:	Unobtainable* ^{A139-143}
Total excluded	I
	or obtained despite electronic, local, national and internation iting to authors and colleagues in relevant countries.

Diagnostic test studies included in meta-analysis (see main text)	n=65
(Endometrial cancer data only	n= 24
Endometrial hyperplasia data only	n=9
Endometrial cancer and hyperplasia data	n=32)

Agreement regarding eligibility was 96% (weighted kappa 0.8). Of the 65 included studies, 56 studies (24,649 women) assessed the diagnosis of endometrial cancer. Postmenopausal women re-presented 29% of the populations studied.

4.5.3 Study quality

Details of the participants, interventions, outcomes and study quality criteria of the studies selected for meta-analyses are summarized in Tables 17 and 18. There was a single study of the highest methodological quality (level 1), one study was classified as level 2, ten studies (15%) were level 3, 42 studies (65%) were level 4 and 11 studies (17%) were level 5 in quality.

4.5.3.1 Failure rate

Failure rates were clearly reported in 36/65 (55%) studies. The overall failure rate was 937/26346 (3.6%, 95% CI 3.3%-3.8%) when considering all studies and 937/19323 (4.9%, 95% CI 4.6-5.2%) when studies with unclear reporting were excluded. In those studies performed exclusively in one setting, the failure rate for an ambulatory procedure was 755/18126 (4.2%, 95% CI 3.9-4.5%) compared to 86/2526 (3.4%, 95% CI 2.7-4.2%) for an inpatient procedure. However, the underlying reasons for failure varied between settings. Failed hysteroscopies in the office setting resulted from technical problems (e.g. cervical stenosis, anatomical factors, structural abnormalities) or patient factors (e.g. pain, intolerance) more often than in inpatient setting (79% v 9%). By contrast, inadequate visualization (e.g. obscured by bleeding, debris) was more common in the inpatient setting as a reason for failure (3% v 0.7%). Endometrial cancer was found in 8/927 (0.8%, 95% CI 0.4%-1.7%) failed procedures reported in the 56 cancer studies and endometrial disease was found in 25/937 (2.7%, 95% CI 1.7%-3.9%) failures reported in all included studies. In those studies where data for postmenopausal women could be separated, the failure rate of hysteroscopy (67/1948, 3.4%, 95% CI 2.7%-4.4%) was comparable to the overall rate. (Table 18)

4.5.3.2 Complication rate

Eight cases of potentially serious complications (pelvic infection, uterine perforation (4), bladder perforation, and precipitation of a hypocalcaemic crisis and an anginal episode) were reported out of 25,409 successful procedures. However, ascertainment of serious complications may be suboptimal as only 19/65 (29%) studies, which included 9413 successful procedures, explicitly stated the intention to report or actually reported complications.

Diagnostic accuracy of hysteroscopy in detecting endometrial cancer in women at risk of abnormal endometrial histology: Methodological details

		Patient Selection	Study Quality	Bleeding Type / Menopausal Status (%)			Method(s) of obtaining endometrial histology	Timing of Verification§	Completeness of	Follow Up	
		Selection	Level		HRT	Pre	†Other	(Reference Standard)	v ei meationg	Verification	Ср
Alexopoulos ²⁰⁵ (1999)	Unreported	Unreported	5	861 (33)	40 (2)	1647(64)	33 (1)	OB	Simultaneous	Partial 49%	>90
Altaras ¹⁰⁵ (1993)	Prospective	Unreported	4	39 (100)	-	-	-	OB	Simultaneous	Complete	>90
Azzena ²⁰⁶ (1999)	Prospective	Unreported	2	*9 (18)	-	11 (22)	30 (60)	DB	Sequential	Complete	>90
Bakour ²⁰⁷ (1999)	Prospective	Unreported	4	35 (14)	77 (31)	136 (45)	-	D&C, OB	Simultaneous	Complete	>90
Bocanera ¹⁰⁷ (1994)	Unreported	Consecutive	5	72 (46)	-	84 (54)	-	Hyst / D&C / OB	Sequential	Complete [‡]	<81
Buchol z^{208} (1988)	Retrospective	Unreported	4	168(100)	-	-	-	D&C	Simultaneous	Complete	>90
Cacciatore ^{161} (1994)	Prospective	Unreported	4	25 (56)	20 (44)	-	-	D&C	Simultaneous	Complete	>90
Cameron ²⁰⁹ (2001)	Unreported	Unreported	4	*12 (35)	21 (65)	-	-	Hyst / OB	Sequential	Complete	81-90
Caserta ²¹⁰ (1999)	Unreported	Unreported	4	-	-	-	222 (100)	DB	Simultaneous	Complete	>90
Dargent ²¹¹ (1983)	Unreported	Unreported	4	63 (33)	-	143 (75)	-	OB	Simultaneous	Complete	>90
Davydov ²¹² (1989)	Unreported	Unreported	4	46 (100)	-	-	-	D&C	Simultaneous	Complete	>90
De Jong ²¹³ (1990)	Unreported	Unreported	5	62 (39)	-	87 (54)	11 (7)	D&C/OB	Simultaneous	Partial 74%	>90
De Mendonca ²¹⁴ (1994)	Unreported	Unreported	4	158(100)	-	-	-	Unreported	Simultaneous	Complete	>90
De Silva ¹⁷¹ (1997)	Prospective	Consecutive	3	44 (88)	6 (12)	-	-	Hyst / D&C	Sequential	Complete	>90
De Vivo ²¹⁵ (1986)	Unreported	Unreported	4	-	-	18 (36)	32 (64)	Unreported	Unreported	Unreported	>90
Decloedt ²¹⁶ (1999)	Retrospective	Unreported	4	204 (30)		-	469 (70)	OB	Sequential	Complete	>90
Descargues ^{217} (2001)	Prospective	Consecutive	4	8 (21)	1 (3)	29 (76)	-	DB / D&C / OB	Simultaneous	Complete	>90
Elewa ²¹⁸ (2001)	Unreported	Unreported	4	20 (40)			30 (60)	DB / D&C	Simultaneous	Complete	>90
Epstein ²¹⁹ (2001)	Prospective	Consecutive	3	#77(73)	28 (0.27)	-	-	Hyst / DB / D&C	Sequential	Complete	>90
Gabrys ²²⁰ (1994)	Unreported	Unreported	4				63 (100)	DB	Simultaneous	Complete	>90
Garuti ²²¹ (2001)	Retrospective	Consecutive	3	*523(34)	-	607 (41)	370 (25)	Hyst/DB/D&C/OB	Sequential	Complete	>90
Gorostiaga ²²² (2001)	Prospective	Consecutive	3	100(100)	-	-	-	OB	Simultaneous	Complete	>90
Grosdanov ²²³ (1988)	Unreported	Unreported	4	-	-	-	631 (100)	DB	Unreported	Complete	>90
Gucer ²²⁴ (1996)	Unreported	Unreported	4	74 (72)	13 (13)	16 (15)	-	D&C	Simultaneous	Complete	>90

Diagnostic accuracy of hysteroscopy in detecting endometrial cancer in women at risk of abnormal endometrial histology: Methodological details (cont)

Study (YearDataPublished)Collection		Patient Selection	Study Quality	Bleeding Type / Menopausal Status (%)		Method(s) of obtaining endometrial histology	Timing of Verification§	Completeness of	Follow Up		
Tublisheu)	Concetion	Selection	Level	Post	HRT	Pre	†Other	(Reference Standard)	vermentions	Verification	Οp
Gupta ²²⁵ (1996)	Prospective	Unreported	4	73 (100)	-	-	-	D&C	Simultaneous	Complete	>90
Haller ²²⁶ (1996)	Prospective	Unreported	4	81 (100)	-	-	-	D&C	Simultaneous	Complete	>90
Iossa ¹²⁰ (1991)	Retrospective	Consecutive	5	-	-	-	815 (100)	D&C / OB	Simultaneous	Partial 37%	>90
Itzkowic ²²⁷ (1990)	Unreported	Consecutive	3	6 (12)	-	43 (86)	1 (2)	OB	Simultaneous	Complete	>90
Kovar ²²⁸ (2000)	Retrospective	Unreported	4	*391(36)	206 (19)	495 (45)	-	D&C	Simultaneous	Complete	>90
Krampl ²²⁹ (2001)	Prospective	Consecutive	3	5 (5)	6 (6)	89 (89)	-	DB	Simultaneous	Complete	>90
#Kun ²³⁰ (1999)	Prospective	Consecutive	3	63 (20)	-	180 (80)	-	D&C / DB	Simultaneous	Complete	>90
La Sala ²³¹ (1987)	Unreported	Unreported	5	317 (33)	-	415 (43)	244 (25)	Hyst / DB / OB	Sequential	Partial 38%	>90
Liu ²³² (1995)	Unreported	Unreported	4	130(100)	-	-	-	Unreported	Sequential	Complete	>90
Lo^{233} (2000)	Retrospective	Unreported	4	503 (31)	-	950 (59)	147 (10)	DB / D&C / OB	Simultaneous	Partial 74%	>90
Loverro ²³⁴ (1996)	Unreported	Unreported	4	455 (46)	-	525 (54)	-	DB / OB	Simultaneous	Complete	>90
Loverro ²³⁵ (1999)	Prospective	Unreported	4	106(100)	-	-	-	DB / OB	Simultaneous	Complete	>90
Luo ²³⁶ (1989)	Unreported	Unreported	4	125(100)	-	-	-	D&C	Sequential	Complete	>90
Madan ²³⁷ (2001)	Retrospective	Unreported	4	76 (13)	-	480 (77)	64 (10)	D&C	Simultaneous	Complete	81-90
Maia ²³⁸ (1996)	Unreported	Unreported	4	16 (34)	15 (32)	-	16 (32)	OB	Simultaneous	Complete	>90
Maia ²³⁹ (1998)	Retrospective	Unreported	4	-	143(100)	-	-	Hyst / DB / OB	Sequential	Complete	>90
Mencaglia ²⁴⁰ (1987)	Unreported	Unreported	5	NR	NR	NR	638(100) NS	OB	Simultaneous	Partial 33%	>90
Nagele ^{241} (1996)	Unreported	Unreported	5	202 (8)	-	1925(77)	373 (15)	DB / OB	Simultaneous	Partial 68%	>90
Neis ²⁴² (1986)	Prospective	Unreported	4	NR	NR	NR	307(100) NS	D&C	Sequential	Complete	<81
Neumann ²⁴³ (1994)	Unreported	Unreported	4	54	-	31	-	D&C	Simultaneous	Complete	>90
Ohad ²⁴⁴ (1998)	Retrospective	Consecutive	3	173 (46)	-	-	200(54) NS	D&C	Simultaneous	Complete	>90
Okeahialam ²⁴⁵ (2001)	Retrospective	Unreported	4	-	190(100)	-	-	DB / OB	Simultaneous	Complete	>90
Paschpoulos ²⁴⁶ (1997)	Prospective	Unreported	4	-	-	-	235(73) NS 89 (37)	DB	Simultaneous	Complete	>90
Paya ²⁴⁷ (1998)	Retrospective	Unreported	4	866 (54)	109 (6)	641 (40)	-	Unreported	Simultaneous	Complete	>90
Perez-Medina ²⁴⁸ (1994)	Prospective	Unreported	4	*80 (65)	-	53 (35)	-	D&C / DB	Sequential	Complete	>90
Possati ²⁴⁹ (1994)	Unreported	Unreported	4	78 (78)	-	-	22 (22)	Unreported	Simultaneous	Complete	>90
$Raju^{250}$ (1986)	Unreported	Unreported	4	49 (70)	7 (10)	14 (20)	-	DB/D&C	Simultaneous	Complete	>90
Salet-Lizee ¹³¹ (1993)	Prospective	Unreported	4	43 (24)	32 (18)	103 (58)	-	D&C	Simultaneous	Complete	>90
Sanfeliu ²⁵¹ (1990)	Retrospective	Unreported	4	127 (26)	~ /	482 (74)		OB	Unreported	Complete	>90

Diagnostic accuracy of hysteroscopy in detecting endometrial cancer in women at risk of abnormal endometrial histology: Methodological details (cont)

Study (Year Data Publiched) Collection		Patient	Study	Bleeding	Гуре / Men	opausal Stat	us (%)	Method(s) of obtaining	Timing of Varification S	Completeness	Follow
Publisned)	,		Quality Level	Post	HRT	Pre	†Other	endometrial histology (Reference Standard)	Verification§	of Verification	Up
Scwarzler ³⁴ (1998)	Unreported	Consecutive	3	29 (30)	_	69 (70)	_	D&C	Simultaneous	Complete	>90
Sevcik ²⁵² (1998)	Unreported	Unreported	4	34 (47)	-	-	39 (53)	DB / D&C	Simultaneous	Complete	>90
Simon ²⁵³ (1993)	Retrospective	Unreported	4	*15 (14)	-	-	91 (86)	Hyst	Sequential	Complete	<81
Sousa ²⁵⁴ (2001)	Prospective	Consecutive	1	75 (85)	13 (15)	-	-	Hyst/DB/OB	Sequential	Complete	>90
Tahir ²⁹ (1999)	Prospective	Consecutive	3	123 (31)	-	277 (69)	-	D&C / OB	Simultaneous	Complete	>90
Todorova ²⁵⁵ (1998)	Prospective	Unreported	4	10 (50)	-	10 (50)	-	Unreported	Simultaneous	Complete	>90
Uhiara ²⁵⁶ (1999)	Retrospective	Unreported	5	*61 (32)	8 (5)	81 (43)	38 (20)	OB	Simultaneous	Partial 36%	>90
Valli ²⁵⁷ (1995)	Prospective	Unreported	5	*162(17)	-	233 (25)	538 (58)	DB	Simultaneous	Partial 26%	>90
Vercellini ²⁵⁸ (1997)	Unreported	Consecutive	5	-	-	793(100)	-	OB	Simultaneous	Partial 98%	>90
Vigada ²⁵⁹ (1995)	Unreported	Unreported	4	49 (58)	-	23 (28)	12 (14)	OB	Simultaneous	Complete	>90
Widrich ²⁶⁰ (1995)	Prospective	Unreported	5	29 (22)	5 (4)	88 (68)	8 (6)	OB/surgery - NS	Sequential	Partial 49%	>90

*Numbers calculated from initial proportion of patients within these groups before missing outcome data or duplicate testing was excluded

[†] Other refers to proportion of women included in the study who did not have abnormal uterine bleeding as an indication for hysteroscopy

‡ Incomplete reporting of endometrial cancer (i.e. not all histologically confirmed cases included in study analysis)

§Timing of verification of diagnosis refers to when verification of diagnosis following hysteroscopy was performed, at the same time (simultaneous) or after a short delay sequential).

¶ Proportion of successful hysteroscopies for which outcome data was available

All patients had endometrium thickness >5mm on transvaginal ultrasound

NS = not specified (refers to proportion of women included in the study where the type of abnormal uterine bleeding was not specified)

D&C = dilatation of the cervix and curettage of the endometrium, DB = directed biopsy, OB = outpatient biopsy (blind), Hyst = hysterectomy specimen,

Procedure feasibility and diagnostic accuracy of hysteroscopy in endometrial cancer.

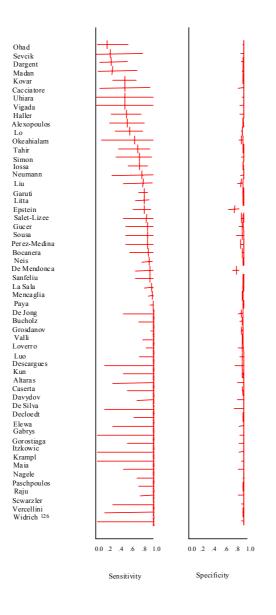
Study (Year published)	*Failure rate	Cancer in failed Hysteroscopy	Inadequate rate	Cancer Cases: +ve test (Sensitivity)	-ve test (1-Specificity)
Alexopoulos ²⁰⁵ (1999)	83/2581	0	165/2498	6/11 (0.55)	13/2322 (0.006)
Altaras ¹⁰⁵ (1993)	0/39	0	0/39	3/3 (1.0)	0/36 (0.0)
Azzena ²⁰⁶ (1999)	3/50	_	0/47	-	_
Bakour ²⁰⁷ (1999)	†0/248	-	0/248	-	-
Bocanera ¹⁰⁷ (1994)	7/156	0	6/149	10/11 (0.91)	0/132 (0.0)
Buchol z^{208} (1988)	0/168	0	0/168	12/12 (1.0)	4/156 (0.03)
Cacciatore ^{$1\hat{6}1$} (1994)	2/45	0	0/43	2/4 (0.50)	0/39 (0.0)
$Cameron^{209}$ (2001)	3/33	-	0/30	-	-
Caserta ²¹⁰ (1999) Dargent ²¹¹ (1983) Davydov ²¹² (1989) De Jong ²¹³ (1990) De Mandemer ²¹⁴ (1004)	0/222	0	0/222	6/6 (1.0)	0/216 (0.0)
Dargent ²¹¹ (1983)	0/191	0	31/191	4/15 (0.27)	1/145 (0.007)
$Davydov^{212}$ (1989)	0/46	0	0/46	11/11 (1.0)	0/35 (0.0)
De Jong ²¹³ (1990)	8/160	1	19/152	5/5 (1.0)	5/128 (0.04)
De Mendonca ²¹⁴ (1994)	0/158	0	0/158	14/15 (0.93)	17/143 (0.12)
De Silva ¹⁷¹ (1997)	1/50	1	25/49	2/2 (1.0)	0/22 (0.0)
DeVivo ²¹⁵ (1986)	0/50	-	0/50	-	-
Decloedt ²¹⁶ (1999)	37/673	0	0/636	9/9 (1.0)	0/627 (0.0)
Descargues ^{217} (2001)	1/38	0	0/37	2/2 (1.0)	1/35 (0.03)
Elewa ²¹⁸ (2001)	0/50	0	0/50	3/3 (1.0)	0/47 (0.0)
Epstein ²¹⁹ (2001)	0/105	0	0/105	21/25 (0.84)	12/80 (0.15)
Gabrys ²²⁰ (1994)	0/63	0	5/63	1/1 (1.0)	0/57 (0.0)
Garuti ²²¹ (2001)	† ‡ 0/1050	0	43/1457	85/102 (0.83)	7/1355 (0.005)
$\begin{array}{c} \text{Gorostiaga}^{222} (2001) \\ \text{Grosdanov}^{223} (1988) \end{array}$	4/100	0	41/96	6/6 (1.0)	0/49 (0.0)
Grosdanov ²²³ (1988)	0/461	0	0/461	67/67 (1.0)	6/394 (0.02)
$Gucer^{224}$ (1996)	5/103	0	0/98	8/9 (0.89)	2/89 (0.02)
Gupta ²²⁵ (1996)	4/73	-	35/69	-	-
Haller ²²⁶ (1996)	5/81	1	0/76	8/15 (0.53)	0/61 (0.0)
$Iossa^{120}$ (1991)	196/2007	1	26/1811	22/29 (0.76)	13/1756 (0.007)
Itzkowic ²²⁷ (1990)	2/50	0	1/48	1/1 (1.0)	0/46 (0.0)
Kovar ²²⁸ (2000)	0/1092	0	0/690	13/26 (0.50)	6/1174(0.005)
Krampl ²²⁹ (2001)	1/100	0	0/99	1/1 (1.0)	0/98 (0.0)
Kun ²³⁰ (1999)	1/318	0	2/317	5/5 (1.0)	1/310 (0.003)
La Sala ²³¹ (1987)	87/976	0	0/889	32/33 (0.97)	4/856 (0.005)
Litta ²⁶¹ (1996)	†0/629	0	0/629	35/42 (0.83)	0/587 (0.0)
Liu ²³² (1995)	0/130	0	24/130	9/11 (0.82)	4/95 (0.04)
$Lo^{233}(2000)$	132/1600	3	0/1468	10/17 (0.59)	38/1451 (0.03)
Loverro ²³⁴ (1996)	0/980	-	90/980	-	-
Loverro ²³⁵ (1999)	0/106	0	0/106	25/25 (1.0)	2/81 (0.03)
Luo^{236} (1989)	0/125	0	0/125	13/13 (1.0)	2/112 (0.02)
$Madan^{237}$ (2001)	39/556	0	82/517	2/7 (0.29)	2/428 (0.005)
$Maia^{238}$ (1996)	0/47	0	5/47	5/5 (1.0)	0/37 (0.0)
Maia ²³⁹ (1998)	0/143	-	2/143	-	-
Mencaglia ²⁴⁰ (1987)	20/638	0	0/618	59/60 (0.98)	7/558 (0.01)
Nagele ²⁴¹ (1996)	91/2500	0	392/2409	11/11 (1.0)	0/2006 (0.0)
Neis ²⁴² (1986)	0/307	0	0/307	44/48 (0.92)	0/259 (0.0)
Neumann ²⁴³ (1994)	4/89	0	0/85	4/5 (0.80)	0/80 (0.0)
Ohad ²⁴⁴ (1998)	25/373	0	33/348	2/10 (0.20)	0/305 (0.0)
Okeahialam ²⁴⁵ (2001)	0/190	0	37/190	2/3 (0.66)	5/150 (0.03)
Paschpoulos ²⁴⁶ (1997)	12/324	0	0/312	12/12 (1.0)	0/300 (0.0)

Procedure feasibility and diagnostic accuracy of hysteroscopy in endometrial cancer cont:

Study (Year published)	*Failure rate	Cancer in failed Hysteroscopy	Inadequate rate	Cancer Cases: +ve test (Sensitivity)	-ve test (1-Specificity)
Paya ²⁴⁷ (1998)	30/1616	0	0/1586	84/85 (0.99)	2/1501 (0.001)
Perez-Medina ²⁴⁸ (1994)	5/123	1	28/118	8/9 (0.89)	0/81 (0.0)
Possati ²⁴⁹ (1994)	0/100	-	0/100	-	-
$Raju^{250}$ (1986)	0/70	0	17/70	14/14 (1.0)	0/39 (0.0)
Salet-Lizee ¹³¹ (1993)	0/195	0	0/195	7/8 (0.88)	2/187 (0.01)
Sanfeliu ²⁵¹ (1990)	0/609	0	0/609	14/15 (0.93)	1/594 (0.001)
Scwarzler ³⁴ (1998)	0/98	0	0/98	3/3 (1.0)	0/95 (0.0)
Sevcik ²⁵² (1998)	0/73	0	0/73	1/4 (0.25)	0/69 (0.0)
Sousa ²⁵⁴ (2001)	15/84	0	12/69	8/9 (0.89)	1/48 (0.02)
Simon ²⁵³ (1993)	0/106	0	0/106	6/8 (0.75)	0/98 (0.0)
Tahir ²⁹ (1999)	7/400	0	30/393	8/11 (0.73)	0/352 (0.0)
Todorova ²⁵⁵ (1998)	0/20	-	0/20	-	-
Uhiara ²⁵⁶ (1999)	14/188	0	0/174	1/2 (0.50)	0/172 (0.0)
Valli ²⁵⁷ (1995)	47/933	0	18/886	18/18 (1.0)	9/850 (0.01)
Vercellini ²⁵⁸ (1997)	23/793	0	17/770	2/2 (1.0)	0/751 (0.0)
Vigada ²⁵⁹ (1995)	13/84	0	10/71	1/2 (0.5)	0/59 (0.0)
Widrich ²⁶⁰ (1995)	10/130	0	0/120	1/1 (1.0)	0/119 (0.0)
Endometrial cancer studies (56)	927/24649 3.8% (3.6-4.0%)	8/927 0.8% (0.4-1.7%)	1069/23722 4.5% (4.3-4.8%)	768/889	167/21764

* Failed outpatient hysteroscopic procedures included technical aspects (e.g. cervical stenosis, anatomical factors), inadequate visualization (e.g. obscured by bleeding) or patient factor (e.g. pain)

†Failed outpatient hysteroscopies, which were successfully performed subsequently as an inpatient NOT included in the failure rates


‡ Allude to poor quality images

4.5.4 Data synthesis

Figure 18 presents the sensitivity and specificity of hysteroscopy in the diagnosis of endometrial cancer. The variations in sensitivity were much greater than the variations in specificity and there was no significant association between sensitivity and specificity (Spearman's correlation coefficient r=-0.06, P=0.65). Weighted by the number of cases, the overall sensitivity was 86.4% (95% CI 84.0% to 88.6%) and specificity was 99.2% (95% CI 99.1% to 99.3%) according to 56 studies of hysteroscopy for endometrial cancer. In view of the lack of an association between sensitivity and specificity, a summary receiver operating characteristic curve was not generated.⁷⁴

Sensitivity and specificity of hysteroscopy in the diagnosis of endometrial cancer.

Results sorted according to estimated sensitivity and presented with 95% confidence interval.

The pooled LRs for endometrial cancer are shown in Table 19. The pre-test probability (prevalence) increased from 3.9% (95% CI 3.7%-4.2%) to 71.8% (95% CI 67.0%-76.6%) with a positive result and decreased to 0.6% (95% CI 0.5%-0.8%) with a negative result. Heterogeneity of diagnostic performance between studies was present as confirmed by a statistically significant χ^2 test and this remained within the pre-specified clinical subgroups (setting and menopausal status).

Pooled estimates of pre-test probabilities, likelihood ratios and post-test probabilities for diagnostic accuracy of hysteroscopy in detecting endometrial cancer and disease in women with abnormal uterine bleeding.

Outcome	Positive	Negative	Post-test Probability % (range)		
(pre-test probability with 95% CI) Population sub group (number of studies)	Likelihood Ratio (95% CI)	Likelihood Ratio (95% CI)	Test +	Test –	
ENDOMETRIAL CANCER	(3.9% (3.7% - 4.2%))	0 15 (0 12 0 19)	71 9 ((7 0 7 (6)	$0 \left(\left(0.5, 0.9 \right) \right)$	
All studies (61)	60.9 (51.2-72.5)	0.15 (0.13-0.18)	71.8 (67.0-76.6)	0.6 (0.5-0.8)	
Quality					
(High vs. low quality)*	24.9 (25.6.47.2)	0.01 (0.15.0.00)	59 ((40 ((7 5)	0.0(0(12))	
<i>High quality studies</i> (11)	34.8 (25.6-47.3)	0.21 (0.15-0.28)	58.6 (49.6-67.5)	0.8 (0.6-1.2)	
Low quality studies (50)	73.5 (59.5-90.8)	0.14 (0.12-0.17)	74.9 (69.6-79.9)	0.6 (0.5-0.7)	
Setting					
(Outpatient vs. inpatient)					
Outpatient setting (31)	82.5 (64.9-105.0)	0.13 (0.10-0.16)	77.0 (71.4-82.2)	0.5 (0.4-0.7)	
High quality studies (4)	119.2 (63.0-225.7)	0.16 (0.11-0.24)	82.8 (70.7-90.8)	0.7 (0.4-1.0)	
Low quality studies (27)	76.5 (59.0-99.2)	0.12 (0.09-0.15)	75.6 (69.4-81.3)	0.5 (0.3-0.7)	
Inpatient setting (16)	21.9 (15.9-30.2)	0.28 (0.21-0.37)	47.1 (37.9-57.0)	1.1 (0.8-1.6)	
High quality studies (5)	8.6 (5.4-13.6)	0.36 (0.23-0.54)	25.8 (17.2-37.4)	1.4 (0.9-2.3)	
Low quality studies (11)	58.6 (33.5-102.7)	0.25 (0.17-0.35)	70.4 (56.3-81.8)	1.0 (0.7-1.5)	
Menopausal status					
(Postmenopausal vs. mixed)					
Postmenopausal women (16)	38.3 (26.1-56.1)	0.13 (0.09-0.18)	60.9 (50.1-71.1)	0.5 (0.4-0.8)	
High quality studies (2)	45.4 (9.7-211.5)	0.09 (0.02-0.44)	64.8 (27.2-90.3)	0.4 (0.08-1.9)	
Low quality studies (14)	37.8 (25.5-56.0)	0.13 (0.09-0.19)	60.5 (49.5-71.1)	0.5 (0.3-0.8)	
Pre/post menopausal women (45)	72.5 (59.7-88.1)	0.16 (0.13-0.19)	74.6 (69.6-79.4)	0.6 (0.5-0.8)	
High quality studies (9)	34.0 (25.1-46.1)	0.22 (0.16-0.29)	58.0 (49.1-66.9)	0.9 (0.6-1.3)	
Low quality studies (36)	104.7 (80.7-135.9)	0.14 (0.12-0.18)	81.0 (75.6-85.6)	0.6 (0.5-0.7)	

An estimate of the pre-test probability was obtained by calculating the prevalence of the outcome event in the overall population in the 65 included studies.

The following equation was used for calculating post-test probability: post-test probability = likelihood ratio x pretest probability/[1-pre-test probability x (1-likelihood ratio)].

Ranges of post-test probability were calculated by using lower and upper limits of 95% confidence intervals of pretest probabilities and likelihood ratios.

* High quality studies (levels 1-3), low quality studies (levels 4-5)¹⁷

Exploration of heterogeneity in estimation of accuracy of hysteroscopy for diagnosis of endometrial cancer and disease: Results of meta-regression analysis.

Outcome Explanatory variables	Univariable	analysis	Multivariabl analysis I		II	(Hypothesis generating)	
			(Hypothesis	0,			
	Coefficient (standard error)†	P value	Coefficient (standard error)†	P value	Coefficient (standard error)†	P value	
ENDOMETRIAL CANCER							
Defined a priori							
Clinical features							
Setting (Outpatient vs. inpatient)	0.60 (0.44)	0.18	0.52 (0.47)	0.26	0.89 (0.51)	0.09	
Menopausal status (Postmenopausal vs. mixed) <i>Study quality‡</i> Items:	-0.64 (0.69)	0.36	-0.41 (0.72)	0.57	-0.55 (0.75)	0.47	
Patient selection (Consecutive vs. non-consecutive)	-0.08 (0.46)	0.86	-	-	-	-	
Reference standard (Outpatient biopsy vs. other)	0.45 (0.61)	0.46	-	_	-	-	
Complete verification (Present vs. absent)	-0.14 (0.47)	0.77	-	-	-	-	
Blinding (Blind vs. not blind)	-0.39 (2.1)	0.85	-	-	-	-	
Levels: (1-3 vs. 4-5)	-0.18 (0.52)	0.73	-0.12 (0.52)	0.82	-0.35 (0.70)	0.62	
Defined post hoc			· · · ·		~ /		
Hysteroscopic procedure							
Description of diagnostic test (Adequate vs. inadequate)	-1.11 (0.57)	0.06	-	-	-1.02 (0.77)	0.19	
Complications (Present vs. absent)	-1.71 (0.67)	0.01	-	-	-1.28 (0.87)	0.15	
Items of study quality							
Timing of verification (Sequential vs. simultaneous)	0.13 (0.48)	0.78	-	-	0.07 (0.66)	0.91	
Data collection (Prospective vs. other)	-0.36 (0.55)	0.52	-	-	0.01 (0.60)	0.99	
Follow up (>90% vs. < 90%)	-0.28 (0.99)	0.98	-	-	0.35 (1.03)	0.73	

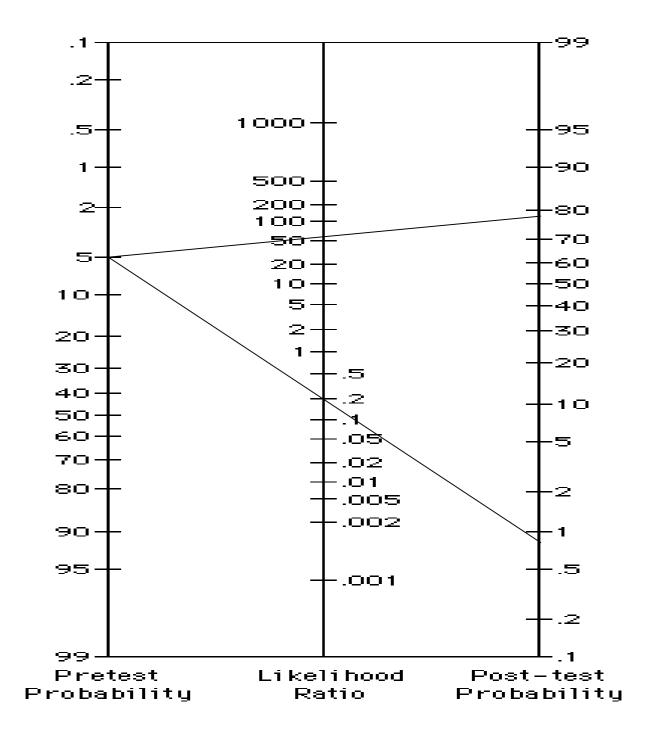
* Results are based on data from 61 data points presented in the 56 studies of endometrial cancer. In some studies, data could be extracted for both postmenopausal and premenopausal women, thus, there are more data points than studies.

†The dependent variable is the log diagnostic odds ratio, a positive coefficient means that the diagnostic accuracy as measured by the odds ratio is increased and a negative coefficient means that it is reduced in relation to the variable. P values <0.05 considered statistically significant.

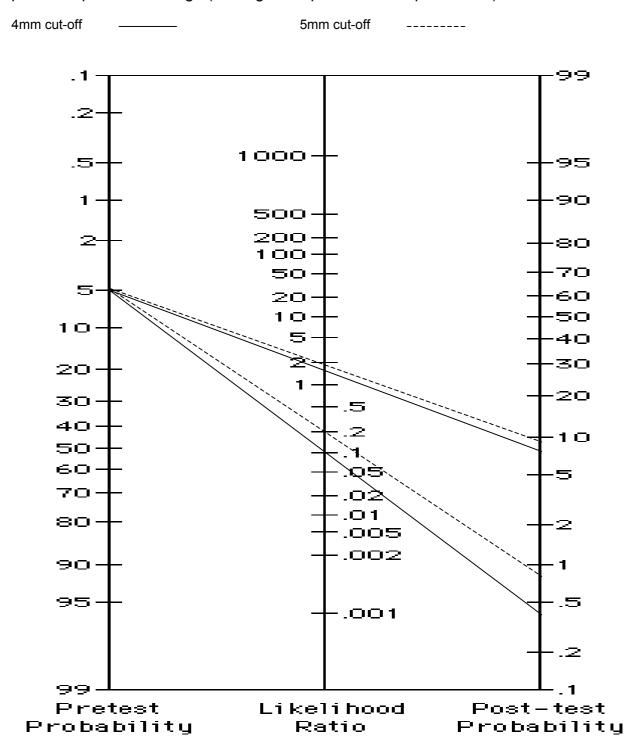
‡ Quality levels (1-5) rather than individual quality items used for multivariable analysis¹⁷ (see text)

An explanation for heterogeneity was not provided by the study setting, menopausal status or study quality (Table 20). Neither did the other potential explanatory variables defined *post hoc* significantly influence diagnostic accuracy. The reported occurrence of complications was associated with reduced accuracy on univariable analysis, but this was not confirmed on multivariable analysis.

Statistical tests (rank correlation) to explore for publication and related biases, found that funnel plot asymmetry was not statistically significant (p=0.34)

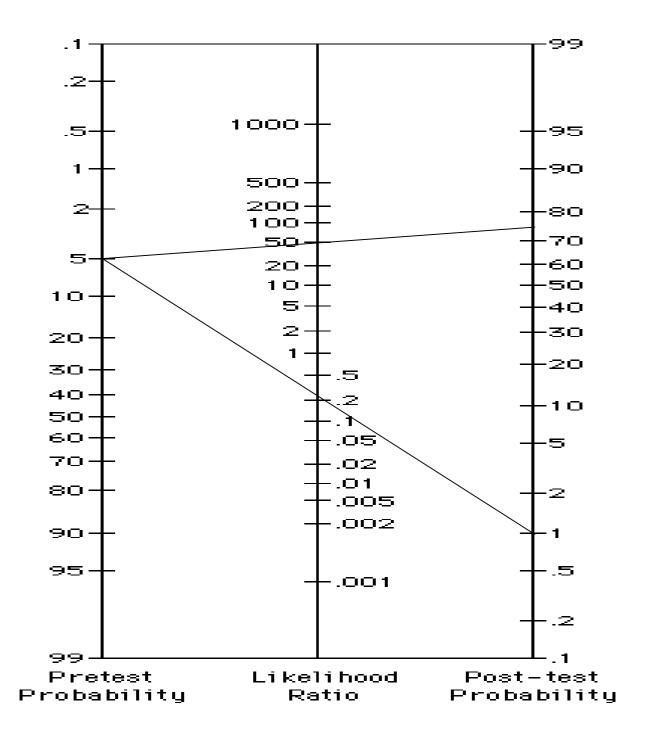

4.5.5 Sensitivity analysis

In 12 (18%) studies it was not possible to determine the rate of inadequate specimen due to a lack of clear reporting and the rate was assumed to be zero for the purpose of analysis. This gave an inadequate specimen rate on the reference test of 1196/25409 (4.7%, 95% CI 4.5%-5.0%). The pooled LRs were not altered if inadequate samples were regarded as negative results. There were 4622 focal lesions (intrauterine polyps of fibroids) detected in 25409 hysteroscopies (prevalence 18%) reported in 55/65 primary studies. In 152 of the 4622 focal anomalies (prevalence 0.4%) endometrial cancer (17) was present. Estimates of accuracy for endometrial cancer were not affected when focal abnormalities were excluded as part of a sensitivity analysis (LR for positive and negative test 59.3 (49.2-71.6) and 0.14 (0.12-0.16).


4.6 Summary of results of systematic reviews

- The literature was of relatively poor methodological quality
- There was statistical heterogeneity in pooling of likelihood ratios, for USS and OPH, but an explanation for this could not be found in spectrum composition and study quality.
- A positive test result on EB diagnosed endometrial cancer with a pooled LR of 66.48 (95% CI 30.04-147.13) while a negative test result had a pooled LR of 0.14 (95% CI 0.08-0.27).
- The commonest USS cut-offs to define abnormal endometrial thickness were 4mm and 5mm, measuring both endometrial layers. Using a 4mm cut-off, a positive test result on USS diagnosed endometrial cancer with a pooled LR of 1.96 (95% CI 1.6-2.4) while a negative test result had a pooled LR of 0.08 (95% CI 0.03-0.17). The LRs for positive and negative ultrasound results for diagnosing endometrial cancer using a 5mm cut-off were 2.17 (95% CI 1.75-2.68) and 0.15 (95% CI 0.08-0.29) respectively.
- A positive test result on OPH diagnosed endometrial cancer with a pooled LR of 60.9 (95% CI 51.2-72.5) while a negative test result had a pooled LR of 0.15 (95% CI 0.13-0.18).
- For a postmenopausal woman with vaginal bleeding with a 5% pre-test probability of endometrial cancer, her probability of cancer is approximately 80% following a positive EB or OPH and approximately 0.5% following a negative USS. This is illustrated graphically in Figures 19-21.
- Thus, a positive test result following EB or OPH is more useful for predicting endometrial cancer than USS, whereas a negative test result following USS is more useful for excluding endometrial cancer than EB or OPH.

Pooled estimates of pretest probabilities, likelihood ratios and posttest probabilities for accuracy of outpatient endometrial biopsy in diagnosing endometrial cancer in women with postmenopausal bleeding (Nomogram reproduced with permission)²⁶²



Pooled estimates of pretest probabilities, likelihood ratios and posttest probabilities for accuracy of endometrial thickness measurement by pelvic ultrasound, using both a 4mm and 5mm cut-offs, in diagnosing endometrial cancer in women with postmenopausal bleeding. (Nomogram reproduced with permission)²⁶²

77

Pooled estimates of pretest probabilities, likelihood ratios and posttest probabilities for accuracy of hysteroscopy in diagnosing endometrial cancer in women with postmenopausal bleeding (Nomogram reproduced with permission)²⁶²

4.7 Results of economic analysis

4.7.1 Question

Which of the three available tests (EB, USS and OPH) and their combinations is most cost effective in outpatient diagnosis of endometrial cancer?

4.7.2 Results

Life expectancies adjusted for age, surgery and presence of endometrial cancer are shown in Table 21.

Table 21

Life expectancies of United Kingdom women stratified by age, surgery and presence of endometrial cancer

Life Expectancy	Age 45 years	Age 55 years	Age 65 years	Age 75 years	Age 80+ years
General					
Non-discounted	36.11	26.94	18.51	11.40	8.49
Discounted	27.37	21.68	15.76	10.22	7.79
General + abdom	inal hysterectom	y			
Non-discounted	36.11	26.92	18.45	11.31	8.39
Discounted	27.37	21.66	15.72	10.14	7.70
Endometrial Can	cer (Immediate E	Diagnosis)			
Non-discounted	30.00 (18.02)	19.95 (16.02)	13.54 (8.02)	9.26 (4.80)	5.48 (2.31)
Discounted	22.98 (14.33)	16.33 (13.32)	11.73 (7.23)	8.38 (4.53)	5.13 (2.25)
Endometrial Can	cer (Delayed Dia	gnosis)		· · ·	
Non-discounted	29.19 (17.59)	19.23 (15.47)	13.04 (7.79)	8.97 (4.71)	5.33 (2.28)
Discounted	22.40 (14.01)	15.77 (12.89)	11.32 (7.03)	8.14 (4.45)	5.00 (2.23)

The values were derived from United Kingdom life tables for females¹⁰³, data from the International Federation of Gynaecology and Obstetrics (FIGO),²³ the West-Midlands Cancer Intelligence Unit (WMCIU) and Wingo et al.⁹⁸ Discounted values are shown at 1.5% per year. Survival times for delayed diagnosis relate to times from initial investigation. The lower range of values used in sensitivity analyses are shown in parentheses. See text for further details.

4.7.3 Base-case results

The results from the model for women with an age of 65 years are shown in Table 22. There was little difference in expected survival between strategies The strategy USS was the least expensive. The strategies OPH and USS+EB+OPH were dominated by other strategies in that in each case there was an alternative strategy that is cheaper and more effective. Incremental cost-effectiveness ratios (ICERs) comparing the cost-effectiveness of strategies with no initial investigation are shown in Table 23.

Base-case results for the model with a starting age of 65.

Strategy	Average cost per patient (£)	Expected survival per patient (years)*	Dominated by
No investigation	146.27	15.538200	
USS 5mm	358.20	15.556677	
USS 4mm	371.84	15.557039	
EB	378.16	15.557045	
OPH	385.58	15.554847	USS (either) or EB
USS5+EB	517.96	15.557906	
USS4+EB	529.33	15.557924	
USS5+OPH	533.18	15.558053	
EB+OPH	545.32	15.557931	USS5mm+OPH
USS4+OPH	545.34	15.558083	
USS+EB+OPH	599.32	15.557931	USS+OPH

EB = endometrial biopsy, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

*It is not claimed that the model can predict even a population average survival accurately to 6 decimal places, the numbers are quoted in that form to show how little difference the various strategies make to the expected survival.

Table 23

Investigation of postmenopausal bleeding: Incremental cost-effectiveness ratios for diagnostic strategies, compared in each case to no initial investigation

Strategy	Incremental cost (£)	Life Years Gained (LYG)	Average days extra survival/ patient	ICER (£/LYG)*
USS 5mm	211.94	0.018477	6.74	11,470
USS 4mm	225.57	0.018839	6.88	11,974
EB	231.89	0.018845	6.88	12,305
OPH	239.32	0.016647	6.08	14,376
USS 5mm+EB	371.69	0.019706	7.19	18,862
USS 4mm+EB	383.07	0.019724	7.20	19,422
USS 5mm+OPH	386.91	0.019853	7.25	19,489
EB+OPH	399.06	0.019731	7.20	20,225
USS 4mm+OPH	399.07	0.019883	7.26	20,071
USS+EB+OPH	453.06	0.019731	7.20	22,962

Survival discounted at a rate of 1.5%

*The incremental cost-effectiveness ratios are calculated in each case by comparison with no initial investigation.

EB = endometrial biopsy, ICER = incremental cost-effectiveness ratio, \pounds/LYG = UK pound sterling per life year gained, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

The strategy based on USS using a 5mm cut-off was the least expensive. Incremental costeffectiveness ratios (ICERs) comparing the cost-effectiveness of non-dominated strategies with USS 5mm are shown in Table 24.

Table 24

Investigation of postmenopausal bleeding: Incremental cost-effectiveness ratios for the non-dominated strategies, compared in each case to a strategy of ultrasound (5mm cut-off)

Strategy	Incremental cost (£)	Life Years Gained (LYG)	Average days extra survival/patient	ICER (£/LYG*
USS 4mm	13.63	0.000362	0.13	37,652
EB	19.95	0.000368	0.13	54,212
OPH	27.38	-0.00183	-0.67	D
USS 5mm+EB	159.76	0.001229	0.45	129,992
USS 4mm+EB	171.13	0.001246	0.45	137,343
USS 5mm+OPH	174.97	0.001376	0.50	127,158
EB+OPH	187.12	0.001254	0.46	149,219
USS 4mm+OPH	187.13	0.001405	0.51	133,189

Survival discounted at a rate of 1.5%

*The incremental cost-effectiveness ratios are calculated in each case by comparison with a strategy of initial investigation with ultrasound using a 5mm endometrial thickness cut-off.

D=dominated, EB = endometrial biopsy, ICER = incremental cost-effectiveness ratio, $\pounds/LYG = UK$ pound sterling per life year gained, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

The ICERs compared to no initial investigation reduced for USS 5mm (\pounds 11,470), USS 4mm (\pounds 11,974) and OPH (\pounds 12,305) strategies when the model was altered to allow for EB to be performed following a positive test on the same visit, rather than a subsequent one. In these circumstances, the ICERs compared to USS 5mm, increased for all diagnostic strategies apart from USS 4mm (\pounds 27,873) (Table 25).

Incremental cost-effectiveness ratios for diagnostic strategies, compared to ultrasound (5mm cut-off) assuming endometrial biopsy is performed at the same visit following a positive ultrasound or outpatient hysteroscopy

Strategy	Incremental cost (£)	Life Years Gained (LYG)	Average days extra survival/ patient	ICER (£/LYG)
USS 4mm	10.09	0.000362	0.13	27,873
EB	48.99	0.000368	0.13	133,125
OPH	53.37	-0.00183	-0.67	D
USS 5mm+EB	188.79	0.001229	0.45	153,613
USS 4mm+EB	200.17	0.001246	0.45	160,650
USS 5mm+OPH	204.01	0.001376	0.50	148,263
EB+OPH	216.15	0.001254	0.46	172,368
USS 4mm+OPH	216.17	0.001405	0.51	153,858
USS 4mm+EB+OPH	270.15	0.001254	0.46	215,431

Survival discounted at a rate of 1.5%

*The incremental cost-effectiveness ratios are calculated in each case by comparison with a strategy of initial investigation with ultrasound using a 5mm endometrial thickness cut-off.

D=dominated, EB = endometrial biopsy, ICER = incremental cost-effectiveness ratio, $\pounds/LYG = UK$ pound sterling per life year gained, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

4.7.4 Other age-groups

Table 26 shows the results for women at different starting ages (i.e. varying ages at presentation). For lower starting ages, almost the same strategies were non-dominated. For older starting ages, more strategies became dominated. The ICERs increased for all strategies that remain non-dominated. The general patterns of dominance were the same when survival effects were not discounted although ICERs were generally lower.

Investigation of postmenopausal bleeding at different ages of presentation: Incremental cost-effectiveness ratios of strategies compared to ultrasound (5mm cutoff)

Strategy	ICER compared to USS5mm for starting age (years)							
	45	55	65	75	80+			
USS 4mm	24,940	26,401	37.652	75,493	191,431			
EB	24,336	29,039	54,212	D(USS5)	D(USS5)			
OPH	D(USS5)	D(USS5)	D (USS5)	D(USS5)	D(USS5)			
USS 5mm+EB	78,078	85,417	129,992	375,287	D(USS5)			
USS 4mm+EB	82,616	90,324	137,343	392,722	D(USS5)			
USS 5mm+OPH	D(USS+EB)	91,993	127,158	222,326	428,949			
EB+OPH	89,786	98,171	149,219	D (USS5+OPH)	D(USS5)			
USS 4mm+OPH	D(EB+OPH)	95,407	133,189	D (USS5+OPH)	D (USS5+OPH)			

Survival discounted at a rate of 1.5%

EB = endometrial biopsy, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

D(USS5) = dominated by USS 5mm cut-off. D(USS+EB) = dominated by USS+OPH strategy. D(EB+OPH) = dominated by EB+OPH strategy. D(U5+OPH) = dominated by USS 5mm cut-off+OPH strategy.

4.7.5 Results of sensitivity analyses

Univariate sensitivity analyses for the strategies involving two initial tests applied over ranges of diagnostic feasibility, accuracy and disease prevalence had little effect on overall cost-effectiveness. However, the assumed effect of delayed diagnosis on increasing disease stage from local (FIGO stage I) to advanced (FIGO stages II-IV) endometrial cancer ("upstaging") did reduce the ICERs for all strategies substantially (See Table 27). The ICERs for the strategies based on initial investigation with USS 4mm or EB reduced to under £30,000 per life year gained when the probability of upstaging endometrial cancer following delay was 6% and 8% respectively. This effectively amounts to a sensitivity analysis on the survival times for immediate and delayed diagnosis. No further sensitivity analysis was thus necessary in this case.

Sensitivity analysis: The effect of delayed diagnosis on the incremental costeffectiveness ratios of combination strategies compared to ultrasound (5mm cut-off)

Strategy	ICERs (£/LYG) stratified according to the probability of upstaging endometrial cancer as a result of delayed diagnosis		
	0.05	0.3	
USS 5mm+EB	129,992	18,909	
USS 4mm+EB	137,343	20,005	
USS5mm+OPH	127,158	20,946	
EB+OPH	149,219	21,747	
USS 4mm+OPH	133,189	21,662	

0.05 assumes a 5% increase in stage of endometrial cancer as a result of delayed diagnosis following erroneous initial discharge, 0.3 assumes a 30% 'upstage' of disease.

EB = endometrial biopsy, OPH = outpatient hysteroscopy, USS = transvaginal ultrasound.

ICER (\pounds /LYG) = incremental cost-effectiveness ratio (\pounds /life year gained).

The potentially most cost-effective strategies were those based on initial investigation with USS (4 and 5mm) or EB alone. Factors influencing the cost and effectiveness of these three diagnostic strategies were varied in order to determine how sensitive the base case results were to changes in the underlying assumptions. Tables 28-30 show the results of the sensitivity analyses comparing USS 4mm, USS 5mm and EB. These results show that there is not yet sufficient data to determine which of these strategies is preferred on cost-effectiveness grounds.

Sensitivity analysis for the diagnostic strategy ultrasound using a 4mm cut-off compared to ultrasound using a 5mm cut-off

(When varying the test characteristics for ultrasound, low and high values were taken for both cut-off points simultaneously)

Variable	Value	Survival gain (days per 1000 patients	Extra cost (£ per patient)
Base		132	13.63
Adjustment for conditional probability EBtpr after USS*	0	-8	13.65
Probability of upstaging cancer ⁺	0.3	834	13.51
Probability D&C fpr	0	133	13.49
Probability D&C fpr	0.03	130	13.92
Probability D&C tpr	0.82	130	13.64
Probability D&C tpr	1	133	13.63
Probability EB fpr	0	139	12.57
Probability EB fpr	0.02	125	14.7
Probability EB tpr	0.84	119	13.66
Probability pEB tpr	0.99	139	13.62
Probability USS fpr	low	132	13.63
Probability USS fpr	high	131	15.93
Probability USS tpr†	low	202	13.57
Probability USS tpr	high	132	13.63
Probability USS success	0.98	129	13.36
Probability pUSS success	1	132	13.63
Probability of endometrial cancer (prevalence)	0.03	76	13.97
Probability of endometrial cancer (prevalence) †	0.1	273	12.78

* Adjustment made to account for lack of complete test independence

Survival discounted at a rate of 1.5%

D&C = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, OPH = outpatient hysteroscopy, tpr = true positive rate, USS = transvaginal ultrasound.

[†] The strategy USS 4mm may be considered potentially cost-effective compared with USS 5mm when the incremental costeffectivness ratio is below a threshold of 30,000/additional life year gained.²⁶³ This occurs when the following parameters are varied: increased upstaging probability to 30% (ICER £5,913), endometrial cancer prevalence increased to 10% (ICER £17,087) and true positive rate of USS 5mm reduced to 94% (£24,520). The strategy USS5mm dominates when no endometrial cancer upstaging is assumed.

Sensitivity analysis for the diagnostic strategy endometrial biopsy compared to ultrasound using a 5mm cut-off

Variable	Value	Survival gain (days per 1000 patients	Extra cost (£ per patient)
Base case		134	19.95
Adjustment for conditional probability EBtpr after USS*	0.01	69	20.12
Probability of upstaging cancer	0	-76	19.98
Probability Upstage†	0.3	1187	19.78
Probability D&C fpr	0	143	18.62
Probability D&C fpr	0.03	116	22.62
Probability D&C tpr	0.82	130	19.96
Probability D&C tpr	1	135	19.95
Probability EB fpr†	0	201	10.19
Probability EB fpr	0.02	67	29.71
Probability EB tpr	0.84	115	20.00
Probability pEB tpr	0.99	144	19.93
Probability USS fpr	0.43	131	24.54
Probability USS fpr	0.47	137	15.37
Probability USS tpr†	0.94	345	19.76
Probability USS tpr	0.98	64	20.02
Probability EB success	0.85	139	30.74
Probability EB success ⁺	0.91	130	9.16
Probability USS success	0.98	129	14.64
Probability pUSS success	1	134	19.95
Probability of endometrial cancer (prevalence)	0.03	48	22.69
Probability of endometrial cancer (prevalence) †	0.1	349	22.69

* Adjustment made to account for lack of complete test independence

Survival discounted at a rate of 1.5%

D&C = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, OPH = outpatient hysteroscopy, tpr = true positive rate, USS = transvaginal ultrasound.

† The strategy USS 4mm may be considered potentially cost-effective compared with USS 5mm when the incremental costeffectivness ratio is below a threshold of 30,000/additional life year gained.²⁶³ This occurs when the following parameters are varied: increased upstaging probability to 30% (ICER £6082), endometrial cancer prevalence increased to 10% (ICER £23,730), true positive rate of USS 5mm reduced to 94% (ICER £20,906), and false positive rate and failure rate of EB reduced to 0% (ICER £18,504) and 9% (£25,718) respectively. The strategy USS5mm dominates when no endometrial cancer upstaging is assumed.

Sensitivity analysis for the diagnostic strategy endometrial biopsy compared to ultrasound using a 4mm cut-off[†]

Variable	Value	Survival gain (days per 1000 patients	Extra cost (£ per patient)
Base		2	6.32
Adjustment for conditional probability EBtpr after USS*	0.01	-63	6.49
Probability of upstaging cancer	0	-68	6.33
Probability Upstage	0.3	353	6.26
Probability D&C fpr	0	10	5.14
Probability D&C fpr	0.03	-14	8.7
Probability D&C tpr	0.82	1	6.32
Probability D&C tpr	1	3	6.32
Probability EB fpr	0	62	-2.37
Probability EB fpr	0.02	-58	15.01
Probability EB tpr	0.84	-4	6.34
Probability pEB tpr	0.99	5	6.31
Probability USS fpr	0.49	-1	10.91
Probability USS fpr	0.54	6	-0.56
Probability USS tpr	0.97	143	6.19
Probability USS tpr	1	-68	6.39
Probability EB success	0.85	7	17.11
Probability EB success	0.91	-2	-4.47
Probability USS success	0.98	0	1.29
Probability pUSS success	1	2	6.32
Probability of endometrial cancer (prevalence)	0.03	-27	8.72
Probability of endometrial cancer (prevalence)	0.1	76	0.34

* Adjustment made to account for lack of complete test independence

Survival discounted at a rate of 1.5%

D&C = dilatation and curettage, EB = endometrial biopsy, fpr = false positive rate, OPH = outpatient hysteroscopy, tpr = true positive rate, USS = transvaginal ultrasound.

†These results show that there is not yet sufficient data to determine which of these strategies is preferred on costeffectiveness grounds

4.8 Summary of results of economic analysis

- Life expectancies were comparable for all diagnostic strategies, but costs varied.
- For all ages economic modeling indicated that the strategy based on initial diagnosis with USS was the least expensive for the investigation of women with PMB.
- Strategies based on initial investigation with OPH or all tests combined were dominated by other strategies, in that in each case there was an alternative strategy that was cheaper and more effective (Table 31).
- When compared to initial investigation with USS 5mm for a woman aged 65 (base case decade of peak incidence of endometrial cancer), the ICERs for the non-dominated strategies ranged between £37,652 for the initial strategy USS 4mm and £149,219 for the strategy EB + OPH per additional LYG.
- The ICERs increased when considering older ages at presentation and reduced for lower ages. However, the ICERs were still well above generally recognised thresholds for all strategies with the exception of USS 4mm and EB under the age of 65 years.
- Initial investigation with EB is potentially a cost-effective strategy (ICER reduced below £30,000 per LYG)) compared to USS, if EB performs at the more favourable estimates of accuracy and USS at the least favourable estimates of accuracy. Similarly, the ICER reduced for EB compared to USS 4mm or 5mm as the probability of upstaging of endometrial cancer with delayed diagnosis increased.
- The strategies involving initial evaluation with two tests (combination strategies) could become more cost-effective if the effect on life expectancy of a delayed diagnosis is much greater than is assumed in the base case.

Summary of results of economic evaluation: cost-effectiveness of each strategy compared with ultrasound scan (5mm cut-off)

Comparator	Ultrasound scan (5mm cut-off)	
No initial investigation	А	
Ultrasound scan (4mm cut-off)	Ι	
Endometrial biopsy	Ι	
Outpatient hysteroscopy	С	
Ultrasound scan + outpatient hysteroscopy	Ι	
Ultrasound scan + endometrial biopsy	Ι	
Endometrial biopsy + outpatient hysteroscopy	Ι	
Ultrasound scan + endometrial biopsy + outpatient hysteroscopy	Ι	

Possible permutations for results of economic evaluation⁷⁹

- A Trade off Higher costs but better outcomes (incremental cost-effectiveness analysis required)
- B Reject Higher costs and no difference in outcomes
- C Reject Higher costs and poorer outcomes
- D Accept No difference in costs and improved outcomes (partial dominance)
- E Neutral No difference in costs and no difference in outcomes
- F Reject No difference in costs and poorer outcomes
- G Accept Lower costs and improved outcomes (extended dominance)
- H Accept Lower costs and no difference in outcomes (partial dominance)
- I Trade off Lower costs but poorer outcomes (incremental cost-effectiveness analysis required)

5 Discussion and conclusions

5.1 Diagnostic reviews

5.1.1 Test accuracy in the diagnosis of endometrial cancer

The reviews of diagnostic hysteroscopy and endometrial biopsy show them to be safe procedures with a low incidence of serious complications.^{17,18} Although the review of ultrasound did not record this data, primary studies have not reported these procedures to be associated with significant side effects.²⁵ When the uterine cavity is adequately visualised, hysteroscopy is highly accurate, and thereby clinically useful in the diagnosis of endometrial cancer. Moreover, performance of the test does not appear to be significantly altered by the clinical setting or menopausal status. Endometrial biopsy is also highly accurate when adequate specimens are obtained. For both these diagnostic tests, a positive test result is highly accurate but a negative test result is of more limited accuracy and thereby only moderately useful.^{77,83} As the diagnosis of endometrial cancer is very important, the high likelihood ratio for a positive test should raise most pre-test probabilities over any threshold for advanced management.⁸⁴ In contrast, the likelihood ratio for a negative test may not be low enough to negate the need for further diagnostic testing (i.e. malignant pathology can be missed by outpatient biopsy and hysteroscopy), thereby reducing the utility of outpatient biopsy or hysteroscopy in isolation for excluding cancer.

In contrast, these results suggest that ultrasonic measurement of endometrial thickness has limited diagnostic prediction for endometrial cancer but is a good test for exclusion of malignancy. A \leq 4 mm or \leq 5 mm cut-off level measuring both layers, can be used to rule out endometrial cancer with good certainty, as a negative test result reduced the post-test probability substantially (less than 0.5% using 4mm and less than 1% using 5mm, assuming a 5% pre-test probability). The marginally greater reduction in post-test probability, and the statistical homogeneity of the pooled LR for a negative test result, may favour use of the \leq 4mm double layer cut-off level. However, all 9 included studies at this cut-off were of poor methodological quality. The tangible reduction in post-test probability of endometrial cancer observed at a \leq 5 mm cut-off level remained (4.2% assuming a 5% prevalence) when pooling only the best quality studies, although no explanation for heterogeneity was found. As the exclusion of endometrial cancer is very important, one should be wary of relying on the pooled estimates of only 4 studies, despite them being of good quality. This illustrates the poor methodological quality of the majority of primary studies on this topic. These findings concur with a recent Consensus Conference statement, which has also concluded that, an endometrial thickness greater than 5 mm should be considered as abnormal,²⁶⁴ similar to a previous systematic review²⁰ (see below).

5.1.2 Test feasibility

The results of these systematic reviews show outpatient endometrial biopsy and hysteroscopy to be successful procedures.^{18,204} Ultrasonography is the least invasive investigation and has previously been shown to be associated with a negligible failure rate.²⁰ Failure rates and inadequate sampling rates were higher for EB in postmenopausal women compared with premenopausal women. Inadequate endometrial samples, despite successful outpatient procedures, may result from poor patient compliance or biopsy technique, inherent problems

with non-representative sampling, varied pathological interpretation or be consistent with the underlying atrophic endometrial state. The review of EB found that single cases of cancer and hyperplasia were found in inadequate EB specimens, although sensitivity analysis showed that the effect of these missed cases on overall accuracy estimates was minimal. However, further means of endometrial evaluation should be considered, particularly when endometrial imaging or menopausal status is inconsistent with the finding of inadequate tissue. Hysteroscopy is a successful procedure in both pre and postmenopausal women although the lack of an effect of menopausal status may be the result of reporting bias, as recording of failures was unclear in some studies. The office setting appears to have a marginally higher failure rate compared to the inpatient setting. This is attributable to anatomical and patient factors rather than inadequate visualization, which is more common in the inpatient setting. The failure rate of office hysteroscopy may represent an underestimate because of more favourable patient selection. However, selection bias is unlikely to have affected diagnostic performance in endometrial disease because the ease of visualisation, and hence diagnosis, is not readily predictable prior to hysteroscopy. Furthermore, the trend towards improved diagnostic performance was confirmed on multivariable analysis, which adjusted for menopausal status. Technical failure in performing the EB or OPH should lead to other means of endometrial assessment.

5.1.3 Validity of reviews

The strength of our overview is based on its compliance with criteria for performing rigorous systematic reviews.^{62,73,265,266} We focused on an explicit research questions and formulated a clear prospective protocol. The search strategies were broad and data that were subject to duplicate publication were excluded from the reviews. We included articles that were published in non-English languages. Furthermore, the assessment of methodological quality and data extraction was performed in a valid^{56,67} and reproducible fashion. We quantitatively summarised the evidence and used summary LRs based on the recommendations of the various Evidence-based Medicine Working Group's.^{75,77,80,81} Using LRs in Bayesian analysis we generated clinically meaningful post-test probabilities thereby facilitating clinical decision-making.⁷⁷

Sensitivity analyses were performed to investigate for possible sources of heterogeneity, which were planned *a priori*. Heterogeneity relates to the presence of differences in results between individual studies. Homogeneity of results from study to study is one of the criteria for meta-analysis, but presence of inconsistency itself does not always invalidate a meta-analysis. In this situation, it is important to consider possible reasons for heterogeneity and so try and explain it. We explored for the sources of heterogeneity as thoroughly as possible in accordance with published guidelines,^{79,92,93} taking into account differences in methodological quality and study characteristics, using both univariable and multivariable analytic techniques (hysteroscopy review only). However, this approach did not explain the observed variation in the reviews of ultrasound and hysteroscopy. Such analyses are often restricted due to the number of available studies.²⁶⁷⁻²⁶⁸ Although our reviews included numerous studies, the exploration of underlying sources of heterogeneity may be limited without access to individual patient data.²⁶⁹ Cautious interpretation of the pooled findings for hysteroscopy and ultrasound is recommended in this situation. However, in view of the lack of satisfactory explanations for heterogeneity between studies it may be reasonable to base inferences on the overall pooled results.²⁷⁰

The methodological quality of the primary studies included in the reviews were generally poor (Table 2). Frequent methodological shortcomings included non-consecutive population enrolment and unclear reporting of patients menopausal status. Another potential source of bias in the review of ultrasound is the manner in which the cut-off level for abnormal endometrial thickness was determined. In a majority of studies using the ≤ 4 and ≤ 5 mm cut-off level, this was determined *post hoc* i.e. retrospectively following the conduct of the test and outcome examinations. This would explain the large number of studies in which there was no incidence of endometrial cancer in the presence of a negative test result. Ideally, the cut-off level at which a test will perform most optimally should be determined prior to conducting a study to assess its diagnostic performance.²⁷¹ Such potential biases may contribute to heterogeneity, but in our review they did not account for the inconsistency of the results across studies.

In the reviews of USS and OPH, choice of histological reference standard and lack of blinding in its assessment could potentially introduce bias. Hysterectomy specimens are regarded as the 'gold' standard for verification of endometrial disease, but the exclusive use of this reference standard in a diagnostic test study is not feasible. Therefore it is not surprising that many studies included in our reviews obtained endometrial tissue using other methods. Bias due to misdiagnosis by these methods is however, unlikely to be a significant problem. This is because outpatient endometrial sampling methods are considered to be highly accurate for endometrial cancer.^{17,48} Blinding in this overview may be less important than in other diagnostic test studies. This is because the histological diagnosis of endometrial cancer, the primary outcome measure, is an objective one²⁷² and consequently not as susceptible to expectation bias. Moreover, both subgroup analyses did not show the type of reference standard or blinding to be significant predictors for diagnostic performance.

The impact of publication bias is another important consideration in all systematic reviews, as diagnostic accuracy may be overestimated as a result. Here studies with negative or non-significant results may have been less likely to be published. However, this was not suggested by funnel plot asymmetry⁵⁵ in any of the included reviews.

5.1.4 Comparison with other reviews and guidelines

5.1.4.1 Reviews

Two systematic reviews of ultrasound and one review of EB have been recently published.^{20,273} Methodological deficiencies arising from the review of EB²⁷⁴ compromise the internal and external validity of their review findings. These deficiencies include the use of a limited search and the inappropriate inclusion of data derived from studies restricted to women known to have endometrial cancer, asymptomatic women, cytological devices and procedures carried out under general anaesthetic in overall data synthesis. Estimates of diagnostic performance are thus likely to be affected to an unknown degree. However, despite these limitations, the pooled detection rates and false positive rates for endometrial cancer were comparable with those derived from the EB review included in this report (95% and 0.5% vs. 94% and 1% respectively). The reviews of ultrasound^{20,273} also had methodological problems such as restricting the searching to just one database, which is associated with publication bias⁵⁵ and lack of study quality assessment.⁵⁶ One of the USS reviews²⁰ suggested that an endometrial thickness of ≤ 5 mm can reliably exclude endometrial pathology in postmenopausal women (detection rate 96% for a 39% false positive rate

compared with 97% and 45% respectively for the review in this report). They recommended that a negative test result avoided the need for endometrial sampling for histological examination. However, the potential biases in the review process raised concerns that this conclusion was over optimistic and therefore required testing as part of a decision analysis (see below).

In contrast, the other recently published USS review²⁷³ recommended that histological sampling (D&C) was still required following a negative USS (detection rate 96% for a 50% false positive rate). The authors used individual patient data from a few centres to demonstrate that the median USS endometrial thickness in postmenopausal women with and without endometrial cancer varied between them. They argued that a universal, optimum endometrial thickness cut-off was not appropriate, but such cut-offs should be individualized according to local data. The findings of this review are potentially biased because of a narrow and outdated search restricted to the English language, use of a small data sample and lack of any attempt to explore the reasons for variation in endometrial thickness measurements (the reproducibility of this measurement has been demonstrated by others²⁷⁵) and accuracy between centres. Indeed, 9 of the 11 included centres reported median endometrial thickness of \leq 5 mm for unaffected women and all reported median endometrial thickness greater than this for endometrial cancer, in keeping with the findings of both Smith-Bindman et al²⁰ and the USS review included in this report. Applying the accuracy estimates from all three USS reviews, assuming a 5% pre-test probability of cancer and USS endometrial thickness cut-offs of 4 or 5mm, the posterior probability of cancer following a negative USS is between 0.4 and 0.8%. Thus, the inference that USS is a good test for exclusion of endometrial malignancy in PMB remains regardless of which pooled estimate of accuracy is applied. We were unable to identify any systematic reviews addressing the diagnostic accuracy of hysteroscopy.

5.1.4.2 Guidelines

The Scottish Intercollegiate Guidelines Network (SIGN) published a clinical guideline for the investigation of post-menopausal bleeding in September 2002.²⁷⁶ No other such guideline was identified following searches of electronic bibliographic databases and relevant internet health sites. This guideline favoured the use of transvaginal ultrasound because of the ".....greater quantity and higher quality of evidence supporting its use compared with other *methods.*" Although the guideline was developed using a standard methodology,²⁷⁷ the acquisition of evidence was incomplete and important recommendations have been made without due regard to the supporting evidence, thereby undermining the strength of contained recommendations. For example, the findings from systematic reviews of pelvic ultrasound^{19,20} were included in the SIGN guideline, but those of endometrial biopsy were not.^{17,48,53} Furthermore, the review of hysteroscopy presented in this report¹⁸ was not published until the month following publication of the SIGN guideline. These omitted reviews show there to be an even greater quantity of available primary research for other outpatient modalities compared with transvaginal ultrasound that is of a similar quality. The SIGN guideline recommended using ultrasound as the first-line investigation in PMB, taking a 3mm cut-off (unless on sequential hormone replacement therapy where a 5mm cut-off was taken as the pre-test risk of cancer was assumed to be lower). Endometrial tissue sampling combined with hysteroscopy was recommended following a positive ultrasound result. This recommendation was based on a high pre-test risk of endometrial cancer (10%) and accuracy data obtained from the ultrasound review presented as part of this report.¹⁹ However, only two studies assessed ultrasound diagnostic performance using a 3mm double-layer

endometrial thickness cut-off (Table 13). The recommendations of the SIGN guideline may therefore be prone to bias toward the use of ultrasound.

5.1.5 Applicability of reviews

The prevalence of endometrial cancer in women with postmenopausal bleeding has been reported to be between 3 and 10% in Europe and North America.^{5,15,16,43} Although there is controversy, likelihood ratios are generally considered to be less affected by disease prevalence than other measures of accuracy²⁷⁸ and therefore the accuracy estimated derived from these reviews can be cautiously translated into other settings where disease prevalence may differ. For a postmenopausal woman with vaginal bleeding with a 5% pre-test probability of endometrial cancer, her probability of cancer is approximately 80% following a positive EB or OPH and approximately 0.5% following a negative USS using a 4mm cut-off (0.8% using a 5mm cut-off). This is illustrated graphically in Figures 19-21.

The pre-test probability can be individualised in the presence of factors obtained from earlier in the clinical process. These will include adverse historical features (e.g. unopposed endogenous or exogenous oestrogen exposure, severity and duration of bleeding, family history) and adverse examination findings (e.g. obesity, immobile uterus).⁸ However, the absolute effect of such factors is unknown and thus difficult to quantify without further research.

5.2 Economic evaluation

These quantitative reviews provide precise estimates of accuracy of EB, USS and OPH in the diagnosis of endometrial cancer facilitating comparison between diagnostic performance. In order to further define the roles of respective tests and resolve the debate regarding the best sequence and combination of tests,²⁷⁹ a decision analysis was conducted based on this data. ²⁸⁰⁻²⁸² The results of this economic approach show that survival is similar regardless of which initial diagnostic strategy is selected for the investigation of women with PMB for endometrial cancer. In contrast, costs varied between strategies, being more expensive when utilising combinations of tests from the outset. Postmenopausal bleeding is a common condition associated with high resource use,^{1,9,10} and under such circumstances, small differences in costs and outcome can be expected to affect healthcare expenditure and disease burden substantially.

The balance between clinical benefit and economics (cost per life year gained) will influence recommendations for practice (see Table 31).^{283,284} Cost-effectiveness analysis is an aid to decision making. As cost-effectiveness is relative, judicious interpretation involves describing competing interventions as being more or less cost-effective than others.²⁸⁵ No clear decision rule exists for cost-effectiveness analyses and therefore absolute statements about the cost-effectiveness of a particular intervention should be viewed with caution.²⁸⁴ However, absolute 'threshold' values for determining cost-effectiveness that represent the willingness of society to pay for additional units of health benefit, are often used to make rationale decisions regarding the implementation of particular health care strategies.^{263,283,286-289}

5.2.1 Base case analysis

One such approach is to consider that a strategy is not cost-effective if the ICER is above a threshold, generally taken to be £30,000 per life-year gained.²⁶³ Application of this standard threshold suggests that all strategies are cost-effective compared to a policy of undertaking no initial investigation for first episode of PMB. Of the diagnostic modalities available, initial investigation with USS using a 5mm cut-off was the least expensive and no other strategy was found to be cost-effective compared to USS at this cut-off. However, the ICERs for USS 4mm (£37,652) and EB (£53,212) were close to the £30,000 ceiling. Compared to combination test strategies, initial investigation with USS 5mm alone remained the most cost-effective strategy for the diagnosis of endometrial cancer regardless of age at presentation. In women less than 65 years of age, however, initial investigation with USS at a lower 4mm cut-off or EB may be considered cost-effective, although the additional cost is still over £20,000 to gain one additional year of life for the very young (aged 45 years) postmenopausal woman.

5.2.2 Sensitivity analysis

Sensitivity analyses showed that initial investigation with USS 4mm or EB were potentially cost-effective strategies compared to USS 5mm, if they performed at their most favourable estimates of diagnostic performance (accuracy and success). Despite obtaining precise estimates of diagnostic performance from high quality secondary research, ^{1718-20,48} the base case results were sensitive to small changes in these variables limiting the strength of any inferences regarding comparison of these three testing protocols. Variation in the prevalence of endometrial cancer also had an important influence of cost-effectiveness. At higher disease prevalence (10%), a strategy based on initial testing with EB was potentially more cost-effective than strategies based on USS (ICER for EB strategy reduced to £1633 and £23,730 compared with USS 4mm and 5mm respectively). In contrast, at cancer prevalences below 5% assumed in the base case analysis, USS strategies became more favourable on cost-effectiveness grounds.

In contrast, the base case findings for combination strategies were robust to changes in the underlying model assumptions apart from if the effect on life expectancy of a delayed diagnosis was considered to be much greater than assumed in the base case. This is an example of uncertainty arising from the evaluative process²⁹¹ i.e. the need to extrapolate from a clinical outcome (false negative diagnosis resulting in erroneous discharge) to a health outcome (reduced survival resulting from upstaging of endometrial cancer due to delayed diagnosis). However, it is doubtful that the additional proportion of women presenting with advanced extrauterine disease (i.e. greater than stage I localised disease), as a consequence of delayed diagnosis, would be significantly greater than 5%. This is because endometrial cancer presents with PMB in almost all cases and this alarming symptom will persist with an untreated endometrial tumour. Time to representation following erroneous discharge is therefore likely to be short, even when taking into account the impact of initial false reassurance, and so the effect of this delay on disease progression would be limited.

In addition to its cost-effectiveness in terms of survival, there is consistent qualitative evidence showing ultrasound to be less invasive, better tolerated and preferred by women when compared with EB and OPH.^{29,290,292} Furthermore, the base case analysis assumed that an additional return visit was required following a positive USS in order to perform endometrial sampling. However, USS is increasingly being performed by the consulting

gynaecologist²⁹³ (this is common in much of Europe^{294,295}) rather than radiologists or radiographers, and in such circumstances return visits for histological testing would not be necessary. This favours the initial independent USS strategies further as a result of reduced costs and convenience. This was confirmed by sensitivity analysis, where the ICER for the EB strategy was in excess of £100,000. An initial strategy employing USS is therefore recommended for the investigation of women with postmenopausal bleeding. There is insufficient data however, to recommend whether a 4 or 5mm endometrial thickness cut-off is preferred. In practice, the choice between initial testing with EB or USS at a 4 or 5mm cut-off will therefore depend upon the nature of the clinician's practice (including the prevalence of endometrial cancer in the local population), the availability of high quality USS and patient preference²⁹⁰

5.2.3 Validity of economic evaluation

An analytic approach was used to quantify decisions made within the clinical process for the diagnostic work up of women with PMB. This involved developing a clear decision making framework based on contemporary clinical practice.²⁸¹ The design and reporting of the decision analysis is in keeping with current recommendations for a rigorous economic analysis.^{285,296-301} The research question, study design and perspective of analysis^{302,303} were clearly stated and the decision model described incorporating all alternate strategies.²⁹⁸ Outcomes of interest were identified and all supporting assumptions and estimates of test performance and costs comprehensively stated. A basic set of base case test results (discounted and non-discounted)³⁰⁴ including incremental cost-effectiveness ratios were presented for all alternate non-dominated strategies^{284,285} and key sensitivity analyses presented to assess the stability of data assumptions.^{291,298}

Previous economic analyses evaluating the investigation of PMB have been of limited value because they have used imprecise and heterogeneous estimates of accuracy derived from particular primary studies published in the medical literature, in addition to evaluating outmoded tests.⁵⁷⁻⁶⁰ The economic analysis presented in this report used data on feasibility, accuracy and safety obtained from high quality systematic reviews¹⁷⁻²⁰ and survival data from a recognised international source.²³ In the few areas where explicit data to populate the decision tree was unavailable from the literature, probabilities of relevant outcomes (conditional estimates of test failure and accuracy) were independently estimated followed by consensus where disagreements arose. In this way it was hoped to represent the mainstream view.

Our approach could be criticised firstly in respect of test accuracy assessment. This stems from the fact that most published accuracy data looks at tests in isolation, but does not take into account the whole clinical context, such as information available from the preceding clinical history and examination. Consequently the usefulness of diagnostic tests may be overestimated^{15,96} increasing cost-effectiveness ratios to an unknown degree. Furthermore, without access to precise individual patient data, the accuracy of tests had to be estimated when used in combination as well as the changes in accuracy, which would be anticipated when conditional on a prior test results. Another potential limitation relates to the assumption that women with endometrial cancer who were erroneously discharged (false negatives) all remained symptomatic and all represented within a short time frame where the error was always detected. Endometrial cancer presents with PMB in the vast majority of cases¹⁴ and so the assumption of persistent symptoms appears to be reasonable. However, the effect of false

reassurance on the likelihood and timing of representation is unknown. We tried to account for this delay by assuming that some of these women would represent with higher stage disease. This approach has been used before.⁵⁹ Sensitivity analysis around the proportion of women 'upstaged' in this way increased costs. The strategies involving initial evaluation with EB or any two tests combined became more favourable in terms of cost-effectiveness if the effect of a delayed diagnosis was assumed to have a greater impact on survival.

A third area for possible criticism surrounds the identification, measurement and valuation of costs.^{300,305} Precise and comprehensive economic data is not readily available and so the best routine data that could be acquired from local and national sources was used.^{97,102} It was felt reasonable to disregard indirect costs (e.g. patient transportation, time off work) as the viewpoint of this analysis was that of the hospital provider of health care within the United Kingdom National Health Service (NHS).³⁰⁶ Furthermore, all diagnostic strategies were based on outpatient investigation with comparably short 'recovery times' and treatment following diagnosis (and thereby costs) were common to all strategies. Although microcosting was used to some extent, gross costing was used in most instances in keeping with available data sources (e.g. hospital costs at the level of healthcare resource groups). Where local costs were used, these often reflected charges as distinct from real costs.³⁰⁵ Potential litigation costs were not included for those women erroneously discharged. However, legal proceedings are likely to continue increasing in the future within the United Kingdom NHS and so such costs may need to be taken into account. However, inferences are unlikely to be altered in such circumstances because USS has the lowest rate of false negative diagnosis.

Uncertainty in parameters other than costs results from the fact that data are obtained from finite samples, and is therefore statistically uncertain. Data for the parameters diagnostic performance and treatment outcomes, were based upon precise confidence interval data derived from systematic reviews^{17,18,19} and high quality international cancer registry data respectively (FIGO).⁷² In contrast, unit costs for procedures at individual centres are likely to be known with reasonable certainty, but costs will vary between centres. Thus, it is appropriate to consider variation in cost parameters in a different way from uncertainty in other parameters. In effect, there is a new "base case" result for each centre, which is itself subject to sensitivity analysis on other parameters.

The main results here apply to centres whose patterns of costs are similar to those at the Birmingham Women's Hospital (BWH). If the patterns of costs at another centre are substantially different, the analysis must be re-run. For examples of this, we ran the analysis for one centre whose costs were always at the bottom of the range given in Table 6, and separately for a centre whose costs were consistently at the top of the range. In each case, using the base case values for other parameters, the results show that EB dominates USS4mm, although this is not the case for the costs based on BWH. Similarly, the strategy EB dominated USS 5mm assuming high costs, but was also very cost-effective at low costs (£962/LYG). The ICER for USS 4mm compared with USS 5mm decreased (£26,129) at low assumed costs and increased slightly assuming high costs (£42,365). It should also be appreciated that a best (minimum costs) or worst (maximum costs) case scenario is likely to overestimate any uncertainty associated with the results of economic evaluation, because cost components are unlikely to be perfectly correlated.^{286,291} In view of the aforementioned, sensitivity analyses around cost data were not presented. As the results of this economic evaluation are limited to the NHS perspective, their use outside this setting would only be appropriate if the findings are maintained after application of more relevant local cost data.

This is also true for NHS centres with markedly different patterns of costs to those used in the base case analysis.

5.2.4 Comparison with other economic evaluations and guidelines

No study was identified that evaluated the cost-effectiveness of all contemporary outpatient modalities (i.e. EB, USS and OPH) used in sequence or combination for the investigation of postmenopausal bleeding for endometrial cancer. The only identified guideline for the investigation of PMB (SIGN guideline)²⁷⁶ highlighted the need for a cost-effectiveness analysis of different sequences of investigation using available tests and the effect of using different ultrasound endometrial thickness cut-offs.

5.2.5 Applicability of economic evaluation

The applicability of findings from this evaluation are limited geographically given that the perspective of this analysis is that of the United Kingdom National Health Service (NHS).^{299,307} However, one would expect that the twelve strategies defined within this decision algorithm would encompass most clinical practices from Europe and North America.^{2-7,298} The application of more relevant local cost data to this model will facilitate translation of findings to different healthcare settings.^{298,308}

This analysis is confined to the initial investigation of women with PMB for endometrial cancer and did not look at women presenting with recurrent episodes of PMB. A recently published cohort study followed up women for 10 years or more that had been discharged after original presentation for PMB.³⁰⁹ They found that a quarter of the original cohort of 252 women developed further PMB during this time. Of these symptomatic women, 11% had an underlying endometrial cancer, which is similar to the 5-10% prevalence generally quoted for endometrial cancer in first episode PMB.^{5,15,16,43} Reassuringly, no woman with endometrial cancer had an endometrial thickness less than 5mm on transvaginal ultrasound and no asymptomatic women developed endometrial cancer during the period of follow up.³⁰⁹ The interval of recurrent bleeding was wide (2 months to 10 years), stages at diagnosis of the seven endometrial cancers were not given and data were missing in 14% of the original cohort. Thus inferences must be cautious. However, as longer periods before representation are more likely to signify new rather than existing pathology, it appears reasonable to consider women who develop a recurrent episode of PMB at an interval of at least 6 months or more to be at similar risk of endometrial cancer as if they presented with a first episode. The findings of the analysis are thus likely to be generalisable to recurrent PMB in this set of circumstances.

The baseline estimates of accuracy cannot be reliably extrapolated to include those postmenopausal women with unscheduled bleeding on hormone replacement therapy (HRT). However, such women bleeding on combined HRT regimens have a lower prior risk of endometrial cancer¹⁵ thereby more in keeping with the lower range of cancer prevalence (3%) used as part of a sensitivity analysis. This would appear to favour the use of USS, as competing strategies become less cost-effective at lower disease prevalence compared to those based on USS. However, optimal cut-offs for endometrial thickness measurement in women taking HRT are less well defined (false-positive rates are higher)²⁰ ^{19,290} and so alternative or additional testing with EB or OPH is likely to be necessary in the presence of

this uncertainty. The accuracy of endometrial thickness measurement by USS is also less well defined in symptomatic women at risk of endometrial cancer due to tamoxifen therapy^{310,311} and so additional testing is recommended³¹² In most cases, however, PMB results from benign endometrial or intra-cavity pathology,^{11,12,313} which does not require treatment unless symptoms persist.

This analysis did not consider those women with less common malignant causes of PMB, such as non-uterine pelvic masses (vulvar, vaginal, cervical and ovarian cancers). More commonly these conditions are diagnosed after presentation with other symptoms such as pain or urinary and bowel problems.⁵ However, one should recommend a clinical gynaecologic examination in all women with PMB regardless of which diagnostic tests are used. The place of ultrasound is further strengthened as it is the only modality that has the advantage of allowing assessment of other pelvic organs³¹² and in particular opportunistic ovarian screening.

5.3 Recommendations for practice

- Women presenting for the first time with PMB should undergo initial evaluation with pelvic ultrasound as this represents the most cost-effective strategy for excluding endometrial cancer. No further investigation is required following a normal ultrasound and women can be reassured and discharged, but encouraged to reattend if bleeding recurs. In contrast, an abnormal ultrasound should result in an endometrial biopsy being performed. A threshold of 4mm or 5mm with double layer endometrial thickness may be used to define abnormal results on pelvic ultrasound.
- Clinical guidelines should be developed and disseminated based on the results from this analysis.³¹⁴ This should facilitate more effective and efficient delivery of gynaecological cancer services in line with current recommendations.⁵

5.4 Recommendations for future research

- Future research should be aimed at generating estimates of diagnostic test accuracy of test combinations from individual patient meta-analyses. Such analyses should take into account the whole clinical process so that the additional information provided by diagnostic testing is more accurately quantified in the clinical context.^{15,96} The analysis should be updated in the future to take into account the use of new diagnostic tools, such as 3D ultrasonography.³¹⁵
- The decision to treat or withhold treatment is determined by the estimated probability of disease (or not having disease) and the costs and benefits of subsequent clinical action.^{84,316} In clinical practice these factors are implicitly integrated into the clinical decision making process. Synthesizing the available diagnostic evidence in a clinician-friendly manner⁸⁵ (generation of pre and post-test probabilities) enables therapeutic recommendations to be made by explicit consideration of the available evidence, obviating the need for intuition. However, even in the presence of robust evidence

about disease probability and treatment costs and consequences, the threshold at which treatment decisions are made will vary between individual clinicians.³¹⁷ Research determining the relative values assigned to these outcomes by clinicians will allow relevant decision frameworks to be produced for application in specific settings.

• Future decision-models may be improved by incorporation of new diagnostic tools and collecting data about resource use in treatment follow up and palliative care. The effect of staging endometrial cancer clinically (e.g. using magnetic resonance imaging), as opposed to surgically, on therapeutic outcomes may need to be explored if this method of staging becomes more established.^{318,319} If the ongoing Medical Research Council ASTEC trial shows benefit from routine pelvic node dissection, then the effects of this approach on costs and survival will need to be incorporated into the model.³¹⁹ The design of disease specific quality of life instruments³²⁰ for women with PMB and endometrial cancer will allow the collection of meaningful utility data. This will improve the sensitivity of the model and the effects of a particular diagnostic and consequent therapeutic intervention will be more usefully and individually quantified in a cost-utility analysis.³¹⁴

6 Acknowledgements and contributors

6.1 Acknowledgments

Thanks to Ann Fry-Smith for designing, running and blinding electronic searches for the OPH review, Professor S. Kehoe for advice regarding presentation, staging and management of endometrial cancer and Dr Honest and Lucas Bachmann for help with producing Figure 18.

6.2 Writing committee

T.Justin Clark¹, Lecturer in Obstetrics and Gynaecology Janesh K. Gupta,¹ Senior Lecturer in Obstetrics and Gynaecology Khalid S. Khan,^{1,5} Honorary Reader in Obstetrics and Gynaecology

6.3 Contributors

Pelham Barton⁴ Lecturer in mathematical modelling Stirling Bryan ⁴ Senior Lecturer in Health Economics Patrick F.W. Chien,² Senior Lecturer in Obstetrics & Gynaecology A. Coomarasamy,¹ Specialist Registrar in Obstetrics and Gynaecology Christopher Hyde,³ Senior Lecturer in Public Health Medicine Christopher H. Mann,¹ Senior Lecturer in Gynaecological Oncology Neil Shah,¹ Specialist Registrar in Obstetrics and Gynaecology Fujian Song,³ Senior Research Fellow in Statistics Doris Voit,² Lecturer in Obstetrics and Gynaecology

¹Academic Department of Obstetrics & Gynaecology, BWH, Birmingham, United Kingdom

²Academic Department of Obstetrics & Gynaecology, Ninewells Hospital, Dundee, United Kingdom

³Department of Public Health and Epidemiology, Birmingham University, Birmingham, United Kingdom. ⁴Department of Public Policy and Health Services Management, Birmingham University, Birmingham

⁵Education Resource Centre, Birmingham Women's Hospital

6.4 Contributions

PB designed decision tree, performed all economic/statistical analyses and critically revised the manuscript for important intellectual content.

SB advised with design of the decision tree and the use of economic data.

TJC performed manual searches of the bibliographies of known primary and review articles and contacted manufacturers, screened abstracts for relevance, organised reviewing, obtained papers, selected manuscripts for eligibility, assessed study quality for English language and translated foreign manuscripts and constructed the tables of data for reviews of EB and OPH, performed the meta-analysis for all reviews, generated the concept for the economic analysis, acquired all data, convened clinical consensus meetings, constructed decision tree, assisted with economic analysis and wrote all drafts of the manuscript.

PFWC performed manual searches of the bibliographies of known primary and review articles and contacted manufacturers, screened abstracts for relevance, organised reviewing, obtained

papers, selected manuscripts for eligibility, assessed study quality for English language and translated foreign manuscripts and constructed the tables of data for the USS review.

AC advised with design of the decision tree, participated in clinical consensus panel for the economic analysis, and critically revised the manuscript for important intellectual content.

JKG generated the concept for the ultrasound review, organised reviewing, obtained papers, selected manuscripts for eligibility, assessed study quality for English language and translated foreign manuscripts and constructed the tables of data for the USS review, participated in clinical consensus panel for the economic analysis and critically revised the manuscript for important intellectual content.

CH supervised data extraction for the OPH review and critically revised the OPH manuscript for important intellectual content.

KSK generated the concept for all reviews, the economic analysis and report, wrote the protocol for all reviews, gave advice in all stages of the reviews, participated in clinical consensus panel for the economic analysis, analysed and interpreted all data, critically revised the manuscript for important intellectual content and obtained funding outlined below as the principal investigator.

CM performed searches and obtained papers for EB review

FS supervised the meta-analysis and provided statistical support for the EB and OPH reviews.

NS performed searches and obtained papers for EB review

DV ran the electronic searches, screened abstracts for relevance, assessed study quality and extracted data for French, German, Italian and Spanish language papers for the USS and OPH reviews.

6.5 Funding

University of Birmingham Interdisciplinary Fund BWH Research and Development Fund

6.6 Conflicts of interest

None known

7 Appendicies

7.1 Appendix 1 – Search strategies

7.1.1 Endometrial biopsy evidence

Medline (1966 – December 1999)

Endometrial biopsy Endometrial biop\$.tw 1 or 2 Exp diagnosis Diagnos\$.tw di.fs. 4 or 5 or 6 3 and 7 limit 8 to human

Embase (1982 – December 1999)

Endometrial biopsy Endometrial biop\$.tw 1 or 2 Exp diagnosis Diagnos\$.tw di.fs. 4 or 5 or 6 3 and 7 limit 8 to human

Cochrane Library issue 3 (CCTR)

Endometrial biopsy

Hand searching

Reference lists of included primary studies and review articles

7.1.2 Ultrasound endometrial thickness evidence

Medline (1966 – December 2000)

Ultrasound Sonography 1 or 2 Endometrial thickness 3 and 4 limit 5 to human

Embase (1982 – December 1999)

Ultrasound Sonography 1 or 2 Endometrial thickness 3 and 4 limit 5 to human

Cochrane Library issue 3 (CCTR)

Ultrasound or sonography

Hand searching

Reference lists of included primary studies and review articles

7.1.3 Hysteroscopy evidence

Medline (1966 – December 2001)

Exp hysteroscopy/ Hysteroscop\$.ti,ab. Exp diagnosis Diagnos\$.ti,ab. di.fs. or/ 1-2 or/ 3-5 6 and 7 animal/ not human 8 not 9

Embase (1982 – December 2001)

Exp hysteroscopy/ Hysteroscop\$.ti,ab. Exp diagnosis Diagnos\$.ti,ab. di.fs. or/ 1-2 or/ 3-5 6 and 7 animal/ not human 8 not 9

Cochrane Library issue 4 (CCTR)

Hysteroscopy

Hand searching

Reference lists of included primary studies and review articles Specialist journal *Gynaecological Endoscopy*

7.1.4 Economic evaluation evidence. May 2002

Medline and Embase

	Search term	Results (MEDLINE)	Results (EMBASE)
1.	PMB (tw) OR endometrium [pathology] (MeSH) OR endometrial neoplasms [diagnosis,economics] (MeSH) or uterine haemorrhage [diagnosis,economics] (MeSH)	9754	9933
2.	Decision support techniques (tw) OR costs and cost analysis (tw) OR cost-benefit analysis (tw) OR economics (tw) OR economic evaluation (tw) OR cost effectiveness (MeSH) OR outcome assessment (health care) [economics] (MeSH)	78279	72108
3.	1 AND 2	69	86
4.	Selected	17	9
5.	Eligible	2	2

MeSH-medical subject heading), tw-textword.

NHS Economic Effectiveness Database, Centre for Reviews and Dissemination (NHS EED, June 2002) [Available at <u>http://www1.york.ac.uk/inst/crd/welcome.htm</u> Accessibility verified 13 June 2002]

Postmenopausal bleeding or endometrial cancer or cost-effectiveness or decision analysis

7.2 Appendix 2 - Reference list of excluded studies from systematic reviews of endometrial biopsy

- A.1. Guido R, Kanbour-Shakir A, Rulin M, Christopherson W. Pipelle endometrial sampling: sensitivity in the detection of endometrial cancer. Journal of Reproductive Medicine 1995,40:553-55.
 - A.2. Stovall TG, Photopulos GJ, Poston WM, Ling FW, Sandles LG. Pipelle endometrial sampling in patients with known endometrial carcinoma. Obstetrics & Gynecology 1991,77:954-56.
 - A.3. Zorlu CG, Cobanoglu O, Isik AZ, Kutluay L, Kuscu E. Accuracy of pipelle endometrial sampling in endometrial carcinoma. Gynecol Obstet Invest 1994,38:272-75.
 - A.4. Larson DM, Johnson KK, Broste SK, Krawisz BR, Kresl JJ. Comparison of D&C and office endometrial biopsy in predicting final histopathologic grade in endometrial cancer. Obstetrics & Gynecology 1995,86:38-42.
 - A.5. Larson DM, Krawisz BR, Johnson KK, Broste SK. Comparison of the Z-sampler and Novak endometrial biopsy instruments for in-office diagnosis of endometrial cancer. Gynecologic Oncology 1994,54:64-67.
 - A.6. Bocanera AR, Roncoroni EC, Schlaen I, Ben J, Monteverde R, Gonzalez GM et al. An articulated rotating brush for office endometrial evaluation of climacteric outpatients. Maturitas 1994,19:67-76.
 - A.7. Ferry J, Farnsworth A, Webster M, Wren B. The efficacy of the pipelle endometrial biopsy in detecting endometrial carcinoma. Aust NZ J Obstet Gynaecol 1993,33:76-78.
 - A.8. Elpek G, Uner M, Elpek M, Sedele M, Karaveli S. The diagnostic accuracy of the Pipelle endometrial sampler in the presence of endometrial polyps. J Obstet Gynaecol 1998,18:274-75.
- A.9. Kent A, Haines P, Manners BCP. Blind endometrial biopsies: insufficient for diagnosis in women with intrauterine pathology. Gynaecol Endosc 1998,7:273-78.
- A.10. Shipley CF, III, Simmons CL, Nelson GH. Comparison of transvaginal sonography with endometrial biopsy in asymptomatic postmenopausal women. Journal of Ultrasound in Medicine 1994,13:99-104.
- A.11. Goldchmit R, Katz Z, Blickstein I, Caspi B, Dgani R. The accuracy of endometrial Pipelle sampling with and without sonographic measurement of endometrial thickness [see comments]. Obstetrics & Gynecology 1993,82:727-30.
- A.12. Kavak Z, Ceyhan N, Pekin S. Combination of vaginal ultrasonography and pipelle sampling in the diagnosis of endometrial disease. Aust NZ J Obstet Gynaecol 1996,36:63-66.

- A.13. Schei B, Bang T, Halgunset J, Haugen O, Haarstad I, Onsrud M. Microcurettage sampling of the endometrium for histopathological examination simpler but not safe? Acta Obstet Gynecol Scand 1994,73:497-501.
- A.14. Lofgren O, Alm P, Ionescu A, Skjerris J. Uterine microcurettage with combined endometrial histopathology and cytology. An alternative to conventional curettage. Acta Obstet Gynecol Scand 1988,67:401-03.
- A.15. Fothergill DJ, Brown VA, Hill AS. Histological sampling of the endometrium--a comparison between formal curettage and the Pipelle sampler. Br.J Obstet Gynaecol 1992,99:779-80.
- A.16. Law J. Histological sampling of the endometrium-acomparison between formal curettage and the pipelle sampler. Br J Obstet Gynaecol 1993,100:503-04.
- A.17. Sonnendecker EWWSGB, Sevitz H, Hofmeyr GJ. Diagnostic accuracy of the accurette endometrial sampler. S Afr Med J 1982,61:109-13.
- A.18. Kufahl J, Pederson I, Eriksen PS, Helkjaer PE, Larsen LG, Jensen KL et al. Transvaginal ultrasound, endometrial cytology sampled by Gynoscann and histology obtained by Uterine Explora Curette compared to the histology of the uterine specimen. A prospective study in pre- and postmenopasual women undergoing elective hysterectomy. Acta Obstet Gynecol Scand 1997,76:790-96.
- A.19. Bistoletti P, Hjerpe A, Mollerstrom G. Cytological diagnosis of endometrial cancer and preinvasive endometrial lesions. A comparison of the Endo-Pap sampler with fractional curettage. Acta Obstet Gynecol Scand 1988,67:343-45.
- A.20. Dijkhuizen FP, Mol BW, Brolmann HA, Heintz AP. The accuracy of endometrial sampling in the diagnosis of patients with endometrial cancer and hyperplasia: a meta-analysis. Cancer 2000,89:1765-72.
- A.21. Giusa-Chiferi MG, Goncalves WJ, Baracat EC, Albuquerque Neto LC, Bortoletto CC, de Lima GR. Transvaginal ultrasound, uterine biopsy and hysteroscopy for postmenopausal bleeding. International Journal of Gynaecology & Obstetrics 1996,55:39-44.
- A.22. Ong S, Duffy T, Lenehan P, Murphy J. Endometrial pipelle biopsy compared to conventional dilatation and curettage. Ir.J Med Sci. 1997,166:47-49.
- A.23. Briley M, Lindsell DR. The role of transvaginal ultrasound in the investigation of women with post-menopausal bleeding. Clinical Radiology 1998,53:502-05.
- A.24. Franchi D, Colombo N, Bocciolone L, Maggioni A, Costa D, Sacchini V. Tamoxifen and the uterus: Potential uterine risks of anti-oestrogens. The approach of the European Institute of Oncology. Eur J Cancer 1998,34 Suppl 4:S34-S35.
- A.25. Lidor A, Ismajovich B, Confino E, David M. Histopathological findings in 226 women with postmenopasual bleeding. Acta Obstet Gynecol Scand 1986,65:41-43.
- A.26. Altaras MM, Aviram R, Cohen I, Markov S, Goldberg GL, Beyth Y. Microhysteroscopy and endometrial biopsy results following failed diagnostic

dilatation and curettage in women with postmenopausal bleeding. International Journal of Gynaecology & Obstetrics 1993,42:255-60.

- A.27. Goncalves MA, Goncalves WJ, Matias M, Novo NF, Baracat EC, de Lima GR. [A hysteroscopic and anatomicopathological study in women with breast cancer]. [Italian]. Minerva Ginecologica 1998,50:341-46.
- A.28. Pal L, Lapensee L, Toth TL, Isaacson KB. Comparison of office hysteroscopy, transvaginal ultrasonography and endometrial biopsy in evaluation of abnormal uterine bleeding [published erratum appears in J Soc Laparoendosc Surg 1997 Oct-Dec,1(4):395]. Journal of the Society of Laparoendoscopic Surgeons 1997,1:125-30.
- A.29. Dubinsky TJ, Parvey HR, Maklad N. The role of transvaginal sonography and endometrial biopsy in the evaluation of peri- and postmenopausal bleeding. AJR 1997, American Journal of Roentgenology. 169:145-49.
- A.30. Iossa A, Cianferoni L, Ciatto S, Cecchini S, Campatelli C, Lo SF. Hysteroscopy and endometrial cancer diagnosis: a review of 2007 consecutive examinations in selfreferred patients. Tumori 1991,77:479-83.
- A.31. Krampl E, Soby B, Istre O. How representative are pipelle endometrial biopsies? A retrospective analysis of 324 biopsies followed by transcervical resection of the endometrium or hysterectomy. Gynaecol Endosc 1997,6:277-81.
- A.32. O'Connell LP, Fries MH, Zeringue E, Brehm W. Triage of abnormal postmenopausal bleeding: a comparison of endometrial biopsy and transvaginal sonohysterography versus fractional curettage with hysteroscopy. Am J Obstet Gynecol 1998,178:956-61.
- A.33. Suarez RA, Grimes DA, Majmudar B, Benigno BB. Diagnostic endometrial aspiration with the Karman cannula. J Reprod.Med 1983,28:41-44.
- A.34. Stovall TG, Ling FW, Morgan PL. A prospective, randomized comparison of the Pipelle endometrial sampling device with the Novak curette. Am J Obstet Gynecol 1991,165:1287-90.
- A.35. Koonings PP, Moyer DL, Grimes DA. A randomized clinical trial comparing Pipelle and Tis-u-trap for endometrial biopsy [see comments]. Obstetrics & Gynecology 1990,75:293-95.
- A.36. Loffer FD. Hysteroscopy with selective endometrial sampling compared with D&C for abnormal uterine bleeding: the value of a negative hysteroscopic view. Obstetrics & Gynecology 1989,73:16-20.
- A.37. Dubinsky TJ, Parvey HR, Gormaz G, Curtis M, Maklad N. Transvaginal hysterosonography: comparison with biopsy in the evaluation of postmenopausal bleeding. Journal of Ultrasound in Medicine 1995,14:887-93.
- A.38. Lipscomb GH, Lopatine SM, Stovall TG, Ling FW. A randomized comparison of the Pipelle, Accurette, and Explora endometrial sampling devices. Am J Obstet Gynecol 1994,170:591-94.

- A.39. Shapley M, Redman CW. Endometrial sampling and general practice. Br.J Gen Pract. 1997,47:387-91.
- A.40. Youssif SN, McMillan DL. Outpatient endometrial biopsy: the pipelle. [Review] [23 refs]. British Journal of Hospital Medicine 1995,54:198-201.
- A.41. van den Bosch T, Vandendael A, Wranz P, Lombard C. Endopap versus Pipelle sampling in the diagnosis of postmenopausal endometrial disease. European Journal of Obstetrics, Gynecology, & Reproductive Biology 1996,64:91-94.

7.3 Appendix 3 - Reference list of excluded studies from systematic reviews of ultrasound

- A1. Abu Hmeidan F, Bilek K, Baier D, Nuwayhid M, Kade R. Ultrasound assessment of the endometrium in early detection of endometrial cancer in high risk patients. Zentralbl Gynakol 1992, 114: 455-8.
- A2. Abu Hmeidan F, Bilek K, Baier D, Nuwayhid M, Kade R. Ultrasound image of endometrial cancer. Ultraschall Med 1992, 13: 178-82.
- A3. Alcazar JL, Laparte C. Comparative study of transvaginal ultrasonography and hysteroscopy in post-menopausal bleeding. Gynecol Obstet Invest 1996, 41: 47-9.
- A4. Aleem F, Predanic M, Calame R, Moukhtar M, Pennisi J. Transvaginal color and pulsed Doppler sonography of the endometrium: a possible role in reducing the number of D&C procedures J Ultrasound Med 1995, 14: 139-45, 147-8.
- A5. Andolf E, Dahlander K, Aspenberg P. Ultrasonic thickness of the endometrium correlated to body weight in asymptomatic postmenopausal women. Obstet Gynecol 1993, 82: 936-40.
- A6. Atri M, Nazarnia S, Aldis AE, Reinhold C, Bret PM, Kintzen G. Transvaginal ultrasound appearance of endometrial abnormalities. Radiographics 1994, 14: 483-92.
- A7. Baiocchi G, Gilardi G. Endometrial carcinoma: an increasing neoplasm. Screening and early diagnosis: proposal for a protocol. Minerva Ginecol 1997, 49: 147-52.
- A8. Ballester MJ, Girones R, Torres JV, Guillen P, Osborne NG, Bonilla-Musoles F. Diagnosis of endometrial carcinoma: Predictive value of transvaginal color Doppler. J Gynecol Surg 1994, 10: 173-83.
- A9. Barakat RR. Benign and hyperplastic endometrial changes associated with tamoxifen use. Oncol 1997, 11(2 Suppl 1): 35-7.
- A10. Bonilla-Musoles F, Ballester MJ, Marti MC, Raga F, Osborne NG. Transvaginal color Doppler assessment of endometrial status in normal postmenopausal women: the effect of hormone replacement therapy. J Ultrasound Med 1995, 14: 503-7.
- A11. Bonilla-Musoles F, Raga F, Osborne NG, Blanes J, Coelho F. Three-dimensional hysterosonography for the study of endometrial tumours: comparison with conventional transvaginal sonography, hysterosalpingography, and hysteroscopy. Gynecol Oncol 1997, 65: 245-52.
- A12. Bourne TH, Campbell S, Steer CV, Royston P, Whitehead MI, Collins WP. Detection of endometrial cancer by transvaginal ultrasonography with color flow imaging and blood flow analysis: A preliminary report. Gynecol Oncol 1991, 40: 253-9.

- A13. Buyuk E, Durmusoglu F, Erenus M, Karakoc B. Endometrial disease diagnosed by transvaginal ultrasound and D&C. Acta Obstet Gynecol Scand 1999, 78: 419-22.
- A14. Carranza-Lira S, Ortiz-Rodriguez ML, Martinez-Chequer JC, Santa-Rita-Escamilla MT, Garcia-Hernandez E, Romo-Aguirre C. Correlation of histopathologic findings with ultrasonography variables of the endometrium according to body weight and adipose tissue distribution in postmenopause. Ginecol Obstet Mex 1996, 64: 517-21.
- A15. Carranza-Lira S, Martinez-Chequer JC, Santa-Rita-Escamilla MT, Romo-Aguirre C. Evaluation of ultrasonographic variables of the endometrium in relation with histopathologic findings in patients with postmenopausal uterine bleeding. Ginecol Obstet Mex 1996, 64: 552-5.
- A16. Caserta D, Porretta M, Moscarini M. Transvaginal ultrasonography vs hysteroscopy. Study of 288 cases of abnormal uterine bleeding. Minerva Ginecol 1997, 49: 251-3.
- A17. Castelo-Branco C, Puerto B, Duran M, Gratacos E, Torne A, Fortuny A, Vanrell JA. Transvaginal sonography of the endometrium in postmenopausal women: monitoring the effect of hormone replacement therapy. Maturitas 1994, 19: 59-65.
- A18. Cecchini S, Ciatto S, Bonardi R, Mazzotta A, Grazzini G, Pacini P, Muraca MG. Screening by ultrasonography for endometrial carcinoma in postmenopausal breast cancer patients under adjuvant tamoxifen. Gynecol Oncol 1996, 60: 409-11.
- A19. Ciatto S, Cecchini S, Bonardi R, Grazzini G, Mazzotta A, Zappa M. A feasibility study of screening for endometrial carcinoma in postmenopausal women by ultrasonography. Tumori 1995, 81: 334-7.
- A20. Cohen I, Perel E, Flex D, Tepper R, Altaras MM, Cordoba M, Beyth Y. Endometrial pathology in postmenopausal tamoxifen treatment: Comparison between gynaecologically symptomatic and asymptomatic breast cancer patients. J Clin Pathol 1999, 52: 278-82.
- A21. Conoscenti G, Meir Y, Fischer-Tamaro L, Maieron A, Natale R, D' Ottavio G, Rustico M, Facca MC, Monterosso A, Mandruzzato G. The diagnostic capacities of transvaginal echography and hysteroscopy in the characterization of endometrial pathology. Minerva Ginecol 1995, 47: 293-300.
- A22. Conoscenti G, Meir YJ, Fischer-Tamaro L, Maieron A, Natale R, D' Ottavio G, Rustico M, Mandruzzato G. Endometrial assessment by transvaginal sonography and histological findings after D & C in women with PMB. Ultrasound Obstet Gynecol 1995, 6: 108-15.
- A23. D' Amelio R, Perrone G, Di Vincenzo F, Casalino S, Capri O, Galoppi P, Zichella L. Echographic monitoring of the endometrium with a transvaginal probe in the menopause. A clinical study of 185 women in the menopause. Minerva Ginecol 1994, 46: 551-6.

- A24. Dragojevic-Dikic S, Markovic A, Dukic M, Vasiljevic M, Popovic-Lazic J, Rakic S, Draganic M, Jankovic S. Evaluation of abnormal uterine bleeding by transvaginal colour Doppler sonography. Arch Oncol 1998, 6: 167-9.
- A25. Dubinsky TJ, Parvey HR, Gormaz G, Curtis M, Maklad N. Transvaginal hysterosonography: comparison with biopsy in the evaluation of PMB. J Ultrasound Med 1995, 14: 887-93.
- A26. El Ahmady O, Gad M, El Sheimy R, Halim AB, Eissa S, Hassan F, Walker R. Comparative study between sonography, pathology and UGP in women with perimenopausal bleeding. Anticancer Res 1996, 16: 2309-13.
- A27. Emanuel MH, Verdel MJ, Wamsteker K, Lammes FB. A prospective comparison of transvaginal ultrasonography and diagnostic hysteroscopy in the evaluation of patients with abnormal uterine bleeding: Clinical implications. Am J Obstet Gynecol 1995, 172: 547-52.
- A28. Fleischer AC, Wheeler JE, Yeh IT, Kravitz B, Jensen C, MacDonald B. Sonographic assessment of the endometrium in osteopenic postmenopausal women treated with idoxifene. J Ultrasound Med 1999, 18: 503-12.
- A29. Franchi M, Ghezzi F, Donadello N, Zanaboni F, Beretta P, Bolis P. Endometrial thickness in tamoxifen treated patients: An independent predictor of endometrial disease. Obstet Gynecol 1999, 93:1004-8.
- A30. Gaucherand P, Piacenza JM, Salle B, Rudigoz RC. Sonohysterography of the uterine cavity: Preliminary investigations. J Clin Ultrasound 1995, 23: 339-48.
- A31. Georgiev D, Netsov V. A follow-up on the endometrial status of patients in the postmenopause taking hormonal replacement treatment. Akush Ginekol Sofiia 1996, 35: 29-30.
- A32. Goldstein SR, Zeltser I, Horan CK, Snyder JR, Schwartz LB. Ultrasonography-based triage for perimenopausal patients with abnormal uterine bleeding. Am J Obstet Gynecol 1997, 177: 102-8.
- A33. Granberg S, Bourne TH. Transvaginal ultrasonography of endometrial disorders in postmenopausal women. Ultrasound Quarterly 1995, 13: 61-74.
- A34. Gucer F, Arikan MG, Petru E, Mitterdorfer B, Lahousen M, Lax S. Diagnostic value of combined vaginal ultrasound and hysteroscopy in peri- and PMB. Gynakol Geburtshilfliche Rundsch 1996, 36: 9-13.
- A35. Gull B, Karlsson B, Milsom I, Wikland M, Granberg S. Transvaginal sonography of the endometrium in a representative sample of postmenopausal women. Ultrasound Obstet Gynecol 1996, 7: 322-7.
- A36. Haines CJ, Chung TK, Lau TK. Sonographic measurement of endometrial thickness as a predictor of vaginal bleeding in women using continuous combined hormone replacement therapy. Gynecol Obstet Invest 1997, 44: 187-90.

- A37. Hann LE, Giess CS, Bach AM, Tao Y, Baum HJ, Barakat RR. Endometrial thickness in tamoxifen-treated patients: Correlation with clinical and pathologic findings. AJR Am J Roentgenol 1997, 168: 657-61.
- A38. Holbert TR. Transvaginal ultrasonographic measurement of endometrial thickness in postmenopausal women receiving estrogen replacement therapy. Am J Obstet Gynecol 1997, 176: 1334-9.
- A39. Indman PD. Abnormal uterine bleeding. Accuracy of vaginal probe ultrasound in predicting abnormal hysteroscopic findings. J Reprod Med 1995, 10: 545-8.
- A40. Karlsson B, Granberg S, Hellberg P, Wikland M. Comparative study of transvaginal sonography and hysteroscopy for the detection of pathologic endometrial lesions in women with PMB. J Ultrasound Med 1994, 13: 757-62.
- A41. Karlsson B, Granberg S, Wikland M, Ylostalo P, Torvid K, Marsal K, Valentin L. Transvaginal ultrasonography of the endometrium in women with PMB - A Nordic multicenter study. Am J Obstet Gynecol 1995, 172:1488-94.
- A42. Kekre AN, Jose R, Seshadri L. Transvaginal sonography of the endometrium in south Indian postmenopausal women. Aust N Z J Obstet Gynaecol 1997, 37: 449-51.
- A43. Klug PW, Leitner G. Comparison of vaginal ultrasound and histologic findings of the endometrium. Geburtshilfe Frauenheilkd 1989, 49: 797-802.
- A44. Kufahl J, Pedersen I, Sindberg-Eriksen P, Helkjaer PE, Larsen LG, Jensen KL, de Nully P, Philipsen T, Wahlin A. Transvaginal ultrasound, endometrial cytology sampled by Gynoscann and histology obtained by Uterine Explora Curette compared to the histology of the uterine specimen. A prospective study in pre- and postmenopausal women undergoing elective hysterectomy. Acta Obstet Gynecol Scand 1997, 76: 790-6.
- A45. Lerner JP, Timor-Tritsch IE, Monteagudo A. Use of transvaginal sonography in the evaluation of endometrial hyperplasia and carcinoma. Obstet Gynecol Surv 1996, 51: 718-25.
- A46. Lin MC, Gosink BB, Wolf SI, Feldesman MR, Stuenkel CA, Braly PS, Pretorius DH. Endometrial thickness after menopause: effect of hormone replacement. Radiology 1991, 180: 427-32.
- A47. Maia Jr H, Barbosa IC, Marques D, Calmon LC, Ladipo OA, Coutinho EM. Hysteroscopy and transvaginal sonography in menopausal women receiving hormone replacement therapy. J Am Assoc Gynecol Laparosc 1996, 4: 13-8.
- A48. Maia Jr H, Barbosa IC, Farias JP, Ladipo OA, Coutinho EM. Evaluation of the endometrial cavity during menopause. Int J Gynecol Obstet 1996, 52: 61-6.

- A49. Malpani A, Singer J, Wolverson MK, Merenda G. Endometrial hyperplasia: value of endometrial thickness in ultrasonographic diagnosis and clinical significance. J Clin Ultrasound 1990, 18: 173-7.
- A50. Marconi D, Exacoustos C, Cangi B, Perroni A, Zupi E, Valli E, Romanini C. Transvaginal sonographic and hysteroscopic findings in postmenopausal women receiving tamoxifen. J Am Assoc Gynecol Laparosc 1997, 4: 331-9.
- A51. Marty R. Diagnostic fibrohysteroscopic evaluation of perimenopausal and postmenopausal uterine bleeding: A comparative study with Belgian and Japanese data. J Am Assoc Gynecol Laparosc 1998, 5: 69-73.
- A52. Nasri MN, Shepherd JH, Setchell ME, Lowe DG, Chard T. Sonographic depiction of postmenopausal endometrium with transabdominal and transvaginal scanning. Ultrasound Obstet Gynecol 1991, 1: 279-83.
- A53. O' Connell LP, Fries MH, Zeringue E, Brehm W. Triage of abnormal PMB: A comparison of EB and transvaginal sonohysterography versus fractional curettage with hysteroscopy. Am J Obstet Gynecol 1998, 178: 956-61.
- A54. Osmers R, Volksen M, Rath W, Kuhn W. Vaginal sonography: a screening method for early detection of ovarian tumors and endometrial cancers?. Arch Gynecol Obstet 1989, 245: 602-6.
- A55. Osmers R, Volksen M, Rath W, Teichmann A, Kuhn W. Vaginosonographic measurement of the postmenopausal endometrium in the early detection of endometrial cancer. Geburtshilfe Frauenheilkd 1989, 49: 262-5.
- A56. Osmers R, Volksen M, Rath W, Kuhn W. Vaginosonographic detection of endometrial cancer in postmenopausal women. Int J Gynecol Obstet 1990, 32: 35-7.
- A57. Osmers R, Volksen M, Schauer A. Vaginosonography for early detection of endometrial carcinoma? Lancet 1990, 335: 1569-71.
- A58. Ozsener S, Ozaran A, Itil I, Dikmen Y. Endometrial pathology of 104 postmenopausal breast cancer patients treated with tamoxifen. Eur J Gynaecol Oncol 1998, 19: 580-3.
- A59. Pal A, Borthaiser Z. Experience with transvaginal ultrasonic examination in patients with metrorrhagia. Orv Hetil 1994, 135: 1305-7.
- A60. Pal L, Lapensee L, Toth TL, Isaacson KB. Comparison of office hysteroscopy, transvaginal ultrasonography and EB in evaluation of abnormal uterine bleeding. J Soc Laparoendosc Surg 1997, 1: 125-30.
- A61. Persiani P, Perotti F, Riccardi A, Gallina D, Polatti F, Zara C Diagnostic accuracy in transvaginal echography in benign endometrial diseases and its comparison with hysteroscopic biopsy. Minerva Ginecol 1995, 47: 63-7.
- A62. Piegsa K, Calder A, Davis JA, McKay-Hart D, Wells M, Bryden F. Endometrial status in post-menopausal women on long-term continuous combined hormone replacement

therapy (Kliofem). A comparative study of EB, OPH and transvaginal ultrasound. Eur J Obstet Gynecol Reprod Biol 1997, 72: 175-80.

- A63. Saidi MH, Sadler RK, Theis VD, Akright BD, Farhart SA, Villanueva GR. Comparison of sonography, sonohysterography and hysteroscopy for evaluation of abnormal uterine bleeding. J Ultrasound Med 1997, 16: 587-91.
- A64. Schmidt T, Rein DT, Romer TH, Straube W, Mallmann P. The role of hysteroscopy in the management of asymptomatic postmenopausal patients with suspicious ultrasound findings of the uterine endometrium - Correlation with sonographic and histologic findings. . Geburtshilfe Frauenheilkd 1999, 59: 163-6.
- A65. Schwarzler P, Concin H, Bosch H, Berlinger A, Wohlgenannt K, Collins WP, Bourne TH. An evaluation of sonohysterography and diagnostic hysteroscopy for the assessment of intrauterine pathology. Ultrasound Obstet Gynecol 1998, 11: 337-42.
- A66. Sheth S, Hamper UM, Kurman R.J. Thickened endometrium in the postmenopausal woman: sonographic-pathologic correlation. Radiology 1993, 187: 135-9.
- A67. Smith-Bindman R, Kerlikowske K, Feldstein VA, Subak L, Scheidler J, Segal M, Brand R, Grady D. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998, 280: 1510-7.
- A68. Strzyzewski W, Marianowski J. A case of early detection of uterine cancer in a program of genital screening of postmenopausal patients by transvaginal ultrasonic scanning. Ginekol Pol 1992, 63: 255-8.
- A69. Taipale P, Tarjanne H, Heinonen UM. The diagnostic value of transvaginal sonography in the diagnosis of endometrial malignancy in women with peri- and PMB published erratum appears in Acta Obstet Gynecol Scand 1995, 74: 324. Acta Obstet Gynecol Scand 1994, 73: 819-23.
- A70. Tercanli S, Hosli I, Holzgreve W. Ultrasound endometrium diagnosis. Ther Umsch 1996, 53: 455-66.
- A71. Tesoro MR, Borgida AF, MacLaurin NA, Asuncion CM. Transvaginal endometrial sonography in postmenopausal women taking tamoxifen. Obstet Gynecol 1999, 93: 363-6.
- A72. Towbin NA, Gviazda IM, March CM. Office hysteroscopy versus transvaginal ultrasonography in the evaluation of patients with excessive uterine bleeding. Am J Obstet Gynecol 1996, 174: 1678-82.
- A73. Tresukosol D, Paosavasdi S, Sirisabya N. Endometrial feature and uterine blood flow in abnormal uterine bleeding. J Med Assoc Thai 1994, 77: 435-9.
- A74. Tsuda H, Kawabata M, Umesaki N, Kawabata K, Ogita S. Vaginal scan for identifying endometrial abnormalities: limitations in clinical management. Gynecol Obstet Invest 1995, 40: 64-5.

- A75. Tsuda H, Kawabata M, Kawabata K, Yamamoto K, Hidaka A, Umesaki N. Comparison between transabdominal and transvaginal ultrasonography for identifying endometrial malignancies. Gynecol Obstet Invest 1995, 40: 271-3.
- A76. Tsuda H, Kawabata M, Kawabata K, Yamamoto K, Umesaki N. Improvement of diagnostic accuracy of transvaginal ultrasound for identification of endometrial malignancies by using cut-off level of endometrial thickness based on length of time since menopause. Gynecol Oncol 1997, 64: 35-7
- A77. Van den Bosch T, Vandendael A, Van Schoubroeck D, Wranz PA, Lombard CJ. Combining vaginal ultrasonography and office endometrial sampling in the diagnosis of endometrial disease in postmenopausal women. Obstet Gynecol 1995, 85: 349-52.
- A78. Volgger B, Alge A, Windbichler G, Zeimet AG, Muller-Holzner E, Marth C. Ultrasound morphologic evaluation of the postmenopausal endometrium. A prospective study. Gynakol Geburtshilfliche Rundsch 1996, 36: 21-8.
- A79. Weber G, Merz E, Bahlmann F, Mitze M, Weikel W, Knapstein PG. Assessment of myometrial infiltration and preoperative staging by transvaginal ultrasound in patients with endometrial carcinoma. Ultrasound Obstet Gynecol 1995, 6: 362-7.
- A80. Weber AM, Belinson JL, Bradley LD, Piedmonte MR. Vaginal ultrasonography versus EB in women with PMB. Am J Obstet Gynecol 1997, 177: 924-9.
- A81. Weigel M, Schmitt W, Lieder HJ. Inthraphuvasak J. The value of various parameters for ultrasound assessment of the postmenopausal endometrium with reference to benign and malignant neoplasms. Geburtshilfe Frauenheilkd 1990, 50: 870-6.
- A82. Weigel M, Friese K, Strittmatter HJ, Melchert F. Ultrasound assessment of the postmenopausal endometrium. Is measuring thickness adequate?. Ultraschall Med 1994, 15: 117-21.
- A83. Weigel M, Friese K, Strittmatter HJ, Melchert F. Measuring the thickness is that all we have to do for sonographic assessment of endometrium in postmenopausal women? Ultrasound Obstet Gynecol 1995, 6: 97-102.
- A84. Weiner Z, Beck D, Rottem S, Brandes JM, Thaler I. Uterine artery flow velocity waveforms and color flow imaging in women with perimenopausal and PMB. Correlation to endometrial histopathology. Acta Obstet Gynecol Scand 1993, 72: 162-6.
- A85. Wikland M, Granberg S, Karlsson B. Assessment of the endometrium in the postmenopausal woman by vaginal sonography. Ultrasound Quarterly 1992, 10: 15-27.
- A86. Wikland M, Granberg S, Karlsson B. Replacing diagnostic curettage by vaginal ultrasound. Eur J Obstet Gynecol Reprod Biol 1993, 49: 35-8.
- A87. Wolman I, Amster R, Hartoov J, Gull I, Kupfermintz M, Lessing JB, Jaffa AJ. Reproducibility of transvaginal ultrasonographic measurements of endometrial thickness in patients with PMB. Gynecol Obstet Invest 1998, 46:191-4.

A88. Zacchi V, Zini R, Canino A. Transvaginal sonography as a screening method for the identification of patients at risk of postmenopausal endometrial pathology. Minerva Ginecol 1993, 45: 339-42.

7.4 Appendix 4 - Reference list of excluded studies from systematic reviews of hysteroscopy

- A1. Valli E, Zupi E, Marconi D, Dini M-L, Di Felice M, Romanini C. A new score for endometrial lesions based on hysteroscopic parameters: Preliminary results. *Gynae Endosc* 1994, 3(3):185-188.
- A2. Nagele F, O'Connor H, Baskett TF, Davies A, Mohammed H, Magos AL. Hysteroscopy in women with abnormal uterine bleeding on hormone replacement therapy: a comparison with postmenopausal bleeding. *Fertil Steril* 1996, 65(6):1145-1150.
- A3. La Sala GB, Sacchetti F, Dessanti L. [Ambulatory diagnostic hysteroscopy: our experience with Hamou's microhysteroscopy in 676 patients]. [Italian]. *Ann Ostet Ginecol Med Perinat* 1984, 105(5):300-307.
- A4. La Sala GB, Sacchetti F, Dessanti L, Torelli MG, Sartori F. Panoramic diagnostic microhysteroscopy: Analysis of results obtained from 976 patients. *Acta Eur Fertil* 1986, 17(5):369-375.
- A5. Garuti G, Sambruni I, Cellani F, Garzia D, Alleva P, Luerti M. Hysteroscopy and transvaginal ultrasonography in postmenopausal women with uterine bleeding. *Int J Gynaecol Obstet* 1999, 65(1):25-33.
- A6. Mencaglia L, Perino A. Diagnostic hysteroscopy today. *Acta Eur Fertil* 1986, 17(6):431-439.
- A7. Garuti G, Sambruni I, Iurlaro E, Luerti M. The failure of hysteroscopic view to differentiate between proliferative disorders of the endometrium. *Ital J Obstet Gynaecol* 1999, 11(2):39-46.
- A8. Kovar P. [Hysteroscopy--a high standard or standard examination method? (Analysis of 690 diagnostic hysteroscopies)]. [Czech]. Ceska Gynekol 1998, 63(5):418-422.
- A9. Alexopoulos ED, Simonis CD, Kidsley S, Fay TN. The value of outpatient hysteroscopy in the management of postmenopausal bleeding: A review of 862 cases. *Gynaecological Endoscopy* 2000, 9(2):107-112.
- A10. Woolcott R, Petchpud A. The efficacy of hysteroscopy: a comparison of women presenting with infertility versus other gynaecological symptoms [see comments]. *Aust NZ J Obstet Gynaecol* 1995, 35(3):310-313.
- A11. La Sala GB, Torelli MG, Dessanti L, Cigarini C, Sartori F. Usefulness of hysteroscopy in staging of endometrial carcinoma: Analysis of results obtained from 96 patients. *Gynae Endosc* 1992, 1(2):103-106.
- A12. Tanizawa O, Miyake A, Sugimoto O. [Re-evaluation of hysteroscopy in the diagnosis of uterine endometrial cancer]. [Japanese]. *Nippon Sanka Fujinka Gakkai Zasshi Acta Obstetrica et Gynaecologica Japonica* 1991, 43(6):622-626.

- A13. Rullo S, Piccioni MG, Framarino dei Malatesta ML, Silvestrini J, Boni T, Marzetti L. Sonographic, hysteroscopic, histological correlation in the early diagnosis of endometrial carcinoma. *Eur J Gynaecol Oncol* 1991, 12(6):463-469.
- A14. Colafranceschi M, Van Herendael B, Perino A, Bettocchi S, Tantini C, Mencaglia L et al. Reliability of endometrial biopsy under direct hysteroscopic control. *Gynae Endosc* 1995, 4(2):119-122.
- A15. Conoscenti G, Meir YJ, Fischer-Tamaro L, Maieron A, Natale R, D'Ottavio et al. Endometrial assessment by transvaginal sonography and histological findings after D & C in women with postmenopausal bleeding. *Ultrasound Obstet Gynecol* 1995, 6(2):108-115.
- A16. Mortakis AE, Mavrelos K. Transvaginal ultrasonography and hysteroscopy in the diagnosis of endometrial abnormalities. *J Am Assos Gynecol Laparosc* 1997, 4(4):449-452.
- A17. Rudigoz RC, Salle B, Piacenza JM, Saint-Hilaire P, Gaucherand P. [Hysterosonographic study of the uterine cavity]. [French]. *J Gynecol Obstet Biol Reprod* 1995, 24(7):697-704.
- A18. Bronz L, Suter T, Rusca T. The value of transvaginal sonography with and without saline instillation in the diagnosis of uterine pathology in pre- and postmenopausal women with abnormal bleeding or suspect sonographic findings. *Ultrasound Obstet Gynecol* 1997, 9(1):53-58.
- A19. Van den BT, Vandendael A, Van Schoubroeck D, Wranz PA, Lombard CJ. Combining vaginal ultrasonography and office endometrial sampling in the diagnosis of endometrial disease in postmenopausal women [see comments]. *Obstet Gynecol* 1995, 85(3):349-352.
- A20. Dubinsky TJ, Parvey HR, Gormaz G, Curtis M, Maklad N. Transvaginal hysterosonography: comparison with biopsy in the evaluation of postmenopausal bleeding. *J Ultrasound Med* 1995, 14(12):887-893.
- A21. Valenzano M, Costantini S, Cucuccio S, Dugnani MC, Paoletti R, Ragni N. Use of hysterosonography in women with abnormal postmenopausal bleeding. *Eur J Gynaecol Oncol* 1999, 20(3):217-222.
- A22. Pace S, Villani C, Lotti G, Labi FL. Hysteroscopy as an elective tool in abnormal uterine bleeding in perimenopausal women. *Eur J Gynaecol Oncol* 1992, 13(5):409-413.
- A23. Finikiotis G. Hysteroscopy: an analysis of 523 patients. *Aust NZ J Obstet Gynaecol* 1989, 29(3 Pt 1):253-255.
- A24. Giusa-Chiferi MG, Goncalves WJ, Baracat EC, Albuquerque Neto LC, Bortoletto CC, de Lima GR. Transvaginal ultrasound, uterine biopsy and hysteroscopy for postmenopausal bleeding. *Int J Gynaecol Obstet* 1996, 55(1):39-44.

- A25. Uno LH, Sugimoto O, Carvalho FM, Bagnoli VR, Fonseca AM, Pinotti JA. Morphologic hysteroscopic criteria suggestive of endometrial hyperplasia. *Int J Gynaecol Obstet* 1995, 49(1):35-40.
- A26. Badawy A, Ash A, Nagele F, O'Connor H, Davis A, Magos AL. Is it worth taking a biopsy of the normal-looking endometrium? *Gynae Endosc* 1996, 5(4):225-229.
- A27. Cooper MJ, Broadbent JA, Molnar BG, Richardson R, Magos AL. A series of 1000 consecutive out-patient diagnostic hysteroscopies. *J Obstet Gynaecol* 1995, 21(5):503-507.
- A28. Vigada G, Malanetto C. [The role of hysteroscopy in the early diagnosis of small, focal endometrial neoplasms]. [Italian]. *Minerva Ginecol* 1996, 48(11):493-495.
- A29. Mencaglia L, Scarselli G, Tantini C. Hysteroscopic evaluation of endometrial cancer. *J Reprod Med* 1984, 29(10):701-704.
- A30. Kimmig R, Hillemanns P, Hepp H. The diagnostic hysteroscopy A new standard. *Gynakologe* 1997, 30(5):384-391.
- A31. Semeraro A, Vecchione A. Rilievi isteroscopica in donne con stillicidio ematico perimestruale. *Pat Clin Ost Gin* 1984, 12:497-501.
- A32. Surico N, Ragonesi G, Porcelli A, Marengo F, Wierdis T. [Hysteroscopic diagnosis during metrorrhagia]. [Italian]. *Minerva Ginecol* 1985, 37(9):519-521.
- A33. Saccucci P, Rigon G, Provenza C, Mastrone M, Are P, Pisani G et al. [Hysteroscopic features in postmenopausal uterine bleeding]. [Italian]. *Minerva Ginecol* 1996, 48(10):401-404.
- A34. de Cesare E, Fabrizio L, Polidoro M. [Early diagnosis of endometrial carcinoma. Introduction of hysteroscopy]. [Italian]. *Minerva Ginecol* 1985, 37(3):93-97.
- A35. Gubbini G, Linsalata I, Stagnozzi R, Stefanetti M, Bovicelli A, Vecchio et al. [Outpatient diagnostic hysteroscopy: 14,000 cases]. [Italian]. *Minerva Ginecol* 1996, 48(9):383-390.
- A36. Conoscenti G, Meir Y, Fischer-Tamaro L, Maieron A, Natale R, D'Ottavio et al. [The diagnostic capacities of transvaginal echography and hysteroscopy in the characterization of endometrial pathology]. [Italian]. *Minerva Ginecol* 1995, 47(7-8):293-300.
- A37. Persiani P, Perotti F, Riccardi A, Gallina D, Polatti F, Zara C. [Diagnostic accuracy in transvaginal echography in benign endometrial diseases and its comparison with hysteroscopic biopsy]. [Italian]. *Minerva Ginecol* 1995, 47(3):63-67.

- A38. Sajdak S, Michalska M, Kedzia H, Spaczynski M. [Usefulness of transvaginal ultrasound and hysteroscopy in diagnosing endometrial hyperplasia and endometrial carcinoma]. [Polish]. *Ginecol Pol* 1993, 64(9):431-437.
- A39. Wamsteker K, de Blok S, de Wit W. [Diagnostic and therapeutic applications of hysteroscopy]. [Dutch]. *Ned Tijdschr Geneeskd* 1988, 132(45):2041-2044.
- A40. Walton SM, Macphail S. The value of hysteroscopy in postmenopausal and perimenopausal bleeding. *J Obstet Gynaecol* 1988, 8(4):332-336.
- A41. Pace S, Grassi A, Ferrero S, Figliolini N, Catania R, Labi FL et al. Diagnostic methods of early detection of endometrial hyperplasia and cancer. *Eur J Gynaecol Oncol* 1995, 16(5):373-381.
- A42. Townsend DE, Fields G, McCausland A, Kauffman K. Diagnostic and operative hysteroscopy in the management of persistent postmenopausal bleeding. *Obstet Gynecol* 1993, 82(3):419-421.
- A43. Saidi MH, Sadler RK, Theis VD, Akright BD, Farhart SA, Villanueva GR. Comparison of sonography, sonohysterography, and hysteroscopy for evaluation of abnormal uterine bleeding. *J Ultrasound Med* 1997, 16(9):587-591.
- A44. Karlsson B, Granberg S, Hellberg P, Wikland M. Comparative study of transvaginal sonography and hysteroscopy for the detection of pathologic endometrial lesions in women with postmenopausal bleeding. *J Ultrasound Med* 1994, 13(10):757-762.
- A45. Torrejon R, Fernandez-Alba JJ, Carnicer I, Martin A, Castro C, Garcia-Cabanillas J et al. The value of hysteroscopic exploration for abnormal uterine bleeding. *J Am Assos Gynecol Laparosc* 1997, 4(4):453-456.
- A46. Luo QD. [Evaluation of hysteroscopy in the diagnosis of abnormal uterine bleeding]. [Chinese]. *Chung-Hua Fu Chan Ko Tsa Chih [Chinese Journal of Obstetrics & Gynecology]* 191, 21(3):152-154.
- A47. Coloma CF, Paya A, V, Diago A, V, Costa CS, Valero, Fenollosa V et al. 2,000 out-patient diagnostic hyteroscopies: 8 years of experience. *Prog Obstet Gin* 1998, 41(6):347-352.
- A48. Hamou J, Salat-Baroux J. Microcolpohysteroscopie dans les metrorragies. *Contracept Fertil Sex* 1985, 13:389-394.
- A49. Concin H, Bosch H, Schwarzler P. [Hysteroscopy--applications and risks. Hysteroscopy versus fractionated curettage: therapeutic insufficiency of abrasion]. [German]. *Gynakol Geburtshilfliche Rundsch* 1995, 35(2):114-116.
- A50. Motashaw ND. Experience with the hysteroscope. *Acta Eur Fertil* 1986, 17(6):417-418.

- A51. Dexeus S, Labastida R, Marques L. Hysteroscopy in daily gynaecologic practice. *Acta Eur Fertil* 1986, 17(6):423-425.
- A52. Font-Sastre V, Carabias J, Bonilla-Musoles F, Pellicer A. Office hysteroscopy with small calibre instruments. *Acta Eur Fertil* 1986, 17(6):427-429.
- A53. Mazzon I, Scotto V, Guidi ML, Vittori G, Ricci G, Crisci G et al. Outpatient hysteroscopy in the diagnosis of neoplastic and preneoplastic lesions of the endometrium. *Eur J Gynaecol Oncol* 1988, 9(3):261-264.
- A54. Grozdanov G, Malinova M. [Uterine hemorrhage as an indication for performing contact hysteroscopic examination]. [Bulgarian]. *Akush Ginekol* 1989, 28(1):58-60.
- A55. Feng L, Xia E, Duan H. [Diagnosis of uterine diseases by combined hysteroscopy and ultrasonography]. [Chinese]. Chung-Hua Fu Chan Ko Tsa Chih [Chinese Journal of Obstetrics & Gynecology] 1996, 31(6):334-337.
- A56. Bielanow T, Gabrys M, Woyton J, Koltowska M, Hirnle L, Zmijewski J. Indications and results of hysteroscopy in own material. *Acta Endosc Pol* 1993, 3(1):37-39.
- A57. Ben Hmid R, Mahjoub S, Boughizane S, Dakhli R, Smaili L, Lebbi I et al. [Value of ambulatory diagnostic hysteroscopy. A review of a series of 292 cases]. [French]. *Tunisie Medicale* 2000, 78(10):600-606.
- A58. Chechia A, Koubaa A, Makhlouf T, Terras K, Miaadi N. [Comparison of ultrasonographic and hysteroscopic results in perimenopausal metrorrhagias]. [French]. *Tunisie Medicale* 2001, 79(4):238-241.
- A59. Pasqualotto EB, Margossian H, Price LL, Bradley LD. Accuracy of preoperative diagnostic tools and outcome of hysteroscopic management of menstrual dysfunction. *Journal of the American Association of Gynecologic Laparoscopists* 2000, 7(2):201-209.
- A60. Spiewankiewicz B, Stelmachow J, Sawicki W, Kietlinska Z. Hysteroscopy with selective endometrial sampling after unsuccessful dilatation and curettage in diagnosis of symptomatic endometrial cancer and endometrial hyperplasias. *Eur J Gynaecol Oncol* 1995, 16(1):26-29.
- A61. Gimpelson RJ, Rappold HO. A comparative study between panoramic hysteroscopy with directed biopsies and dilatation and curettage. A review of 276 cases. *Am J Obstet Gynecol* 1988, 158(3 Pt 1):489-492.
- A62. Dijkhuizen FP, Brolmann HA, Potters AE, Bongers MY, Heinz AP. The accuracy of transvaginal ultrasonography in the diagnosis of endometrial abnormalities. *Obstet Gynecol* 1996, 87(3):345-349.

- A63. Loffer FD. Hysteroscopy with selective endometrial sampling compared with D&C for abnormal uterine bleeding: the value of a negative hysteroscopic view. *Obstet Gynecol* 1989, 73(1):16-20.
- A64. Emanuel MH, Verdel MJ, Wamsteker K, Lammes FB. A prospective comparison of transvaginal ultrasonography and diagnostic hysteroscopy in the evaluation of patients with abnormal uterine bleeding: clinical implications [see comments]. *Am J Obstet Gynecol* 1995, 172(2 Pt 1):547-552.
- A65. O'Connell LP, Fries MH, Zeringue E, Brehm W. Triage of abnormal postmenopausal bleeding: a comparison of endometrial biopsy and transvaginal sonohysterography versus fractional curettage with hysteroscopy. *Am J Obstet Gynecol* 1998, 178(5):956-961.
- A66. Goldrath MH, Sherman AI. Office hysteroscopy and suction curettage: can we eliminate the hospital diagnostic dilatation and curettage? *Am J Obstet Gynecol* 1985, 152(2):220-229.
- A67. Mathew M, Gupta R, Krolikowski A. Role of transvaginal ultrasonography and diagnostic hysteroscopy in the evaluation of patients with abnormal uterine bleeding. *International Journal of Gynaecology & Obstetrics* 2000, 71(3):251-253.
- A68. Etherington IJ, Harrison KR, Read MD. A comparison of outpatient endometrial sampling with hysteroscopy, curettage and cystoscopy in the evaluation of postmenopausal bleeding. *J Obstet Gynaecol* 1995, 15(4):259-262.
- A69. Indman PD. Abnormal uterine bleeding. Accuracy of vaginal probe ultrasound in predicting abnormal hysteroscopic findings. *J Reprod Med* 1995, 40(8):545-548.
- A70. Vercellini P, Vendola N, Ragni G, Trespidi L, Oldani S, Crosignani PG. Abnormal uterine bleeding associated with iron-deficiency anemia. Etiology and role of hysteroscopy. *J Reprod Med* 1993, 38(7):502-504.
- A71. Cronje HS. Diagnostic hysteroscopy after postmenopausal uterine bleeding. *S Afr Med J* 1984, 66(20):773-774.
- A72. Suprun HZ, Taendler-Stolero R, Schwartz J, Ettinger M. Experience with Endopap endometrial sampling in the cytodiagnosis of endometrial carcinoma and its precursor lesions. I. A correlative cytologic-histologichysteroscopic diagnostic pilot study. *Acta Cytologica* 1994, 38(3):319-323.
- A73. Marty R. Experience with a new flexible hysteroscope. *Int J Gynaecol Obstet* 1988, 27(1):97-99.
- A74. Goldfarb HA. D&C results improved by hysteroscopy. [Review] [28 refs]. *N J Med* 1989, 86(4):277-279.

- A75. Gaglione R, Cinque B, Paparatti L, Pistilli E. Hysteroscopy: A milestone in gynaecology. *Gynae Endosc* 1996, 5(6):319-322.
- A76. Blanc B, Cravello L, D'Ercole C, Roger V, Porcu G. Investigations of the endometrium. Contribution of endometrectomy. *Revue Francaise de Gynecologie et D'Obstetrique* 1998, 93(1):29.
- A77. Zavodny P, Kudela M, L'ubusky D, Pilka R. [Experience with diagnostic and therapeutic hysteroscopy]. [Czech]. *Ceska Gynekol* 1998, 63(1):82-83.
- A78. Struzziero E, Corbo M. [Use of panoramic hysteroscopy in the differential diagnosis of abnormal uterine bleeding]. [Italian]. *Minerva Ginecol* 1989, 41(7):329-330.
- A79. Rudigoz RC, Frobert C, Chassagnard F, Gaucherand P. The place of vaginal ultrasound in investigation of the normal bleeding patterns during reproductive life. *J Gynecol Obstet Biol Reprod* 1992, 21(6):644-650.
- A80. Motashaw ND, Dave S. Diagnostic and therapeutic hysteroscopy in the management of abnormal uterine bleeding. *J Reprod Med* 1990, 35(6):616-620.
- A81. Hidlebaugh D. A comparison of clinical outcomes and cost of office versus hospital hysteroscopy. *J Am Assos Gynecol Laparosc* 1996, 4(1):39-45.
- A82. Marty R. Diagnostic fibrohysteroscopic evaluation of perimenopausal and postmenopausal uterine bleeding: a comparative study with Belgian and Japanese data. *J Am Assos Gynecol Laparosc* 1998, 5(1):69-73.
- A83. Brooks PG, Serden SP. Hysteroscopic findings after unsuccessful dilatation and curettage for abnormal uterine bleeding. *Am J Obstet Gynecol* 1988, 158(6 Pt 1):1354-1357.
- A84. Choo YC, Mak KC, Hsu C, Wong TS, Ma HK. Postmenopausal uterine bleeding of nonorganic cause. *Obstet Gynecol* 1985, 66(2):225-228.
- A85. Downes E, al Azzawi F. The predictive value of outpatient hysteroscopy in a menopause clinic [see comments]. *Br J Obstet Gynaecol* 1993, 100(12):1148-1149.
- A86. Valli E, Zupi E, Marconi D, Solima E, Nagar G, Romanini C. Outpatient diagnostic hysteroscopy. *J Am Assos Gynecol Laparosc* 1998, 5(4):397-402.
- A87. Bradley LD, Widrich T. State-of-the-art flexible hysteroscopy for office gynecologic evaluation. J Am Assos Gynecol Laparosc 1995, 2(3):263-267.
- A88. Chapman JD, Sherman RH. Hysteroscopy: a prospective examination of its value. *J Am Osteopath Assoc* 1986, 86(4):219-223.
- A89. Schaaps JP, Dubois M, Vosse M, Verheyen M, Lambotte R. Ultrasonic exploration of the uterine cavity: Which pertinence? *Contracept Fertil Sex* 1991, 19(11):929-934.

- A90. Barroco LE, Oliveira LC, Sa-Melo P. "Office hysteroscopy" experience with Hamou microcolpohysteroscope in 250 patients. *Acta Eur Fertil* 1986, 17(6):419-421.
- A91. Henie O, I, Maltau JM. [Hysteroscopy]. [Norwegian]. *Tidsskr Nor Laegeforen* 1985, 105(22):1397-1398.
- A92. Giannola C, Carducci AF, Musso P. [Hysteroscopy and its applications. Considerations on a year of clinical experience]. [Italian]. *Minerva Ginecol* 1986, 38(4):265-269.
- A93. Duncan GR, Weerasinghe DS. The diagnostic possibilities of a modified hysteroscopic technique. *NZ Med J* 1985, 98(773):101-103.
- A94. Rossetti D, Gerli S, Saab JC, Di Renzo GC. Diagnostic hysteroscopy and endometrial pathology. *Revue Medicale Libanaise* 1999, 11(2):69-71.
- A95. Makris N, Xygakis A, Michalas S, Dachlythras M, Prevedourakis C. Day clinic diagnostic hysteroscopy in a state hospital. *Clin Exp Obstet Gynecol* 1999, 26(2):91-92.
- A96. Roman JD, Trivedi AN. Implementation of an outpatient hysteroscopy clinic at Waikato Women's Hospital report of the first 60 cases. *NZ Med J* 1999, 112(1091):253-255.
- A97. Labastida R, Ubeda A, Cararach M, Penella J. 5059 diagnostic hysteroscopies: Method, indications and results. *Prog Obstet Gin* 1994, 37(6):348-354.
- A98. Pagano R, Pou J, Sanchez I, Vanrell JA. Diagnostic hysteroscopy with CO2: Indications and results. *Prog Obstet Gin* 1995, 38(8):528-532.
- A99. Arnott N, Phillips WDP. An audit of outpatient hysteroscopy clinic at Perth Royal Infirmary after the introduction of referral guidelines. *J Obstet Gynaecol* 1998, 18(1):93.
- A100. Grio R, Malara D, Curti A, Porpiglia M. [Abnormal uterine bleeding during climacteric. Correlation between transvaginal ultrasonography, hysteroscopy and histology]. [Italian]. *Minerva Ginecol* 1999, 51(4):125-127.
- A101. Wortman M, Daggett A. Hysteroscopic management of intractable uterine bleeding. A review of 103 cases. *J Reprod Med* 1993, 38(7):505-510.
- A102. Emanuel MH, Wamsteker K, Lammes FB. Is dilatation and curettage obsolete for diagnosing intrauterine disorders in premenopausal patients with persistent abnormal uterine bleeding? *Acta Obstet Gynecol Scand* 1997, 76(1):65-68.
- A103. Finikiotis G. The hyperaemic endometrium at hysteroscopy. *Aust NZ J Obstet Gynaecol* 1990, 30(4):351-353.

- A104. Ramsay JE, Calder AL, Hart DM, Habiba MA, Akkad AA, al Azzawi F. Hysteroscopic investigation of bleeding in women receiving tibolone: A case-control study. *Gynae Endosc* 1998, 7(3):115-119.
- A105. Kent ASH, Haines P, Manners BTB, Coats PM. Blind endometrial biopsies: Insufficient for diagnosis in women with intrauterine pathology. *Gynae Endosc* 1998, 7(5):273-278.
- A106. Gubbini G, Filoni M, Linsalata I, Stagnozzi R, Stefanetti M, Marabini A. [The role of hysteroscopy in the diagnosis and follow-up of endometrial hyperplasia]. [Italian]. *Minerva Ginecol* 1998, 50(4):125-133.
- A107. Alcazar JL, Laparte C. Comparative study of transvaginal ultrasonography and hysteroscopy in postmenopausal bleeding. *Gynecologic & Obstetric Investigation* 1996, 41(1):47-49.
- A108. Towbin NA, Gviazda IM, March CM. Office hysteroscopy versus transvaginal ultrasonography in the evaluation of patients with excessive uterine bleeding [see comments]. *Am J Obstet Gynecol* 1996, 174(6):1678-1682.
- A109. Wieser F, Albrecht A, Kurz C, Wenzl R, Nagele F. [Ambulatory hysteroscopy in evaluation of postmenopausal bleeding]. [German]. *Wien Klin Wochenschr* 1999, 111(7):289-293.
- A110. Gimpelson RJ. Panoramic hysteroscopy with directed biopsies vs. dilatation and curettage for accurate diagnosis. *J Reprod Med* 1984, 29(8):575-578.
- A111. Lewis BV. Hysteroscopy in gynaecological practice: a review. *J Royal Soc Med* 1984, 77(3):235-237.
- A112. Lindemann HJ. Hysteroscopy: the state of the art [editorial]. *Eur J Obstet Gynecol Reprod Biol* 1994, 53(2):79-80.
- A113. Livsey R. The efficacy of hysteroscopy [letter, comment]. *Aust NZ J Obstet Gynaecol* 1996, 36(2):226-227.
- A114. ACOG criteria set. Hysteroscopy, diagnostic, for abnormal uterine bleeding. Number 16, May 1996. Committee on Quality Assessment. American College of Obstetricians and Gynecologists. *Int J Gynaecol Obstet* 1996, 54(1):78-79.
- A115. Kohorn EI. Hysteroscopy in the management of endometrial cancer. *Obstet Gynecol Clin North Am* 1988, 15(1):73-75.
- A116. Gerber B, Krause A, Quasmeh A, Rohde E, Reimer T, Friese K. The value of hysteroscopy and D and C in the assessment of postmenopausal uterine bleeding. *Geburtshilfe Frauenheil* 1998, 58(8):440-445.

- A117. Bertone C, Osnengo G, Bigano G, Leoni G, De Ambrosis C. [Hysteroscopy in the morphologic and functional study of the fallopian tubes]. [Italian]. *Minerva Ginecol* 1984, 36(12):783-785.
- A118. Kulakov VI, Adamian LV, Beloglazova SE. [Diagnostic and surgical hysteroscopy]. [Russian]. *Akush Ginekol* 1993,(4):55-59.
- A119. Hucke J, Beck L. Diagnostic and therapeutic hysteroscopy. *Clin Exp Obstet Gynecol* 1992, 19(4):275-276.
- A120. Valle RF. Hysteroscopy. [Review] [19 refs]. Curr Opin Obstet Gynecol 1991, 3(3):422-426.
- A121. Saidi MH, Schenken RS. Outpatient diagnostic hysteroscopies [letter, comment]. *Obstet Gynecol* 1996, 88(5):900-901.
- A122. Downes E, al Azzawi F. Hysteroscopic views and endometrial behavior [letter, comment]. *Am J Obstet Gynecol* 1994, 171(6):1673-1674.
- A123. Loffer FD. Does hysteroscopy improve upon the sensitivity of dilation and curettage in the diagnosis of endometrial hyperplasia or carcinoma? [letter, comment]. *Gyne Oncol* 1999, 73(1):171.
- A124. Oladipo A, al Azzawi F. The predictive value of outpatient hysteroscopy in a menopause clinic [3]. *Br J Obstet Gynaecol* 1994, 101(12):1101.
- A125. De Mendonca R, Kay TT, Emanuel MH, Verdel MJ, Wamsteker K, Lammes FB. Value of transvaginal ultrasonography and hysteroscopy in the evaluation of postmenopauaal women with metrorrhagia [3]. *Am J Obstet Gynecol* 1995, 173(4):1352-1353.
- A126. Yazicioglu HF. A clear hysteroscopic view and the use of other diagnostic modalities in addition to hysteroscopy to achieve better diagnostic accuracy [letter, comment]. *Am J Obstet Gynecol* 1997, 176(4):950-951.
- A127. Habiba MA. Diagnostic accuracy of outpatient hysteroscopy [letter, comment]. *Am J Obstet Gynecol* 1997, 176(6):1399-1400.
- A128. Gimpelson RJ, Whalen TR. Hysteroscopy as gold standard for evaluation of abnormal uterine bleeding [letter, comment]. *Am J Obstet Gynecol* 1995, 173(5):1637-1638.
- A129. Beillon X. [Hysteroscopy]. [French]. Soins Gynecol Obstet Pueric 1987,(73-74):11-12.
- A130. Karateeva AN, Mitrofanov OP. [The Hy-VS-1 hysteroscope with fiber light guide]. [Russian]. *Med Tekh* 1984,(3):45-46.
- A131. Rodriguez CA, Giribert RE. [Hysteroscopy]. [Spanish]. *Revista de Enfermeria* 1996, 19(213):67-70.

- A132. Marty R. The use of a new flexible hysteroscope: Our diagnostic and operative experience over 84 cases. *Contracept Fertil Sex* 1987, 15(6):593-594.
- A133. Lavieille F. Hysteroscopy ambulatory diagnosis in 1994. *Gynecologie Revue du Gynecologue* 1994, 2(5):315-317.
- A134. Saidi MH. Office hysteroscopy versus transvaginal ultrasonography in the evaluation of patients with excessive uterine bleeding [letter, comment]. *Am J Obstet Gynecol* 1997, 176(2):492-493.
- A135. Hysteroscopy. Obstet Gynecol Clin North Am 1988, 15(1):1-166.
- A136. Vesterdal A. [Bleeding disorders. Endoscopic examination]. [Danish]. Sygeplejersken 1993, 93(26):14.
- A137. Lewis BV. Hysteroscopy for the investigation of abnormal uterine bleeding. [Review] [8 refs]. *Br J Obstet Gynaecol* 1990, 97(4):283-284.
- A138. Paraskevaides EC, Ayoade G. Hysteroscopic detection of early endometrial cancer. *J Obstet Gynaecol* 1992, 12(3):208.
- A139. Bargelli G, Tantini C, Savino L, Venturini N, Noci I, Sarselli G. Hysteroscopy in perimenopausal women. Cervix & the Lower Female Genital Tract 1988, 6(3):253-257.
- A140. Loverro G, Bettocchi S, Vicino M, Selvaggi L. Diagnosis of endometrial hyperplasia in women with abnormal uterine bleeding. *Acta Eur Fertil* 1994, 25(1):23-25.
- A141. Piccolboni G, Arlacchi E, Cattani P, Zardini R, Lavanda E, Zardini E. Diagnostic value of hysteroscopy: correlation with histological findings after dilatation and curettage and hysterectomy. *Acta Eur Fertil* 1991, 22(4):233-234.
- A142. Pungetti D, Dimicco R, Mattucci M, Nardi M, Maruizio G, Lenzi M et al. A comparative study between panoramic hysteroscopy and endometrial biopsy. Analysis of 150 cases. *Acta Eur Fertil* 1990, 21(4):201-203.
- A143. Vardhan S, Mohan S, Ranjan P. Hysteroscopy in postmenopausal bleeding. *Medical Journal Armed Forces India* 2001, 57(2):114-116.

8 References

- 1. Spencer CP, Whitehead MI. Endometrial assessment re-visited. Br J Obstet Gynaecol 1999,106:623-32.
- 2. Serden SP. Diagnostic hysteroscopy to evaluate the cause of abnormal uterine bleeding. Obstet Gynecol Clin North Am 2000,27:277-86.
- Existing facilities for investigating postmenopausal bleeding in Scotland. [Available at http://www.sign.ac.uk/ Accessibility verified January 24th, 2002]. 2002.
- 4. Clark TJ, Khan KS, Gupta JK. Current practice for the treatment of benign intrauterine polyps: A national questionnaire survey of consultant gynaecologists in the United Kingdom. European Journal of Obstetrics and Gynecology and Reproductive Biology 2002,103:65-67.
- NHS Executive. National Cancer Guidance Steering Group. Guidance on commissioning cancer services: improving outcomes in gynaecological cancers. [Available at http://www.doh.gov.uk/cancer/gynaecological.htm Accessibility verified September 25, 2002], 1999.
- 6. Cooper JM, Brady RM. Hysteroscopy in the management of abnormal uterine bleeding. [Review] [65 refs]. Obstet Gynecol Clin North Am 1999,26:217-36.
- 7. Towbin NA, Gviazda IM, March CM. Office hysteroscopy versus transvaginal ultrasonography in the evaluation of patients with excessive uterine bleeding [see comments]. Am J Obstet Gynecol 1996,174:1678-82.
- Quinn M, Babb P, Brock A, Kirby L, Jones J. Cancer trends in England and Wales 1950-1999. London: Office of National Statistics. Available at http://www.statistics.gov.uk/downloads/theme_health/cancertrends_5099.pdf. Accessed January 14th, 2002., 2001.
- Key Health Statistics from General Practice: Analyses of morbidity and treatment data, including time trends, England and Wales. London: National Statistics. Available at http://www.statistics.gov.uk/downloads/theme_health/Key_Health_Stats_1998.p df. Accessed 14th January 2002., 1998.
- 10. Department of Health. Referral Guidelines for Suspected Cancer. [Available at: http://www.doh.gov.uk/cancer Accessibility verified September 27, 2002]. 1999.
- 11. Rogerson L, Jones S. The investigation of women with postmenopausal bleeding. Personal Assessment in Continuing Education (PACE review) 1998,7.
- 12. Whitehead MI, Fraser D. The effects of estrogens and progestogens on the endometrium. Modern approach to treatment. [Review] [66 refs]. Obstet Gynecol Clin North Am 1987,14:299-320.

- 13. Mencaglia L. Hysteroscopy and adenocarcinoma. [Review] [30 refs]. Obstet Gynecol Clin North Am 1995,22:573-79.
- 14. NHS Executive. A policy framework for comissioning cancer services EL(95)51. Department of health. 1995.
- 15. Bachmann LM, ter Riet G., Clark TJ, Gupta JK, Khan KS. Probability analysis for diagnosis of endometrial hyperplasia and cancer in postmenopausal bleeding: An approach for a rational diagnostic workup. Acta Obstetricia et Gynecologica Scandinavica 2003,82:1-6.
- 16. Gredmark T, Kvint S, Havel G, Mattson LA. Histopathological findings in women with postmenopausalbleeding. Br J Obstet Gynaecol 1995,102:133-36.
- 17. Clark TJ, Mann CH, Shah N, Song F, Khan KS, Gupta JK. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: A systematic quantitative review . Br J Obstet Gynaecol 2002,109:313-21.
- 18. Clark TJ, Voit D, Gupta JK, Hyde C, Song FS, Khan KS. Accuracy of hysteroscopy in the diagnosis of endometrial cancer and hyperplasia: a systematic quantitative review . JAMA 2002,288:1610-22.
- 19. Gupta JK, Chien PF, Voit D, Clark TJ, Khan KS. Ultrasonographic endometrial thickness for diagnosing endometrial pathology in women with postmenopausal bleeding: a meta-analysis. Acta Obstet Gynecol Scand 2002,81:799-816.
- 20. Smith-Bindman R, Kerlikowske K, Feldstein VA, Subak L, Scheidler J, Segal M et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998,280:1510-17.
- 21. Royal College of Obstetricians and Gynaecologists. The management of menorrhagia in secondary care. Evidence Based Guideline 2000.
- 22. Globocan 2000: Cancer incidence mapw. World Health Organisation. Available at http://www-dep.iarc.fr/globocan/globocan.html 2000.
- 23. Creasman WT, Odicino F, Maisonneuve P, Beller U, Benedet JL, Heintz AP et al. Carcinoma of the corpus uteri. J Epidemiol.Biostat. 2001,6:47-86.
- 24. Grimes DA. Diagnostic dilation and curettage: a reappraisal. American Journal of Obstetrics & Gynecology 1982,142:1-6.
- 25. Anonymous. Bioeffects considerations for the safety of diagnostic ultrasound. American Institute of Ultrasound in Medicine. Bioeffects Committee. Journal of Ultrasound in Medicine 1988,7:S1-S38.
- 26. Bennett CC, Richards DS. Patient acceptance of endovaginal ultrasound. Ultrasound in Obstetrics & Gynecology 2000,15:52-55.
- 27. Kremer C, Duffy S, Moroney M. Patient satisfaction with outpatient hysteroscopy versus day case hysteroscopy: randomised controlled trial [see comments]. BMJ 2000,320:279-82.

- 28. Eddowes HA, Read MD, Codling BW. Pipelle: a more acceptable technique for outpatient endometrial biopsy. British Journal of Obstetrics & Gynaecology 1990,97:961-62.
- 29. Tahir MM, Bigrigg MA, Browning JJ, Brookes ST, Smith PA. A randomised controlled trial comparing transvaginal ultrasound, outpatient hysteroscopy and endometrial biopsy with inpatient hysteroscopy and curettage [see comments]. Br J Obstet Gynaecol 1999,106:1259-64.
- 30. Bree RL, Bowerman RA, Bohm-Velez M, Benson CB, Doubilet PM, DeDreu S et al. US evaluation of the uterus in patients with postmenopausal bleeding: A positive effect on diagnostic decision making. Radiology 2000,216:260-64.
- 31. Haller H, Matejcic N, Rukavina B, Krasevic M, Rupcic S, Mozetic D. Transvaginal sonography and hysteroscopy in women with postmenopausal bleeding. Int J Gynecol Obstet 1996,54:155-59.
- 32. Bradley LD, Falcone T, Magen AB. Radiographic imaging techniques for the diagnosis of abnormal uterine bleeding. [Review] [65 refs]. Obstetrics & Gynecology Clinics of North America 2000,27:245-76.
- 33. Gimpelson RJ, Rappold HO. A comparative study between panoramic hysteroscopy with directed biopsies and dilatation and curettage. A review of 276 cases. Am J Obstet Gynecol 1988,158:489-92.
- 34. Schwarzler P, Concin H, Bosch H, Berlinger A, Wohlgenannt K, Collins WP et al. An evaluation of sonohysterography and diagnostic hysteroscopy for the assessment of intrauterine pathology. Ultrasound Obstet Gynecol 1998,11:337-42.
- 35. Bonilla-Musoles F, Raga F, Blanes J, Bailao LA, Osborne NG. Sonohysterosalpingography with transvaginal color Doppler and threedimensional ultrasound: State of the art. Journal of Gynecologic Surgery 1996,12:227-40.
- 36. Aleem F, Predanic M, Calame R, Moukhtar M, Pennisi J. Transvaginal colour and pulsed doppler sonography of the endometrium: a possible role in reducing the number of dilatation and curettage procedures. Journal of Ultrasound in Medicine 1995,14:139-45.
- 37. Hricak H, Tscholakoff D, Heinrichs Lea. Uterine leiomyomas: Correlation of MR histopathologic findings and symptoms. Radiology 1986,158:385-91.
- 38. Rodriguez GC, Yaqub N, King ME. A comparison of the Pipelle device and the Vabra aspirator as measured by endometrial denudation in hysterectomy specimens: the Pipelle device samples significantly less of the endometrial surface than the Vabra aspirator. Am J Obstet Gynecol 1993,168:55-59.
- 39. Guido R, Kanbour-Shakir A, Rulin M, Christopherson W. Pipelle endometrial sampling: sensitivity in the detection of endometrial cancer. Journal of Reproductive Medicine 1995,40:553-55.

- 40. Cicinelli E, Comi N, Scorcia P, Petruzzi D, Epifani S. Hysteroscopy for diagnosis and treatment of endometrial adenocarcinoma precursors: A review of literature. Eur J Gynaecol Oncol 1993,14:425-36.
- 41. al Azzawi F. Hysteroscopy or ultrasound?. [Review] [21 refs]. Curr Opin Obstet Gynecol 1996,8:246-49.
- 42. Ben Yehuda OM, Kim YB, Leuchter RS. Does hysteroscopy improve upon the sensitivity of dilatation and curettage in the diagnosis of endometrial hyperplasia or carcinoma? [see comments]. Gyne Oncol 1998,68:4-7.
- 43. Granberg S, Wikland M, Karlsson B, Norstrom A, Friberg, LG. Endometrial thickness as measured by endovaginal ultrasonography for identifying endometrial abnormality. Am J Obstet Gynecol 1991,164:47-52.
- 44. Nasri MN, Shepherd JH, Setchell ME, Lowe DG, Chard T. The role of vaginal scan in measurement of thickness in postmenopausal women. Br J Obstet Gynaecol 1991,98:470-75.
- 45. Fleischer AC, Kalemeris GC, Machin JE. Sonographic depiction of normal and abnormal endometrium with histopathologic correlation. J Ultrasound Med 1986,5:445-52.
- 46. Nasri MN, Coast GJ. Correlation of ultrasound findings and endometrial histopathology in postmenopausal women. Br J Obstet Gynaecol 1989,96:1333-38.
- 47. Dorum A, Kristensen GB, Langebrekke A, Sornes T, Skaar, O. Evaluation of endometrial thickness measured by endovaginal ultrasound in women with postmenopausal bleeding. Acta Obstet Gynecol Scand 1993,72:116-19.
- 48. Clark TJ, Mann CH, Shah N, Khan KS, Song F, Gupta JK. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial hyperplasia. Acta Obstet Gynecol Scand 2001,80:784-93.
- 49. Kremer C, Duffy S. A randomised controlled trial comparing transvaginal ultrasound, outpatient hysteroscopy and endometrial biopsy with inpatient hysteroscopy and curettage [letter, comment]. BJOG 2000,107:1058-59.
- 50. Existing facilities for investigating postmenopausal bleeding in Scotland. Available at http://www.sign.ac.uk/ Accessed January 24th, 2002. 2002.
- 51. NHS Executive. Guidance on commissioning cancer services: Improving outcomes in gynaecological cancers. Department of health.http://www.doh.gov.uk/cancer/pdfs/gynaemanual.pdf Accessed January 22nd, 2002 1999.
- 52. Campo R, Van Belle Y, Rombauts L, Brosens I, Gordts S. Office minihysteroscopy. Hum Reprod Update 1999,5:73-81.

- 53. Dijkhuizen FP, Mol BW, Brolmann HA, Heintz AP. The accuracy of endometrial sampling in the diagnosis of patients with endometrial cancer and hyperplasia: a meta-analysis. Cancer 2000,89:1765-72.
- 54. Smith-Bindman R, Kerlikowske K, Feldstein VA, Subak L, Scheidler J, Segal M et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998,280:1510-17.
- 55. Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int.J Epidemiol. 2002,31:88-95.
- 56. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, van der Meulen JHP, Bonsel GJ et al. Empirical evidence of bias in the evaluation of diagnostic tests. JAMA 1999,282:1061-66.
- 57. Ong S, Duffy T, Lenehan P, Murphy J. Endometrial pipelle biopsy compared to conventional dilatation and curettage. Ir.J Med Sci. 1997,166:47-49.
- 58. Hidlebaugh D. A comparison of clinical outcomes and cost of office versus hospital hysteroscopy. Journal of the American Association of Gynecologic Laparoscopists 1996,4:39-45.
- 59. Feldman S, Berkowitz RS, Tosteson AN. Cost-effectiveness of strategies to evaluate postmenopausal bleeding. Obstetrics & Gynecology 1993,81:968-75.
- 60. Weber AM, Belinson JL, Bradley LD, Piedmonte MR. Vaginal ultrasonography versus endometrial biopsy in women with postmenopausal bleeding. [see comments]. American Journal of Obstetrics & Gynecology 1997,177:924-29.
- 61. Rogerson L, Downes E. How do UK gynaecologists manage endometrial carcinoma? A national survey. Eur.J Gynaecol Oncol. 1998,19:331-32.
- 62. Cochrane Methods Working Group on Systematic Reviews of Screening and Diagnostic Tests. Recommended Methods. Available at: http://www.cochrane.org/cochrane/sadtdoc1.htm.Accessed September 3rd, 2001 1996.
- 63. Khan, KS, ter Riet, G, Popay, J, Nixon, J, and Kleijnen, J. Study quality assessment. In: Khan KS, Ter Riet G, Glanville J, Sowden AJ, Kleijnen J (Eds). Undertaking Systematic Reviews of Research on Effectiveness. CRD's Guidance for Carrying Out or Commissioning Reviews. 2nd Edition. (ISBN 1900640201). CRD Report No. 4. 2001. York: NHS Centre for Reviews and Dissemination (CRD), University of York, 2001. (URL: <u>http://www.york.ac.uk/inst/crd/report4.htm</u>). Ref Type: Report
- 64. Khan KS, Dinnes J, Kleijnen J. Systematic reviews to evaluate diagnostic tests. Eur J Obstet Gynecol Reprod 2001,95:6-11.
- 65. Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 1968,70:213-20.

- 66. Cicchetti DV, Fleiss JL. A comparison of the null distributions of weighted kappa and the cordinal statistic. App Psychol Measurement 1997,1:195-201.
- 67. Dunn G, Everitt B. Clinical Biostatistics. London: Edward Arnold, 1995.
- Guyatt G, Oxman A, Ali M, Willan A, McIlroy W, Patterson C. Laboratory diagnosis of iron deficiency anemia: an overview. J Gen Intern Med 1992,7:145-53.
- 69. McAlister F, Straus S, Sackett D. Why we need large, simple studies of the clinical examination: the problem and a proposed solution. Lancet 1999,354:1721-24.
- 70. Bakour SH, Khan KS, Gupta JK. Controlled analysis of factors associated with insufficient sample on outpatient endometrial biopsy. Br J Obstet Gynaecol 2000,107:1312-14.
- 71. Ben-Baruch G, Seidman D, Schiff E, Moran O, Menczer J. Outpatient endometrial sampling with the pipelle curette. Gynecol Obstet Invest 1994,37:260-62.
- 72. Sankey S, Weisfiels L, Fine M, Kapoor W. An assessment of the use of the continuity correction for sparse data in meta analysis. Communications in Statistics-Simulation and Computation 1996,25:1031-56.
- 73. Irwig L, Tostesen ANA, Gatsonis C, Lau J, Colditz G, Chalmers TC et al. Guidelines for meta-analyses evaluating diagnostic tests. Ann Intern Med 1994,120:667-76.
- 74. Deeks JJ. Systematic reviews of evaluations of diagnostic and screening tests. In: Egger M, Smith GD, Altman DG, eds. London: BMJ Books, 2001.
- 75. Department of Clinical Epidemiology and Biostatistics MU. How to read clinical journals. II. To learn about a diagnostic test. Canadian Medical Association Journal 1981,124:703-10.
- 76. Guyatt GH, Tugwell PX, Feeny DH, Haynes RB, Drummond M. A framework for clinical evaluation of diagnostic technologies. Cmaj 1986,134:587-94.
- 77. Jaeschke R, Guyatt G, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. B. What are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA 1994,271:389-91.
- 78. Sackett DL, Richardson WS, Rosenberg W, Haynes RB. Critically appraising the evidence. Is the evidence about a diagnostic test important. London: Churchill Livingstone, 1997:118-28.
- 79. Deeks, J, Khan, KS, Song, F, Popay, J, Nixon, J, and Kleijnen, J. Data Synthesis. In: Khan KS, Ter Riet G, Glanville J, Sowden AJ, Kleijnen J (Eds). Undertaking Systematic Reviews of Research on Effectiveness. CRD's Guidance for Carrying Out or Commissioning Reviews. 2nd Edition. (ISBN)

1900640201). CRD report no.4. 2001. York: NHS Centre for Reviews and Dissemination (CRD), University of York, 2001. (URL: <u>http://www.york.ac.uk/inst/crd/report4.htm</u>). Ref Type: Report

- 80. Deeks JJ, Morris JM. Evaluating diagnostic tests. Baillieres Clinical Obstetrics and Gynaecology 1996,10:613-30.
- 81. Greenhalgh T. How to read a paper. Papers that report diagnostic or screening tests. BMJ 1997,315:540-43.
- 82. Jaeschke R, Guyatt G, Sackett DL. Users' guides to the medical literature. III. How to use an article about a diagnostic test. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA 1994,271:389-91.
- 83. Bakour S, Khan K, Gupta J. Transvaginal ultrasonography and endometrial histology in peri and postmenopausal women on hormone replacement therapy. Br J Obstet Gynecol 2000,107:295.
- 84. Pauker SG, Kassirer JP. The threshold approach to clinical decision making. N Engl J Med 1980,302:1109-17.
- 85. Khan KS, Khan SF, Nwosu CR, Chien PFW. Misleading authors' inferences in obstetric diagnostic test literature. Am J Obstet Gynecol 1999,181:112-5.
- 86. Khan KS, Ter Riet G, Kleijnen J. The report and recommendations. In: Khan KS, Ter Riet G, Glanville J, Sowden AJ, Kleijnen J, eds. York: NHS Centre for Reviews and Dissemination (CRD), University of York, 2001.
- 87. Song F, Sheldon T, Sutton A, Abrams K, Jones D. Methods for exploring heterogeneity in meta-analysis. Evaluation & the Health Professions 2001,24:126-51.
- 88. Clarke M, Oxman A, editors. Cochrane Reviewer's Handbook [updated September 1997]. In. In: The Cochrane Library, Oxford: Update Software, 2000.
- 89. Ransohoff D, Feinstein A. Problems of spectrum and bias in evaluating the efficacy of diagnostic tests. N Engl J Med 1978,299:926-29.
- 90. Van Beek EJ, Schenk BE, Michel BC. The role of plasma D-dimer concentration in the exclusion of pulmonary embolism. Br J Haematol 1996,92:725-32.
- 91. Sterne JAC, Egger M, Davey Smith G. Investigating and dealing with publication and other biases. In: Egger M, Davey Smith G, Altman DG, eds. London: BMJ Publishing Group, 2001:189-208.
- 92. Cook DJ, Sackett DL, Spitzer WO. Methodologic guidelines for systematic reviews of randomized control trials in health care from the Potsdam Consultation on Meta-Analysis. J Clin.Epidemiol. 1995,48:167-71.

- Deville W, Buntinx F. Guidelines for conducting systematic reviews of studies evaluating the accuracy of diagnostic studies. In: Knottnerus JA, ed. London: BMJ Books, 2002:145-65.
- 94. Begg C. Operating characteristics of a rank correlation test for publication bias. Biometric 1994,50:1088-101.
- 95. MacKenzie IZ, Bibby JG. Critical assessment of dilatation and curettage in 1029 women. Lancet 1978,2:566-68.
- 96. Clark TJ, Bakour SH, Gupta JK, Khan KS. Evaluation of outpatient hysteroscopy and ultrasonography in the diagnosis of endometrial disease. Obstet Gynecol 2002,99:1001-07.
- 97. NHS Executive. The new NHS: 1999 reference costs. Leeds:NHSE [Available at: http://www.doh.gov.uk/nhsexec/refcosts/refcosts2000.htm Accessibility verified September 25, 2002].: 2000.
- 98. Wingo PA, Huezo CM, Rubin GL, Ory HW, Peterson HB. The mortality risk associated with hysterectomy. Am.J Obstet Gynecol 1985,152:803-08.
- 99. Management of Gynaecological Cancers. Effective Health Care Bulletin 1999,5:[Available at http://www.york.ac.uk/inst/crd/ Accessibility verified September 27, 2002].
- 100. National Cancer Institute. Endometrial Cancer. [Available at http://www.cancer.gov Accessibility verified September 27, 2002] 2002.
- 101. Martin-Hirsch PL, Jarvis G, Kitchener H, Lilford R. Progestagens for endometrial cancer. Cochrane Database.Syst.Rev 2000,CD001040.
- 102. Netten A, Curtis L. Unit Costs of Health and Social Care (2000), Personal Social Services Research Unit. University of Kent at Canterbury [Available at: http://www.ukc.ac.uk/PSSRU/ Accessibility verified September 25, 2002], 2000.
- 103. Jobanputra P, Barton P, Bryan S, Burls A. The effectiveness of infliximab and etanercept for the treatment of rheumatoid arthritis: a systematic review and economic evaluation. Health Technol Assess 2002,6.
- 104. Haybittle JL, Kingsley-Pillers EM. Long-term survival experience of female patients with genital cancer. Br.J Cancer 1988,57:322-25.
- 105. Altaras MM, Aviram R, Cohen I, Markov S, Goldberg GL, Beyth Y. Microhysteroscopy and endometrial biopsy results following failed diagnostic dilatation and curettage in women with postmenopausal bleeding. International Journal of Gynaecology & Obstetrics 1993,42:255-60.
- 106. Batool T, Reginald PW, Hughes JH. Outpatient pipelle endometrial biopsy in the investigation of postmenopausal bleeding [see comments]. British Journal of Obstetrics & Gynaecology 1994,101:545-46.

- 107. Bocanera AR, Roncoroni EC, Schlaen I, Ben J, Monteverde R, Gonzalez et al. An articulated rotating brush for office endometrial evaluation of climacteric outpatients. Maturitas 1994,19:67-76.
- 108. Briley M, Lindsell DRM. The role of transvaginal ultrasound in the investigation of women with post-menopausal bleeding. Clin Radiol 1998,53:502-05.
- 109. De Silva BY, Stewart K, Steven JD, Sathanandan M. Transvaginal ultrasound measurement of endometrial thickness and endometrial pipelle sampling as an alternative diagnostic procedure to hysteroscopy and dilatation and curettage in the management of post-menopausal bleeding. J Obstet Gynaecol 1997,17:399-402.
- 110. Dubinsky TJ, Parvey HR, Gormaz G, Curtis M, Maklad N. Transvaginal hysterosonography: comparison with biopsy in the evaluation of postmenopausal bleeding. Journal of Ultrasound in Medicine 1995,14:887-93.
- 111. Dubinsky TJ, Parvey HR, Maklad N. The role of transvaginal sonography and endometrial biopsy in the evaluation of peri- and postmenopausal bleeding. AJR 1997,American Journal of Roentgenology. 169:145-49.
- 112. Elpek G, Uner M, Elpek M, Sedele M, Karaveli S. The diagnostic accuracy of the Pipelle endometrial sampler in the presence of endometrial polyps. J Obstet Gynaecol 1998,18:274-75.
- 113. Etherington I, Harrison K, Read M. A comparison of outpatient endometrialsampling with hysteroscopy, curettage and cystoscopy in the evaluation of postmenopausal bleeding. J Obstet Gynaecol 1995,15:259-62.
- 114. Ferry J, Farnsworth A, Webster M, Wren B. The efficacy of the pipelle endometrial biopsy in detecting endometrial carcinoma. Aust NZ J Obstet Gynaecol 1993,33:76-78.
- 115. Franchi D, Colombo N, Bocciolone L, Maggioni A, Costa D, Sacchini V. Tamoxifen and the uterus: Potential uterine risks of anti-oestrogens. The approach of the European Institute of Oncology. Eur J Cancer 1998,34 Suppl 4:S34-S35.
- 116. Giusa-Chiferi MG, Goncalves WJ, Baracat EC, Cavalcanti dAN, L, Bortoletto CCR et al. Transvaginal ultrasound, uterine biopsy and hysteroscopy for postmenopausal bleeding. Int J Gynecol Obstet 1996,55:39-44.
- 117. Goldchmit R, Katz Z, Blickstein I, Caspi B, Dgani R. The accuracy of endometrial Pipelle sampling with and without sonographic measurement of endometrial thickness [see comments]. Obstetrics & Gynecology 1993,82:727-30.
- 118. Goncalves MA, Goncalves WJ, Matias M, Novo NF, Baracat EC, de Lima GR. [A hysteroscopic and anatomicopathological study in women with breast cancer]. [Italian]. Minerva Ginecologica 1998,50:341-46.

- 119. Gupta JK, Wilson S, Desai P, Hau C. How should we investigate women with postmenopausal bleeding? Acta Obstet Gynecol Scand 1996,75:475-79.
- 120. Iossa A, Cianferoni L, Ciatto S, Cecchini S, Campatelli C, Lo SF. Hysteroscopy and endometrial cancer diagnosis: a review of 2007 consecutive examinations in self-referred patients. Tumori 1991,77:479-83.
- 121. Kavak Z, Ceyhan N, Pekin S. Combination of vaginal ultrasonography and pipelle sampling in the diagnosis of endometrial disease. Aust NZ J Obstet Gynaecol 1996,36:63-66.
- 122. Koonings PP, Moyer DL, Grimes DA. A randomized clinical trial comparing Pipelle and Tis-u-trap for endometrial biopsy [see comments]. Obstetrics & Gynecology 1990,75:293-95.
- 123. Krampl E, Soby B, Istre O. How representative are pipelle endometrial biopsies? A retrospective analysis of 324 biopsies followed by transcervical resection of the endometrium or hysterectomy. Gynaecol Endosc 1997,6:277-81.
- 124. Larson DM, Krawisz BR, Johnson KK, Broste SK. Comparison of the Zsampler and Novak endometrial biopsy instruments for in-office diagnosis of endometrial cancer. Gynecologic Oncology 1994,54:64-67.
- 125. Larson DM, Johnson KK, Broste SK, Krawisz BR, Kresl JJ. Comparison of D&C and office endometrial biopsy in predicting final histopathologic grade in endometrial cancer. Obstetrics & Gynecology 1995,86:38-42.
- 126. Lipscomb GH, Lopatine SM, Stovall TG, Ling FW. A randomized comparison of the Pipelle, Accurette, and Explora endometrial sampling devices. Am J Obstet Gynecol 1994,170:591-94.
- 127. Loffer FD. Hysteroscopy with selective endometrial sampling compared with D&C for abnormal uterine bleeding: the value of a negative hysteroscopic view. Obstetrics & Gynecology 1989,73:16-20.
- 128. Lofgren O, Alm P, Ionescu A, Skjerris J. Uterine microcurettage with combined endometrial histopathology and cytology. An alternative to conventional curettage. Acta Obstet Gynecol Scand 1988,67:401-03.
- 129. O'Connell LP, Fries MH, Zeringue E, Brehm W. Triage of abnormal postmenopausal bleeding: a comparison of endometrial biopsy and transvaginal sonohysterography versus fractional curettage with hysteroscopy. Am J Obstet Gynecol 1998,178:956-61.
- 130. Pal L, Lapensee L, Toth TL, Isaacson KB. Comparison of office hysteroscopy, transvaginal ultrasonography and endometrial biopsy in evaluation of abnormal uterine bleeding [published erratum appears in J Soc Laparoendosc Surg 1997 Oct-Dec,1(4):395]. Journal of the Society of Laparoendoscopic Surgeons 1997,1:125-30.

- 131. Salet-Lizee D, Gadonneix P, Van Den AM, Villet R. [The reliability of study methods of the endometrium. A comparative study of 178 patients]. [French]. J Gynecol Obstet Biol Reprod 1993,22:593-99.
- 132. Schei B, Bang T, Halgunset J, Haugen O, Haarstad I, Onsrud M. Microcurettage sampling of the endometrium for histopathological examination simpler but not safe? Acta Obstet Gynecol Scand 1994,73:497-501.
- 133. Shapley M, Redman CW. Endometrial sampling and general practice. Br.J Gen Pract. 1997,47:387-91.
- 134. Shipley CF, III, Simmons CL, Nelson GH. Comparison of transvaginal sonography with endometrial biopsy in asymptomatic postmenopausal women. Journal of Ultrasound in Medicine 1994,13:99-104.
- 135. Stovall TG, Ling FW, Morgan PL. A prospective, randomized comparison of the Pipelle endometrial sampling device with the Novak curette. Am J Obstet Gynecol 1991,165:1287-90.
- Stovall TG, Photopulos GJ, Poston WM, Ling FW, Sandles LG. Pipelle endometrial sampling in patients with known endometrial carcinoma. Obstetrics & Gynecology 1991,77:954-56.
- 137. Sun-Kuie T, Sian-Ann T, Ka-Mui C, Soo-Kim L. The diagnostic value and patient acceptability of outpatient endometrial sampling with Gynoscann. Aust NZ J Obstet Gynaecol 1992,32:73-76.
- 138. van den Bosch T, Vandendael A, van Schoubroeck D, Wranz P, Lombard C. Combining vaginal ultrasonography and office endometrial sampling in the diagnosis of endometrial disease in postmenopasual women. Obstet Gynecol 1995,85:349-52.
- 139. Youssif SN, McMillan DL. Outpatient endometrial biopsy: the pipelle. [Review] [23 refs]. British Journal of Hospital Medicine 1995,54:198-201.
- Zorlu CG, Cobanoglu O, Isik AZ, Kutluay L, Kuscu E. Accuracy of pipelle endometrial sampling in endometrial carcinoma. Gynecol Obstet Invest 1994,38:272-75.
- 141. van den Bosch T, Vandendael A, Wranz P, Lombard C. Endopap versus Pipelle sampling in the diagnosis of postmenopausal endometrial disease. European Journal of Obstetrics, Gynecology, & Reproductive Biology 1996,64:91-94.
- 142. Goldberg GL, Tsalacopoulos GDDA. A comparison of the Accurette and Vabra aspirator and uterine curettage. S Afr Med J 1982,61:114-16.
- 143. Sonnendecker EWWSGB, Sevitz H, Hofmeyr GJ. Diagnostic accuracy of the accurette endometrial sampler. S Afr Med J 1982,61:109-13.
- 144. Kufahl J, Pederson I, Eriksen PS, Helkjaer PE, Larsen LG, Jensen KL et al. Transvaginal ultrasound, endometrial cytology sampled by Gynoscann and histology obtained by Uterine Explora Curette compared to the histology of the

uterine specimen. A prospective study in pre- and postmenopasual women undergoing elective hysterectomy. Acta Obstet Gynecol Scand 1997,76:790-96.

- 145. Stovall TG, Solomon SK, Ling FW. Endometrial sampling prior to hysterectomy. Obstet Gynecol 1989,73:405-09.
- 146. Giannecopoulos C, Karakitsos P, Stergiou E, Koutroumbi E, Giannikos L, Kyrcou K. Uterobrush and Pipelle endometrial samplers in diagnosis of endometrial pathology. Eur J Gynaecol Oncol 1996,17:451-52.
- 147. Suarez RA, Grimes DA, Majmudar B, Benigno BB. Diagnostic endometrial aspiration with the Karman cannula. J Reprod.Med 1983,28:41-44.
- 148. Fothergill DJ, Brown VA, Hill AS. Histological sampling of the endometrium--a comparison between formal curettage and the Pipelle sampler. Br.J Obstet Gynaecol 1992,99:779-80.
- 149. Law J. Histological sampling of the endometrium-acomparison between formal curettage and the pipelle sampler. Br J Obstet Gynaecol 1993,100:503-04.
- 150. Ben Baruch G, Seidman DS, Schiff E, Moran O, Menczer J. Outpatient endometrial sampling with the Pipelle curette. Gynecol Obstet Invest 1994,37:260-62.
- 151. Bistoletti P, Hjerpe A, Mollerstrom G. Cytological diagnosis of endometrial cancer and preinvasive endometrial lesions. A comparison of the Endo-Pap sampler with fractional curettage. Acta Obstet Gynecol Scand 1988,67:343-45.
- Kent A, Haines P, Manners BCP. Blind endometrial biopsies: insufficient for diagnosis in women with intrauterine pathology. Gynaecol Endosc 1998,7:273-78.
- Lidor A, Ismajovich B, Confino E, David M. Histopathological findings in 226 women with postmenopasual bleeding. Acta Obstet Gynecol Scand 1986,65:41-43.
- 154. Salet-Lizee D, Gadonneix P, Van Den AM, Villet R. [The reliability of study methods of the endometrium. A comparative study of 178 patients]. [French]. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction 1993,22:593-99.
- 155. Goldstein SR, Nachtigall M, Snyder JR, Nachtigall L. Endometrial assessment by vaginal ultrasonography before endometrial sampling in patients with postmenopausal bleeding. Am J Obstet Gynecol 1990,163:119-23.
- Smith P, Bakos O, Heimer G, Ulmsten U. Transvaginal ultrasound for identifying endometrial abnormality. Acta Obstet Gynecol Scand 1991,70:591-94.
- 157. Varner RE, Sparks JM, Cameron CD, Roberts LL, Soong S-J. Transvaginal sonography of the endometrium in postmenopausal women. Obstet Gynecol 1991,78:195-99.

- 158. Botsis D, Kassanos D, Pyrgiotis E, Zourlas PA. Vaginal sonography of the endometrium in postmenopausal women. Clin Exp Obstet Gynecol 1992,19:189-92.
- 159. Auslender R. Vaginal ultrasound in patients with postemnopausal bleeding. Ultrasound Obstet Gynecol 1993,3:426-28.
- 160. Karlsson B, Granberg S, Wikland M, Ryd W, Norstrom A. Endovaginal scanning of the endometrium compared to cytology and histology in women with postmenopausal bleeding. Gynecol Oncol 1993,50:173-78.
- Cacciatore B, Ramsay T, Lehtovirta P, Ylostalo P. Transvaginal sonography and hysteroscopy in postmenopausal bleeding. Acta Obstet Gynecol Scand 1994,73:413-16.
- 162. Chan FY, Chau M-T, Pun T-C, Lam C, Ngan HYS, Leong L et al. Limitations of transvaginal sonography and color Doppler imaging in the differentiation of endometrial carcinoma from benign lesions. J Ultrasound Med 1994,13:623-28.
- 163. Malinova M, Pehlivanov B. Transvaginal sonography and endometrial thickness in patients with postmenopausal uterine bleeding. Eur J Obstet Gynecol Reprod Biol 1995,58:161-65.
- 164. Cecchini S, Ciatto S, Bonardi R, Grazzini G, Mazzotta A. Endometrial ultrasonography An alternative to invasive assessment in women with postmenopausal vaginal bleeding. Tumori 1996,82:38-39.
- 165. Dijkhuizen FPHL, Brolmann HAM, Potters AE, Bongers MY, Heintz APM. The accuracy of transvaginal ultrasonography in the diagnosis of endometrial abnormalities. Obstet Gynecol 1996,87:345-49.
- 166. Grigoriou O, Kalovidouros A, Papadias C, Antoniou G, Antonaki V, Giannikos L. Transvaginal sonography of the endometrium in women with postmenopausal bleeding. Maturitas 1996,23:9-14.
- 167. Gruboeck K, Jurkovic D, Lawton F, Savvas M, Tailor A, Campbell S. The diagnostic value of endometrial thickness and volume measurements by three dimensional ultrasound in patients with postmenopausal bleeding. Ultrasound Obstet Gynecol 1996,8:272-76.
- 168. Guner H, Tiras MB, Karabacak O, Sarikaya H, Erdem M, Yildirim M. Endometrial assessment by vaginal ultrasonography might reduce endometrial sampling in patients with postmenopausal bleeding: A prospective study. Aus N Z J Obstet Gynaecol 1996,36:175-78.
- 169. Malinova M, Pehlivanov B. Transvaginal sonography and progesterone challenge for identifying endometrial pathology in postmenopausal women. Int J Gynecol Obstet 1996,52:49-53.
- 170. Wolman I, Sagi J, Ginat S, Jaffa AJ, Hartoov J, Jedwab G. The sensitivity and specificity of vaginal sonography in detecting endometrial abnormalities in women with postmenopausal bleeding. J Clin Ultrasound 1996,24:79-82.

- 171. De Silva BY, Stewart K, Steven JD, Sathanandan M. Transvaginal ultrasound measurement of endometrial thickness and endometrial pipelle sampling as an alternative diagnostic procedure to hysteroscopy and dilatation and curettage in the management of post-menopausal bleeding. J Obstet Gynaecol 1997,17:399-402.
- 172. Granberg S, Ylostalo P, Wikland M, Karlsson B. Endometrial sonographic and histologic findings in women with and without hormonal replacement therapy suffering from postmenopausal bleeding. Maturitas 1997,27:35-40.
- 173. Fistonic I, Hodek B, Klaric P, Jokanovic L, Grubisic G, Ivicevic- et al. Transvaginal sonographic assessment of premalignant and malignant changes in the endometrium in postmenopausal bleeding. J Clin Ultrasound 1997,25:431-35.
- 174. Mateos F, Zarauz R, Seco C, Rayward JR, del Barrio P, Aguirre J et al. Assessment with transvaginal ultrasonography of endometrial thickness in women with postmenopausal bleeding. Eur J Gynaecol Oncol 1997,18:504-07.
- 175. Mortakis AE, Mavrelos K. Transvaginal ultrasonography and hysteroscopy in the diagnosis of endometrial abnormalities. J Am Assoc Gynecol Laparosc 1997,4:449-52.
- 176. Tsuda H, Kawabata M, Kawabata K, Yamamoto K, Umesaki N. Improvement of diagnostic accuracy of transvaginal ultrasound for identification of endometrial malignancies by using cutoff level of endometrial thickness based on length of time since menopause. Gynecol Oncol 1997,64:35-37.
- 177. Weber G, Merz E, Bahlmann F, Rosch B. Evaluation of different transvaginal sonographic diagnostic parameters in women with postmenopausal bleeding. Ultrasound Obstet Gynecol 1998,12:265-70.
- 178. Bakour SH, Dwarakanath LS, Khan KS, Newton JR, Gupta JK. The diagnostic accuracy of ultrasound scan in predicting endometrial hyperplasia and cancer in postmenopausal bleeding. Acta Obstet Gynecol Scand 1999,78:447-51.
- 179. Loverro G, Bettocchi S, Cormio G, Nicolardi V, Greco P, Vimercati A et al. Transvaginal sonography and hysteroscopy in postmenopausal uterine bleeding. Maturitas 1999,33:139-44.
- 180. Garuti G, Sambruni I, Cellani F, Garzia D, Alleva P, Luerti M. Hysteroscopy and transvaginal ultrasonography in postmenopausal women with uterine bleeding. Int J Gynecol Obstet 1999,65:25-33.
- 181. Abu-Ghazzeh Y, Shakoury WA, Barqawi R. Comparative study of transvaginal hysterosonography and biopsy for the evaluation of post-menopausal bleeding. Annals of Saudi Medicine 1999,19:116-19.
- 182. Merz E, Macchiella D, Mitze M. Die vaginosonographie als nichtivasives Hilfsmittel bei der Abklärung von Blutungen in der postmenopause. Ultraschall Klin Prax 1990,5:1-7.

- Degenhardt F, Bohmer S, Frisch K, Schneider J. Assessment of endometrium in postmenopausal women via vaginal sonography. Ultraschall Med 1991,12:119-23.
- 184. Hanggi W, Brandenberger AW, Ammann M, Laely A, Dietz TU, Herrmann U. Diagnosis of malignant tumours of the uterus by transvaginal sonography. Ultraschall Med 1995,16:2-7.
- 185. Seelbach-Gobel B, Rempen A, Kristen P. Transvaginal sonography of postmenopausal endometrium. Geburtshilfe Frauenheilkd 1995,55:59-64.
- 186. Schramm T, Kurzl R, Schweighart C, Stuckert-Klein AC. Studies on the diagnostic validity of transvaginal sonography in detecting endometrial cancer. Geburtshilfe Frauenheilkd 1995,55:65-72.
- Pertl B, Lahousen M, Pieber D, Heydarfadai HJ, Giuliani A. Value of ultrasound in early detection of endometrial carcinoma. Gynakol Geburtshilfliche Rundsch 1996,36:14-20.
- 188. Gerber B, Krause A, Kuelz T, Quasmeh A, Reimer T, Friese K. The rating of transvaginal sonography in the evaluation of postmenopausal bleedings. Zentralbl Gynakol 1999,121:143-48.
- 189. Mascaretti G, Carta G, Renzi E, Peluzzi C, Moscarini M. Evaluation of the endometrium by vaginal ultrasonography. Minerva Ginecol 1993,45:1-4.
- 190. Zannoni E, Radaelli U, Balestri M, Ferrazzi F. L'ecografia transvaginale nella valutazione dell'endometrio in pazienti con perdite ematiche atipiche in postmenopausa. In: D'Addario V, Cagnasso G, eds. Italy: CIC Edizioni Internazionali, 1994:27-30.
- 191. Taviani A, Braccini S, Toniazzi P, Pantani P, Costamagna V, Gambini G et al. Transvaginal echography in patients with postmenopausal metrorrhagia. Minerva Ginecol 1995,47:369-72.
- 192. Salmaggi P, Costanza L, Bonaventura A, Ciminelli C. Echography and hysteroscopy. 2 diagnostic technics compared in the identification of endometrial lesions in the postmenopause. Minerva Ginecol 1997,49:25-29.
- 193. Osmers R, Volksen M, Kuhn W. Evaluation of the endometrium in postmenopausal women by means of vaginal ultrasound. Rev Fr Gynecol Obstet 1992,87:309-15.
- 194. Rudigoz RC, Gaucherand P, Saint-Hilaire P, Bejui-Thivolet F, Gratadour AC. Diagnosis of endometrial cancer and hyperplasia by vaginal sonography and doppler velocimetry. Gynecol Rev Gynecol 1993,1:378-82.
- 195. Gu CX, He FF, Xiang H. Differential diagnosis of endometrial abnormality by transvaginal sonography. Chung Hua Fu Chan Ko Tsa Chih 1994,29:720-23.

- 196. Li S, Gao S. Diagnostic value of endometrial assessment by transvaginal ultrasonography in patients with postmenopausal bleeding. Chua Hua Fu Chan Ko Tsa Chih 1997,32:31-33.
- 197. Ivanov S, Kurlov T, Diankova TS, Kurlov A, Katerinski K. The evaluation of the transvaginal ultrasonography of endometrial thickness in women with postmenopausal bleeding and suspected endometrial carcinoma. Akush Ginekol 1998,37:23-24.
- 198. Todorova M, Buzalov S, Atanasov B, Tsaneva M, Gulubova M. Combined diagnostic methods for women in the pre- and postmenopause. Akush Ginekol 1998,37:33-36.
- 199. Morales FJ, Dualde D, Marinaro A. Value of vaginal ultrasound in the diagnosis of postmenopausal metrorrhagia. Radiologia 1998,40:255-62.
- 200. Suchocki S, Luczynski K, Szymczyk A, Jastrzebski A, Mowlik R. Evaluation of endometrial thickness by transvaginal ultrasonography as a screening method in early diagnosis of endometrial cancer. Ginekol Pol 1998,69:279-82.
- 201. Altuncu N, Kal U, Benhabib M, Nurluoglu M. Vaginosonographic measurements of the postmenopausal endometrial thickness for the early detection of endometrial carcinoma. Istanbul Tip Fakultesi Mecmuasi 1992,55:445-49.
- 202. Brolmann HAM, Van Der Linden PJQ, Bongers, MY, Moret E, Meuwissen JHJM. Ultrasonic diagnosis of endometrial lesions, correlation with the histological findings in 112 patients. Ned Tijdschr Geneeskd 1993,137:1823-27.
- 203. Archer DF, Lobo RA, Land HF, Pickar JH. A comparative study of transvaginal uterine ultrasound and endometrial biopsy for evaluating the endometrium of postmenopausal women taking hormone replacement therapy. Menopause 1999,6:201-08.
- 204. Clark TJ, Mann CH, Shah N, Khan KS, Song F, Gupta JK. Accuracy of outpatient endometrial biopsy in the diagnosis of endometrial cancer: a systematic quantitative review. BJOG. 2002,109:313-21.
- 205. Alexopoulos ED, Fay TN, Simonis CD. A review of 2581 out-patient diagnostic hysteroscopies in the management of abnormal uterine bleeding. Gynae Endosc 1999,8:105-10.
- 206. Azzena A, Pellizzari P, Ferrara A. Diagnosis of endometrial pathology: Comparison between hysterosonography, hysteroscopy and histologic findings. Ital J Obstet Gynaecol 1999,11:112-15.
- 207. Bakour SH, Dwarakanath LS, Khan KS, Newton JR. The diagnostic accuracy of outpatient miniature hysteroscopy in predicting premalignant and malignant endometrial lesions. Gynae Endosc 1999,8:143-48.

- 208. Buchholz F, Bonatz G, Semm K. Possibilities and limitations in differentiating postmenopausal bleedings by contact-hysteroscopy. Zentralbl Gynakol 1988,110:884-89.
- 209. Cameron ST, Walker J, Chambers S, Critchley H. Comparison of transvaginal ultrasound, saline infusion sonography and hysteroscopy to investigate postmenopausal bleeding and unscheduled bleeding on HRT. Australian & New Zealand Journal of Obstetrics & Gynaecology 2001,41:291-94.
- 210. Caserta D, Toro G, Porretta M, Mancini E, Moscarini M. [Hysteroscopic vs histologic diagnosis. Study of 222 cases of abnormal uterine hemorrhage]. [Italian]. Minerva Ginecol 1999,51:169-72.
- 211. Dargent D, Scasso JC. [Hysteroscopy-curettage under local anesthesia in the exploration of abnormal uterine bleeding]. [French]. Revue Francaise de Gynecologie et d Obstetrique 1984,79:293-96.
- 212. Davydov SN, Khachatrian AA, Klimenko SA, Danilova EA. [The role of echography and hysteroscopy in detection of the causes of uterine hemorrhage in the postmenopausal period]. [Russian]. Akush Ginekol 1989,35-37.
- 213. De Jong PR. Outpatient diagnostic hysteroscopy. Gynae Endosc 1993,2:242.
- 214. De Mendonca R, Kay T, Alves S, Botica M, Dinis M, Cabrai I. Value of hysteroscopy in the diagnosis of endometrial carcinoma in the post menopausal woman with metrorrhagia. Int J Gynaecol Obstet 1994,46:80.
- 215. De Vivo D, Valentini AL, La Vecchia G, Ceccarelli D, Palla G, Vincenzoni et al. [Hysterography and hysteroscopy. Comparative study of 50 patients]. [Italian]. Radiol Med 1986,72:305-07.
- 216. Decloedt JF, Fenton DW. Outpatient hysteroscopy: Indications and hysteroscopic findings in pre- and postmenopausal patients. Gynae Endosc 1999,8:137-41.
- 217. Descargues G, Lemercier E, David C, Genevois A, Lemoine JP, Marpeau L. Which initial tests should be performed to evaluate abnormal uterine bleeding? A comparison of hysterography, transvaginal sonohysterography and hysteroscopy. Journal de Gynecologie, Obstetrique et Biologie de la Reproduction 2001,30:59-64.
- 218. Elewa AM, Abd El Karim MA, Saad SA, Ramadan MA, Abd El Hai MA. Correlation of vaginal ultrasound and hysteroscopy with endometrial histopathology in postmenopausal women. Middle East Fertility Society Journal 2001,6:26-33.
- 219. Epstein E, Ramirez A, Skoog L, Valentin L. Transvaginal sonography, saline contrast sonohysterography and hysteroscopy for the investigation of women with postmenopausal bleeding and endometrium > 5 mm. Ultrasound in Obstetrics & Gynecology 2001,18:157-62.

- 220. Gabrys M, Woyton J, Rabczynski J, Bielanow T. Hysteroscopy and endometrial histopathology findings. Acta Endosc Pol 1994,4:59-61.
- 221. Garuti G, Sambruni I, Colonnelli M, Luerti M. Accuracy of hysteroscopy in predicting histopathology of endometrium in 1500 women. Journal of the American Association of Gynecologic Laparoscopists 2001,8:207-13.
- 222. Gorostiaga A, Andia D, Arrizabalaga M, Lobato J-L, Brouard I, Usandizaga et al. Hysteroscopy: An alternative to dilatation and curettage in the diagnosis of postmenopausal bleeding. Journal of Obstetrics & Gynaecology 2001,21:67-69.
- 223. Grozdanov G. [Hysteroscopic assessment of endometrial cancer]. [Bulgarian]. Akush Ginekol 1988,27:76-78.
- 224. Gucer F, Arikan MG, Petru E, Mitterdorfer B, Lahousen M, Lax S. [Diagnostic value of combined vaginal ultrasound and hysteroscopy in peri- and postmenopausal bleeding]. [German]. Gynakol Geburtshilfliche Rundsch 1996,36:9-13.
- 225. Gupta JK, Wilson S, Desai P, Hau C. How should we investigate women with postmenopausal bleeding? Acta Obstet Gynecol Scand 1996,75:475-79.
- 226. Haller H, Matejcic N, Rukavina B, Krasevic M, Rupcic S, Mozetic D. Transvaginal sonography and hysteroscopy in women with postmenopausal bleeding. Int J Gynecol Obstet 1996,54:155-59.
- 227. Itzkowic DJ, Laverty CR. Office hysteroscopy and curettage--a safe diagnostic procedure. Aust NZ J Obstet Gynaecol 1990,30:150-53.
- 228. Kovar P, Slonka J, Srubar V. [Can hysteroscopy reliably detect malignancy? Analysis of 1200 hysteroscopy findings]. [Czech]. Ceska Gynekologie 2000,65:447-51.
- 229. Krampl E, Bourne T, Hurlen-Solbakken H, Istre O. Transvaginal ultrasonography sonohysterography and operative hysteroscopy for the evaluation of abnormal uterine bleeding. Acta Obstetricia et Gynecologica Scandinavica 2001,80:616-22.
- 230. Kun K-Y, Lo L, Ho M-W, Tai C-M. A prospective randomized study comparing hysteroscopy and curettage (H and C) under local anaesthesia (LA) and general anaesthesia (GA) in Chinese population. J Obstet Gynaecol Res 1999,25:119-27.
- 231. La Sala GB, Sacchetti F, Dessanti L. Panoramic diagnostic microhysteroscopy. Analysis of results obtained from 976 outpatients. Acta Obstet Gynecol Scand 1987,141:1-94.
- 232. Liu Y, Zhou Y, Wen H. [Diagnosis and treatment of postmenopausal uterine bleeding by hysteroscopy]. [Chinese]. Chung-Hua Fu Chan Ko Tsa Chih [Chinese Journal of Obstetrics & Gynecology] 1995,30:732-34.

- 233. Lo KW, Yuen PM. The role of outpatient diagnostic hysteroscopy in identifying anatomic pathology and histopathology in the endometrial cavity. Journal of the American Association of Gynecologic Laparoscopists 2000,7:381-85.
- 234. Loverro G, Bettocchi S, Cormio G, Nicolardi V, Porreca MR, Pansini N et al. Diagnostic accuracy of hysteroscopy in endometrial hyperplasia. Maturitas 1996,25:187-91.
- 235. Loverro G, Bettocchi S, Cormio G, Nicolardi V, Greco P, Vimercati A et al. Transvaginal sonography and hysteroscopy in postmenopausal uterine bleeding. Maturitas 1999,33:139-44.
- Luo QD, Chen XY. [Hysteroscopy in the diagnosis of postmenopausal uterine bleeding]. [Chinese]. Chung-Hua Fu Chan Ko Tsa Chih [Chinese Journal of Obstetrics & Gynecology] 189,24:150-52.
- 237. Madan SM, Al Jufairi ZA. Abnormal uterine bleeding. Diagnostic value of hysteroscopy. Saudi Medical Journal 2001,22:153-56.
- 238. Maia H, Jr., Barbosa IC, Farias JP, Ladipo OA, Coutinho EM. Evaluation of the endometrial cavity during menopause. Int J Gynaecol Obstet 1996,52:61-66.
- 239. Maia H, Jr., Maltez A, Oliveira M, Calmon LC, Coutinho EM. Diagnosis and treatment of abnormal uterine bleeding in postmenopausal patients using hormone replacement therapy. Gynae Endosc 1998,7:319-25.
- 240. Mencaglia L, Perino A, Hamou J. Hysteroscopy in perimenopausal and postmenopausal women with abnormal uterine bleeding. J Reprod Med 1987,32:577-82.
- 241. Nagele F, O'Connor H, Davies A, Badawy A, Mohamed H, Magos A. 2500 Outpatient diagnostic hysteroscopies [see comments]. Obstet Gynecol 1996,88:87-92.
- 242. Neis KJ, Hepp H. The accuracy of combined hysteroscopy and line biopsy under ambulatory conditions. Acta Eur Fertil 1986,17:445-48.
- 243. Neumann T, Astudillo J. [Hysteroscopic study in patients with abnormal uterine bleeding]. [Spanish]. Rev Chil Obstet Ginecol 1994,59:349-52.
- 244. Ohad M, Ben-Yehuda, Young B, Leuchter RS. Does hysteroscopy improve upon the sensitivity of dilatation and curettage in the diagnosis of endometrial hyperplasia or carcinoma. Gyne Oncol 1998,68:4-7.
- 245. Okeahialam MG, Jones SE, O'Donovan PJ. Outcome of outpatient microhysteroscopy performed for abnormal bleeding while on hormone replacement therapy. Journal of Obstetrics & Gynaecology 2001,21:277-79.
- 246. Paschopoulos M, Paraskevaidis E, Stefanidis K, Kofinas G, Lolis D. Vaginoscopic approach to outpatient hysteroscopy. J Am Assos Gynecol Laparosc 1997,4:465-67.

- 247. Paya V, Diago VJ, Costa S, Lopez-Olmos J, Valero V, Coloma F. The value of hysteroscopy in the diagnosis of abnormal uterine haemorrhage. Clin Invest Ginecol Obstet 1998,25:111-15.
- 248. Perez-Medina T, Lopez-Mora P, Rojo J, Martinerz-Cortes L, Huertas M, Haya J et al. Comparison between hysteroscopy-biopsy and dilatation and curettage in the diagnosis of abnormal uterine hemorrhage. Prog Obstet Gin 1994,37:479-86.
- 249. Possati G, Jasonni VM, Naldi S, Mazzone S, Gabrielli S, Bevini M et al. Ultrasound, hysteroscopy, and histological assessment of the endometrium in postmenopausal women. Ann N Y Acad Sci 1994,734:479-81.
- 250. Raju KS, Taylor RW. Routine hysteroscopy for patients with a high risk of uterine malignancy. Br J Obstet Gynaecol 1986,93:1259-61.
- 251. Sanfeliu F, Montesinos M, Labastida R, Cararach M, Julve X. Abnormal uterine bleeding: The value of hysteroscopy. Prog Obstet Gin 1990,33:44-54.
- 252. Sevcik L, Koliba P, Graf P. [Diagnosis of endometrial pathology in postmenopausal women]. [Czech]. Ceska Gynekol 1998,63:95-97.
- 253. Simon P, Hollemaert S, Schwers J. Compared diagnostic effectiveness of hysterography and hysteroscopy in common uterine diseases. J Gynecol Obstet Biol Reprod 1993,22:141-44.
- 254. Sousa R, Silvestre M, Sousa L, Falcao F, Dias I, Silva T et al. Transvaginal ultrasonography and hysteroscopy in postmenopausal bleeding: a prospective study. Acta Obstetricia et Gynecologica Scandinavica 2001,80:856-62.
- 255. Todorova M, Buzalov S, Atanasov B, Tsaneva M, Gulubova M. [Combined diagnostic methods for women in the pre- and postmenopause]. [Bulgarian]. Akush Ginekol 1998,37:33-36.
- 256. Uhiara JE, Dwarakanath LS, Newton JR. Audit of a new one-stop menstrual disorder service. Gynae Endosc 1999,8:99-104.
- 257. Valli E, Zupi E. A new hysteroscopic classification of and nomenclature for endometrial lesions. J Am Assos Gynecol Laparosc 1995,2:279-83.
- 258. Vercellini P, Cortesi I, Oldani S, Moschetta M, De Giorgi O, Crosignani et al. The role of transvaginal ultrasonography and outpatient diagnostic hysteroscopy in the evaluation of patients with menorrhagia. Hum Reprod 1997,12:1768-71.
- 259. Vigada G, Malanetto C. [Usefulness of hysteroscopy in the management of abnormal uterine bleeding and intrauterine benign disease]. [Italian]. Minerva Ginecol 1995,47:179-82.
- Widrich T, Bradley LD, Mitchinson AR, Collins RL. Comparison of saline infusion sonography with office hysteroscopy for the evaluation of the endometrium. Am J Obstet Gynecol 1996,174:1327-34.

- Litta P, Vasile C, Quintieri F, Blandamura S. Correlation between hysteroscopy and histology in abnormal uterine bleeding. Ital J Obstet Gynaecol 1996,8:22-24.
- 262. Fagan TJ. Nomogram for Baye's theorem. N-Engl-J-Med 1975,293:257.
- 263. Raftery J. NICE: faster access to modern treatments? Analysis of guidance on health technologies. BMJ 2001,323:1300-03.
- 264. Goldstein R, Bree R, Benson C, Benacerraf B, Bloss J, Carlos R et al. Evaluation of the woman with postmenopausal bleeding: Society of Radiologists in Ultrasound-Sponsored Consensus Conference statement. J Ultrasound Med 2001,20:1025-36.
- 265. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup D. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Lancet 1999,354:1896-900.
- 266. Oxman A, Cook DJ, Guyatt G. For the evidence-based medicine working group, user's guide to medical literature VI. How to use an overview. JAMA 1994,272:1367-71.
- 267. Thompson SG, Pocock SJ. Can meta-analyses be trusted? Lancet 1991,338:1127-30.
- 268. Whitehead A, Whitehead J. A general parametric approach to the meta- analysis of randomised clinical trials. Statist Med 1991,10:1665-77.
- 269. Egger M, Davey Smith G, Schneider M. Systematic Reviews of Observational Studies. In: Egger M, Davey Smith G, Altman D, eds. London: BMJ Publishing Group, 2001:211-27.
- 270. Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. JAMA 1991,266:93-98.
- 271. Grant JM. Confusion with Doppler, certainty with salt, and more basic science needed in pre-eclampsia. Br J Obstet Gynaecol 1998,105:v.
- 272. Longacre TA, Kempson RL, Hendrickson MR. Endometrial hyperplasia, metaplasia and carcinoma. In: Fox H, Wells M, eds. New York: Churchill Livingstone, 1995:421-510.
- Tabor A, Watt HC, Wald NJ. Endometrial thickness as a test for endometrial cancer in women with postmenopausal vaginal bleeding. Obstet Gynecol 2002,99:663-70.
- 274. Dijkhuizen FPHL, Mol BWJ, Brolmann HAM, Heintz APM. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia: A meta-analysis. Cancer 2000,89:1765-72.

- 275. Epstein E, Valentin L. Intraobserver and interobserver reproducibility of ultrasound measurements of endometrial thickness in postmenopausal women. Ultrasound Obstet Gynecol 2002,20:486-91.
- 276. Scottish Intercollegiate Guidelines Network. Investigation of Post-menopasual Bleeding. 1st Edition. (ISBN 1 899893 13 X). 2002. Edinburgh: Scottish Intercollegiate Guidelines Network, Royal College of Physicians, Edinburgh, 2002. (URL: <u>http://www.sign.ac.uk</u>). Ref Type: Report
- 277. Scottish Intercollegiate Guidelines Network. SIGN 50: A guideline developer's handbook. Edinburgh: Edinburgh: Scottish Intercollegiate Guidelines Network, Royal College of Physicians, Edinburgh, 2002. [Available at http://www.sign.ac.uk/guidelines/fulltext/50/index.html. Accessibility verified 23 April 2003], 2001.
- 278. Sackett DL, Haynes RB, Guyatt GH, Tugwell T. Clinical epidemiology. A basic science for clinical medicine. London: Little, Brown and Company, 1991.
- 279. Bronz L, Suter T, Rusca T. The value of transvaginal sonography with and without saline instillation in the diagnosis of uterine pathology in pre- and postmenopausal women with abnormal bleeding or suspect sonographic findings. Ultrasound Obstet Gynecol 1997,9:53-58.
- 280. Sculpher M, Fenwick E, Claxton K. Assessing quality in decision analytic costeffectiveness models. A suggested framework and example of application. Pharmacoeconomics. 2000,17:461-77.
- 281. Elwyn G, Edwards A, Eccles M, Rovner D. Decision analysis in patient care. Lancet 2001,358:571-74.
- 282. Kuntz K, Weinstein M. Modelling in economic evaluation. In: Drummond M, McGuire A, eds. Oxford: Oxford University Press, 2001:141-71.
- Claxton K, Sculpher M, Drummond M. A rational framework for decision making by the National Institute For Clinical Excellence (NICE). Lancet 2002,360:711-15.
- 284. Briggs A, Gray A. Using cost effectiveness information. BMJ 2000,320:246.
- 285. Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analyses. Panel on Cost-Effectiveness in Health and Medicine. JAMA 1996,276:1339-41.
- 286. Briggs AH, Gray AM. Handling uncertainty when performing economic evaluation of healthcare interventions. Health Technol Assess 1999,3:1-134.
- 287. Laupacis A, Feeny D, Detsky AS, Tugwell PX. How attractive does a new technology have to be to warrant adoption and utilization? Tentative guidelines for using clinical and economic evaluations. Can.Med Assoc.J 1992,146:473-81.

- 288. Cutler D, Richardson E. The value of health. Am Econ Rev Papers Proc 1998,88:97-100.
- 289. Newhouse JP. US and UK health economics: two disciplines separated by a common language? Health Econ 1998,7 Suppl 1:S79-S92.
- 290. Goldstein RB, Bree RL, Benson CB, Benacerraf BR, Bloss JD, Carlos R et al. Evaluation of the woman with postmenopausal bleeding: Society of radiologists in ultrasound-sponsored consensus conference statement. Journal of Ultrasound in Medicine 2001,20:1025-36.
- 291. Briggs A. Economics notes: handling uncertainty in economic evaluation. BMJ 1999,319:120.
- 292. Bennett CC, Richards DS. Patient acceptance of endovaginal ultrasound. Ultrasound Obstet Gynecol 2000,15:52-55.
- 293. Royal College of Obstetricians and Gynaecologists. Ultrasound Imaging in the Management of Gynaecological Conditions. Special Skills Training Module [Available at http://www.rcog.org.uk/resources/pdf/RCOG%20Ultrasound.pdf.Accessed January 29th, 2003] 2002,1-46.
- 294. Buyuk E, Durmusoglu F, Erenus M, Karakoc B. Endometrial disease diagnosed by transvaginal ultrasound and dilatation and curettage. Acta Obstetricia et Gynecologica Scandinavica 1999,Vol 78:-422.
- 295. Karlsson B, Granberg S, Wikland M, Ylostalo P, Torvid K, Marsal K et al. Transvaginal ultrasonography of the endometrium in women with postmenopausal bleeding--a Nordic multicenter study. Am.J Obstet Gynecol 1995,172:1488-94.
- 296. Siegel JE, Weinstein MC, Torrance GW. Reporting Cost-Effectiveness Studies and Results. In: Gold MR, Siegel JE, Russell LB, Weinstein MC, eds. New York: Oxford University Press, 1996:276-303.
- 297. Department of Clinical Epidemiology and Biostatistics MUHSC. How to read clinical journals, VII: to understand an economic evaluation. Can Med Assoc J 1984,130:1428-34.
- 298. Drummond MF, Richardson WS, O'Brien BJ, Levine M, Heyland D. Users' guides to the medical literature. XIII. How to use an article on economic analysis of clinical practice. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA 1997,277:1552-57.
- 299. O'Brien BJ, Heyland D, Richardson WS, Levine M, Drummond MF. Users' guides to the medical literature. XIII. How to use an article on economic analysis of clinical practice. B. What are the results and will they help me in caring for my patients? Evidence-Based Medicine Working Group. JAMA 1997,277:1802-06.

- 300. Eisenberg JM. Clinical economics. A guide to the economic analysis of clinical practices. JAMA 1989,262:2879-86.
- Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ 1996,313:275-83.
- 302. Mansley EC, McKenna MT. Importance of perspective in economic analyses of cancer screening decisions. Lancet 2001,358:1169-73.
- Byford S, Raftery J. Perspectives in economic evaluation. BMJ 1998,316:1529-30.
- 304. Cairns J. Discounting in economic evaluation. In: Drummond M, McGuire A, eds. Oxford: Oxford University Press, 2001:236-55.
- 305. Raftery J. Costing in economic evaluation. BMJ 2000,320:1597.
- 306. Meltzer MI. Introduction to health economics for physicians. Lancet 2001,358:993-98.
- 307. Drummond M, Pang F. Transferability of economic evaluation results. In: Drummond M, McGuire A, eds. Oxford: Oxford University Press, 2001:256-76.
- 308. Gosden TB, Torgerson DJ. Economics notes: Converting international cost effectiveness data to UK prices. BMJ 2002,325:275-76.
- 309. Gull B, Karlsson B, Milsom I, Granberg S. Can ultrasound replace dilation and curettage? A longitudinal evaluation of postmenopausal bleeding and transvaginal sonographic measurement of the endometrium as predictors of endometrial cancer. Am.J Obstet Gynecol 2003,188:401-08.
- 310. Bissett D, Davis JA, George WD. Gynaecological monitoring during tamoxifen therapy. Lancet 1994,344:1244.
- 311. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998,351:1451-57.
- 312. Cohen I, Rosen DJ, Shapira J, Cordoba M, Gilboa S, Altaras MM et al. Endometrial changes in postmenopausal women treated with tamoxifen for breast cancer. Br.J Obstet Gynaecol 1993,100:567-70.
- 313. Clark TJ, Khan KS, Gupta JK. The diagnosis of intrauterine pathology in postmenopasual women: an evidence-based approach. Reviews in Gynaecological practice 2002,6:1-8.
- 314. Lilford RJ, Pauker SG, Braunholtz DA, Chard J. Decision analysis and the implementation of research findings. BMJ 1998,317:405-09.
- 315. Jurkovic D. Three-dimensional ultrasound in gynecology: a critical evaluation. Ultrasound Obstet Gynecol 2002,19:109-17.

- 316. Moons, K. G. Diagnostic research: theory and application. 1996. Erasmus University. Ref Type: Thesis/Dissertation
- Khan KS, Chien PF. Seizure prophylaxis in hypertensive pregnancies: a framework for making clinical decisions. Br.J Obstet Gynaecol 1997,104:1173-79.
- 318. Frei KA, Kinkel K. Staging endometrial cancer: role of magnetic resonance imaging. J Magn Reson.Imaging 2001,13:850-55.
- 319. MRC Protocol. ASTEC: A Study in the Treatment of Endometrial Cancer: A randomised trial of lymphadenecetony and of adjuvant external beam radiotherapy in the treatment of endometrial cancer. Medical Research Council 1998.
- 320. Clark TJ, Khan KS, Foon R, Pattison HM, Bryan S, Gupta JK. Quality of life instruments in studies of menorrhagia: a systematic review. Eur.J Obstet Gynecol Reprod.Biol. 2002,104:96.