# <u>The clinical effectiveness and cost effectiveness of antibiotic regimens for pelvic</u> <u>inflammatory disease</u>

| Report commissioned by:                      | The University of Birmingham                                                                                                                                                             |                                                                                   |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| On behalf of:                                | The Regional Evaluation Panel                                                                                                                                                            |                                                                                   |
| Produced by:                                 | West Midlands Health Technology Assessment Group<br>Department of Public Health and Epidemiology<br>The University of Birmingham                                                         |                                                                                   |
| Authors:                                     | Dr Catherine Meads<br>Dr Trudi Knight<br>Dr Chris Hyde<br>Ms Jayne Wilson                                                                                                                | Research Officer<br>Systematic Reviewer<br>Senior Lecturer<br>Systematic Reviewer |
| Correspondence to:                           | Dr Catherine Meads<br>Department of Public Health and Epidemiology<br>The University of Birmingham<br>Edgbaston<br>Birmingham B15 2TT<br>Email c.a.meads@bham.ac.uk<br>Tel 0121-414-6771 |                                                                                   |
| Date completed:                              | May 2004                                                                                                                                                                                 |                                                                                   |
| Expiry Date:                                 | May 2007                                                                                                                                                                                 |                                                                                   |
| Report number: 45                            |                                                                                                                                                                                          |                                                                                   |
| ISBN No: 0704424770                          |                                                                                                                                                                                          |                                                                                   |
| © Copyright, West Midlands Health Technology | Assessment Collaboration                                                                                                                                                                 |                                                                                   |

© Copyright, West Midlands Health Technology Assessment Collaboration Department of Public Health and Epidemiology The University of Birmingham 2004

# WEST MIDLANDS HEALTH TECHNOLOGY ASSESSMENT COLLABORATION (WMHTAC)

The West Midlands Health Technology Assessment Collaboration (WMHTAC) produce rapid systematic reviews about the effectiveness of healthcare interventions and technologies, in response to requests from West Midlands Health Authorities or the HTA programme. Reviews usually take 3-6 months and aim to give a timely and accurate analysis of the quality, strength and direction of the available evidence, generating an economic analysis (where possible a cost-utility analysis) of the intervention.

# **CONTRIBUTIONS OF AUTHORS**

Dr Catherine Meads, developed the protocol, conducted the searches, inclusion and exclusions, data extraction and wrote the review. Ms Jayne Wilson did the duplicate inclusions and exclusions, proof read the review and discussed the trend of evidence and conclusions. Dr Trudi Knight did the duplicate data extraction. Dr Chris Hyde helped with the development of the project and protocol and discussed the layout and direction of the review.

# **CONFLICTS OF INTEREST: NONE**

# ACKNOWLEDGEMENTS

Grateful thanks go to Dr Jonathon Ross and Mr Janesh Gupta who peer-reviewed this systematic review.

# West Midlands Regional Evaluation Panel Recommendation:

The recommendation for the effectiveness of antibiotics for pelvic inflammatory disease was that the results of this review did not fit into any of the available categories so no decision could be made.

# Anticipated expiry date: 2007

- This report was completed in July 2004
- The searches were completed in May 2004
- There appear to be no trials currently underway and we are not aware of any trials being planned in this area.

# CONTENTS

| 1. | AIM O   | F THE REVIEW                                                                 | 9       |
|----|---------|------------------------------------------------------------------------------|---------|
| 2. | BACK    | GROUND                                                                       | 10      |
|    | 2.1 De  | escription of underlying health problem                                      | 11      |
|    | 2.1.1   | Epidemiology of PID                                                          |         |
|    | 2.1.2   | Consequences of PID                                                          | 12      |
|    | 2.2 Cu  | Irrent service provision                                                     | 13      |
| /  | 2.3 Co  | osts of interventions                                                        | 14      |
| 3. | EFFEC   | TIVENESS                                                                     | 15      |
|    | 3.1 M   | ethods for reviewing effectiveness                                           | 15      |
|    | 3.1.1   | Search strategy                                                              | 15      |
|    | 3.1.2   | Inclusion and exclusion criteria                                             | 15      |
|    | 3.1.3   | Data extraction and quality assessment strategies                            | 16      |
|    | 3.1.4   | Methods of analysis and synthesis                                            | 16      |
| ,  | 3.2 Re  | sults                                                                        | 17      |
|    | 3.2.1   | Quantity and quality of research available                                   |         |
|    | 3.2.2   | Clinical effectiveness of standard regimens vs placebo                       | 19      |
|    | 3.2.3   | Clinical effectiveness of standard antibiotic regimens vs any other standard | urd     |
|    | antibio | ic regimens                                                                  | 19      |
|    | 3.2.4   | Clinical effectiveness of standard antibiotic regimens vs any other antibio  | otic or |
|    | combin  | ation                                                                        |         |
|    | 3.2.5   | Any non- standard antibiotic or combination vs placebo                       | 26      |
|    | 3.2.6   | Any non-standard antibiotic or combination compared to any other non-        |         |
|    | standar | d antibiotic or combination                                                  |         |
|    | 3.2.7   | Any antibiotic or combination vs same antibiotic or combination              | 37      |
|    | 3.2.8   | Whether outpatient treatment is more or less effective than inpatient treat  | tment   |
|    |         | 38                                                                           |         |
|    | 3.2.9   | Assessment of effectiveness                                                  |         |
|    | 3.2.10  | Equity issues                                                                | 40      |
| 4. |         | OMIC ANALYSIS                                                                |         |
| 4  | 4.1 M   | ethods for economic analysis                                                 |         |
|    | 4.1.1   | Costs and cost effectiveness review                                          |         |
| 4  | 4.2 Co  | ost effectiveness review results                                             | 42      |
|    | 4.2.1   | Cost studies                                                                 | 42      |
|    | 4.2.2   | Cost-effectiveness studies                                                   |         |
|    | 4.2.3   | Quality of life studies                                                      | 47      |
|    | 4.2.4   | Economic evaluation                                                          | 48      |
| 5. |         | SSION and conclusions                                                        |         |
|    |         | ain results                                                                  |         |
|    | 5.2 Pc  | tential methodological strengths and weaknesses this systematic review       | 50      |
|    | 5.2.1   | Potential weaknesses                                                         | 50      |
|    | 5.2.2   | Need for further research                                                    | 51      |
| 6. |         | sions                                                                        |         |
| 7. |         | IDICES                                                                       |         |
| 8. | REFER   | ENCES                                                                        | 84      |

# APPENDICES

| Appendix 1. Hager and Soper diagnostic criteria                                   | 53 |
|-----------------------------------------------------------------------------------|----|
| Appendix 2. Clinical guideline extracts                                           |    |
| Appendix 3. Cost per day of antibiotics used                                      |    |
| Appendix 4. Search strategies                                                     |    |
| Appendix 5. Flow diagram of identification and inclusion of effectiveness studies |    |
| Appendix 6. Excluded studies                                                      |    |
| Appendix 7. Included trial details                                                |    |

# TABLES

| Table 1. Prevalence of PID by age group                                                     | .11 |
|---------------------------------------------------------------------------------------------|-----|
| Table 2. Hospital episode statistics for PID (2003)                                         | 12  |
| Table 3. Costs of standard treatment regimens                                               |     |
| Table 4. Clinical effectiveness review inclusion criteria                                   |     |
| Table 5. Standard antibiotic regimens and corresponding trial evidence                      |     |
| Table 6. Side effects of cefoxitin and doxycycline v clindamycin and gentamicin             | 20  |
| Table 7. Planned antibiotic comparisons in the PEACH trial                                  |     |
| Table 8. PEACH trial longer-term outcomes                                                   |     |
| Table 9. PEACH trial 30 day adverse events                                                  |     |
| Table 10. Drug comparisons of im ceftriaxone, cefoxitin and doxycycline v non-standard      |     |
| treatments                                                                                  | 22  |
| Table 11. Other results of ceftriaxone cefoxitin and doxycycline v non-standard treatments  |     |
| Table 12. Side effects of ceftriaxone cefoxitin and doxycycline v non-standard treatments . |     |
| Table 13. Drug comparisons of iv clindamycin and gentamicin v non-standard treatments       |     |
| Table 14. Side effect of clindamycin and gentamicin v non-standard treatments               |     |
| Table 15. Non-standard broad-spectrum penicillin comparisons                                |     |
| Table 16. Other results for broad-spectrum penicillins                                      |     |
| Table 17. Side effects of broad-spectrum penicillins                                        |     |
| Table 18. Non-standard cephalosporins, cephamycins and beta-lactam comparisons              |     |
| Table 19. Non-standard cephalosporins, cephamycins and beta-lactams other results           |     |
| Table 20. Non-standard tetracyclines comparisons                                            |     |
| Table 21. Non-standard tetracycline combinations other results                              |     |
| Table 22. Non-standard tetracycline combinations side effects                               |     |
| Table 23. Non-standard aminoglycosides comparisons                                          |     |
| Table 24. Non-standard aminoglycoside combinations other results                            |     |
| Table 25. Non-standard aminoglycoside combinations side effects                             |     |
| Table 26. Non- standard macrolide combinations other results                                | .33 |
| Table 27. Non- standard macrolide combinations adverse events                               |     |
| Table 28. Non-standard clindamycin comparisons                                              |     |
| Table 29. Non-standard clindamycin combinations other results                               |     |
| Table 30. Non-standard metronidazole comparisons                                            |     |
| Table 31. Non-standard metronidazole combinations other results                             |     |
| Table 32. Non-standard metronidazole combinations side effects                              |     |
| Table 33. Non-standard quinolone comparisons                                                |     |
| Table 34. Non-standard quinolone combinations other results                                 |     |
| Table 35. Non-standard quinolone combinations side effects                                  |     |
| Table 36. Comparisons of amikacin and netilmicin                                            |     |
| Table 37. Side effects of amikacin and netilmicin                                           |     |
| Table 38. Size and date of trials                                                           |     |

| Table 39. Ethnic background in trials                                                   | 40 |
|-----------------------------------------------------------------------------------------|----|
| Table 40. Cost effectiveness review inclusion criteria                                  | 41 |
| Table 41. Review of annual cost studies comparisons table                               | 43 |
| Table 42. Review of lifetime cost studies comparisons table                             | 45 |
| Table 43. Review of cost-effectiveness studies comparisons table                        | 46 |
| Table 44. Hager clinical criteria for diagnosis                                         | 53 |
| Table 45. Hager criteria for grading of severity of disease by laparoscopic examination | 53 |
| Table 46. Hager criteria for grading of PID by clinical examination                     | 53 |
| Table 47. Soper clinical criteria for diagnosis                                         | 54 |
| Table 48. Thompson's criteria for clinical severity                                     | 54 |
| Table 49. Excluded clinical effectiveness studies and reasons for exclusion             | 62 |
| Table 50. Excluded cost, cost effectiveness and quality of life studies and reasons for |    |
| exclusion                                                                               | 71 |
| Table 51. Antibiotic comparisons                                                        | 72 |
| Table 52. Trial details                                                                 | 75 |
| Table 53. Trial diagnostic criteria                                                     | 77 |
| Table 54. Randomisation numbers and departures from ITT analysis                        | 80 |
| Table 55. Trial quality                                                                 | 82 |

# FIGURES

| Figure 1. Clinical cure rates of ofloxacin and metronidazole v clindamycin and gentamicin. 19 |
|-----------------------------------------------------------------------------------------------|
| Figure 2. Clinical cure rates of cefoxitin and doxycycline v clindamycin and gentamicin19     |
| Figure 3. Clinical cure rates of ceftriaxone, cefoxitin and doxycycline v non-standard        |
| treatments                                                                                    |
| Figure 4. Clinical cure rates of clindamycin and gentamicin v non-standard treatments25       |
| Figure 5. Clinical cure rates of broad-spectrum penicillin comparisons                        |
| Figure 6. Clinical cure rates of cephalosporins, cephamycins and beta-lactams comparisons 29  |
| Figure 7. Clinical cure rates of tetracycline comparisons                                     |
| Figure 8. Clinical cure rates of aminoglycoside comparisons                                   |
| Figure 9. Clinical cure rates of clindamycin comparisons                                      |
| Figure 10. Clinical cure rates of metronidazole comparisons                                   |
| Figure 11. Clinical cure rates of quinolone comparisons                                       |

# SUMMARY

- This systematic review investigated the clinical effectiveness and cost-effectiveness of antibiotic treatments for pelvic inflammatory disease, particularly in relation to the seven currently recommended treatment regimens.
- Pelvic inflammatory disease is an infection of the upper reproductive tract that occurs in sexually active women and prevalence estimates vary between 63 and 250 per 10,000 person years at risk. The potential sequelae of pelvic inflammatory disease are chronic pelvic pain, ectopic pregnancy and infertility. Pelvic inflammatory disease is treated on an inpatient or outpatient basis, depending on the severity of symptoms.
- For the assessment of clinical effectiveness 34 randomised controlled trials met the inclusion criteria. Many were small and the reporting quality was generally poor. Most of them had short follow ups of less than two weeks. A very wide variety of antibiotic regimens were compared. All trials except two reported clinical cure rates. Meta-analysis was carried out where two or more trials used the same antibiotics or combinations.
- For several of the standard antibiotic regimens, there was no randomised controlled trial evidence available. For standard treatment regimens with evidence, no significant differences of any of the comparisons were found. Only one non-standard regimen had a significantly worse outcome than the comparator and that was clindamycin used on its own. One large trial compared inpatient and outpatient treatment, using very similar antibiotic combinations. There were no significant differences between the two groups at a mean follow up of 35 months.
- For the assessment of costs and cost-effectiveness, 8 studies were included. All were set in USA, four were cost studies, three were various forms of cost-effectiveness study and one was a quality of life study from one of the randomised trials included in the clinical effectiveness section. The annual cost per case of pelvic inflammatory disease varied between \$1,478 and \$2,867. The lifetime cost per person with pelvic inflammatory disease varied between \$1,060 and \$3,180. The lifetime costs rose to \$6,350 if women develop chronic pelvic pain and \$6,840 with ectopic pregnancy. The quality of life study demonstrated worse quality of life, when measured using using the Short Form 36, for women who develop chronic pelvic pain compared to those who do not following an episode of pelvic inflammatory disease. The approximate costs of standard antibiotic regimens vary between £10-£62 for outpatient and £38-£739 for inpatient treatment.
- There is no clear evidence to demonstrate the greater efficacy of any of the clinically meaningful interventions reviewed compared to any of the others. It would seem sensible, therefore that, other things being equal, the least expensive drug regimens be used in the first instance. There is a need for large, good quality RCTs, adequately powered to detect small effect sizes, to establish whether any of the recommended antibiotic regimens are relatively more effective than any of the others. There is also a need to improve the diagnosis and management of PID in primary care.

| Abbreviation        | Definition                                  |
|---------------------|---------------------------------------------|
| Addreviation<br>A&E | Accident and Emergency department           |
|                     |                                             |
| BNF                 | British National Formulary                  |
| CI                  | Confidence interval                         |
| СРР                 | Chronic pelvic pain                         |
| ESR                 | Erythrocyte sedimentation rate              |
| g                   | Gram                                        |
| GP                  | General practitioner                        |
| im                  | Intramuscular                               |
| IP                  | Inpatient                                   |
| ITT                 | Intention to treat                          |
| iv                  | Intravenous                                 |
| IUD                 | Intra-uterine device                        |
| mg                  | Milligram                                   |
| n/a                 | Not available                               |
| n/N                 | Number with outcome, number of participants |
| NHS                 | National Health Service                     |
| NR                  | Not reported                                |
| OP                  | Outpatient                                  |
| PID                 | Pelvic inflammatory disease                 |
| QALY                | Quality adjusted life year                  |
| RCT                 | Randomised controlled trial                 |
| RR                  | Relative risk                               |
| SD                  | Standard deviation                          |
| SEM                 | Standard error of the mean                  |
| SF-36               | Short form – 36 questionnaire               |
| STD                 | Sexually transmitted diseases               |
| USA                 | United States of America                    |

# **ABBREVIATIONS**

# 1. AIM OF THE REVIEW

To establish the clinical and cost effectiveness of the different antibiotics and combinations of antibiotics used in the treatment of pelvic inflammatory disease. Also, to investigate the length of antibiotic treatment required, the effectiveness of different routes of administration and whether inpatient treatment is more or less effective than outpatient treatment.

# 2. BACKGROUND

The female reproductive tract consists of the ovaries, fallopian tubes, uterus, cervix, vagina and vulva. Inflammation of the internal parts of this tract are known as oophoritis, salpingitis, endometritis or parametritis, cervicitis and vaginitis, respectively. Infection of the upper part of the tract is seldom confined to one part so, for example, infection of the fallopian tubes extending into the ovary is called salpingo-oophoritis. Pelvic inflammatory disease (PID) is a sexually transmitted infection of the upper reproductive tract, typically involving the fallopian tubes, ovaries, surrounding tissues and pelvic cavity. The term PID is used synonymously with salpingitis. The infection, often acquired as a result of sexual intercourse, ascends to the upper reproductive tract via the cervix. The most common causes of the infection are *Neisseria gonorrhoeae* (15%) and *Chlamydia trachomatis* (39%).<sup>1</sup> Frequently other bacteria are cultured from the infected fallopian tubes including *Mycoplasma hominis* (38%), and a variety of anaerobes (29%) and aerobes (9%).<sup>1</sup>

The symptoms of PID include low abdominal pain, vaginal or cervical discharge, pyrexia, vomiting, painful sexual intercourse (dyspareunia), irregular menstrual bleeding, urinary symptoms (such as frequency) and symptoms of proctitis. The signs include marked lower abdominal tenderness, cervical motion tenderness, tender palpable mass or masses, raised body temperature and a purulent vaginal discharge which may be bloodstained. Blood tests may show a raised white cell count, erythrocyte sedimentation rate or C reactive protein levels. PID can result in a number of sequelae. In the short term adhesions to surrounding organs can develop. An abscess can form in the fallopian tube (called a pyosalpinx), in an ovary or in the pelvic cavity. If a pelvic abscess forms it can lead to generalised peritonitis. Fitz-Hugh-Curtis syndrome is a perihepatitis which occurs in 10-20% of women with PID.<sup>2</sup> In the longer term PID can lead to chronic pelvic pain, blocked fallopian tubes, infertility and a higher incidence of ectopic pregnancy and hysterectomy.<sup>3</sup>

Diagnosis of PID can be by clinical symptoms and signs or by laparoscopy. Two very similar sets of criteria for diagnosis and grading of PID by Hager (1983) Soper (1991) and Thompson (1980) are shown in Appendix 1. In PID this will show hyperaemia and oedema of the fallopian tubes and a sticky exudate on the tubal surface. The inflammation often bilateral and may be seen to extend into the ovaries and uterus. At laparoscopy, samples are taken for bacterial culture. Laparoscopy is not used routinely for all women with PID symptoms, but for the more severe cases being treated as inpatients and for women entered into trials. If no laparoscopy is performed, culture samples should be taken from the cervix. Chlamydia infection can also be diagnosed from a urine sample.<sup>4</sup> Diagnosis by clinical symptoms and signs only is not reliable, being correct in approximately 65% of cases only.<sup>5</sup> Also PID can be subclinical or 'silent' in the acute stage and only diagnosed retrospectively when, for example, the patient is being investigated for infertility. It is estimated that more than 50% of women who have blocked fallopian tubes as a cause of infertility report no previous PID symptoms, despite having serological evidence of past gonorrhoeal or chlamydial infection.<sup>6</sup> In a questionnaire audit of GP management of PID, only 7% (21/297) were able to describe 'gold standard' diagnosis and management correctly.<sup>7</sup> Also in another GP audit it was found that more than half of GPs (76/139)do not take an endocervical swab, 37.4% do not include anti-chlamydial antibiotics and 24.5% do not recommend sexual partners to be checked.<sup>8</sup> This suggests that considerable sub-optimal diagnosis and management is occurring.

A very similar syndrome to PID can occur following childbirth, termination of pregnancy (particularly illegal abortion), after pelvic operations and may also be caused by a foreign body in the uterus or carcinoma of the cervix. These causes are usually excluded in studies of PID.

# 2.1 Description of underlying health problem

# 2.1.1 Epidemiology of PID

Women with PID are treated by several care providers including hospital emergency departments, gynaecological outpatient clinics, sexually transmitted disease (STD) clinics and by GPs. Therefore epidemiological studies that just include data from one service such as hospital admissions may give very misleading rates. Incidence and prevalence estimates have been derived from patient surveys, outpatient visits, hospital discharge data and extrapolation from STD clinic incidence figures for total gonorrhoeal and chlamydial infections. The incidence of PID is subject to a number of considerations

- 1. Women can have more than one infection so the incidence rates need to distinguish between first episode incidence and total incidence
- 2. Because of the low positive predictive value of clinical diagnosis alone, disease rates should ideally be laparoscopically confirmed PID diagnosis
- 3. Not all cases can ever be diagnosed because of the large proportion with silent or subclinical PID

The rate of PID depends on:

• Age – young, sexually active women are at most risk. The prevalence rates by age group are shown in Table  $1.9^{9}$ 

- Marital status divorcees are at higher risk than married or single women of the same age
- Method of contraception used barrier methods are associated with lower risk whereas IUDs are associated with higher risk in the first few weeks after insertion.
- Previous history of PID recurrence rates can be as high as 30%
- Ethnic group women of black and Asian ethnic origins are at greater risk than women of

white origin. The prevalence in white women is 167 per 10,000 person-years at risk, in black women 264 per 10,000 person-years at risk and in Asian women 193 per 10,000 person-years at risk<sup>4</sup>

- Socioeconomic status women from more deprived backgrounds are at greater risk
- Diagnostic criteria used<sup>10</sup>

| Age group                         | 16-19 | 20-24 | 25-29 | 30-34 | 35-39 | 40-46 |
|-----------------------------------|-------|-------|-------|-------|-------|-------|
| Prevalence per 10,000 person      | 223   | 251   | 220   | 188   | 127   | 63    |
| years at risk <sup>9</sup>        |       |       |       |       |       |       |
| Annual rate of hospital           | 31.4  | 44.3  | 56.9  | 56.2  | 54.4  | 48.9* |
| discharge per 10,000 women        |       |       |       |       |       |       |
| of reproductive age <sup>11</sup> |       |       |       |       |       |       |
| * age 40-44                       |       |       |       |       |       |       |

## Table 1. Prevalence of PID by age group

The rate of PID in the UK appears to be increasing gradually over time.<sup>12</sup> Across the world, PID is a major cause of morbidity. In USA it is the most common gynaecological reason for

admission to hospital, it accounts for 17-40% of gynaecological admissions in sub-Saharan Africa, 15-37% in Southeast Asia and 3-10% in India.<sup>13</sup>

For the population of England, in one year there would be 177,000 cases of PID. This has been calculated from the prevalence figures in Table 1 above and census population estimates and would include all those being treated by their GP. Approximately 46,000 would be discharged from hospital after treatment for PID (USA estimates). Hospital episode statistics for England<sup>14</sup> give considerably fewer admissions (see Table 2) and they would have a mean length of stay of between 3.3 and 5 days. This means that it is likely that trials using US hospital populations may not be completely representative in the UK setting.

| Diagnosis | Description             | Consultant | Admissions | Mean length of |
|-----------|-------------------------|------------|------------|----------------|
| code      |                         | episodes   |            | stay           |
| N70       | Salpingitis/oophoritis  | 2,271      | 2,055      | 5.0            |
| N71       | Inflammatory disease of | 1,094      | 1,069      | 3.3            |
|           | the uterus              |            |            |                |
| N73       | Other PID               | 10,761     | 10,135     | 3.4            |

Table 2. Hospital episode statistics for PID (2003) <sup>14</sup>

## 2.1.2 Consequences of PID

Once a patient has one episode of PID they can get recurrent infections and their risk of developing sequelae increases with the number of episodes experienced. The interval between PID and tubal damage can be as short as one week so it is important to treat the first episode quickly.<sup>7</sup> Approximately 36.9% of patients who have had mild to moderate PID (ie not including those with tubo-ovarian abcesses, surgical emergencies or too ill to tolerate oral treatment) may go on to develop chronic pelvic pain (CPP)<sup>15</sup> although other estimates put the risk to be far less at 18.1%.<sup>16</sup> Other complications include ectopic pregnancy (7%) and infertility (20%).<sup>16</sup> These high rates suggest that initial treatment for PID may not be that successful.

## 2.2 Current service provision

Treatment of acute PID is by antibiotics, given either orally, parenterally or both. A wide variety of different types and combinations can be given including aminoglycosides, cephalosporins, tetracyclines, broad-spectrum penicillins, clindamycin and metronidazole. High doses are usually given for up to 2 weeks. In the UK, the most usual combination is doxycycline and metronidazole (personal communication, J Ross, 24/6/02), but this combination may not be as effective as other combinations.<sup>13,17</sup> The current version of BNF (issue 47) specifies ofloxacin and metronidazole and treatment for at least 14 days.<sup>18</sup> It also suggests doxycycline plus cefoxitin where patients are severely ill, then switching to oral doxycycline plus metronidazole to complete 14 day's treatment. The Royal College of Obstetricians and Gynaecologists Guideline No 32 (May 2003)<sup>19</sup> gives the evidence base for a number of PID treatment regimens. Another set of guidelines<sup>2</sup> from 1999 suggested very similar regimens with no evidence of superiority of any one over others. Relevant extracts from three of the more recent guidelines are given in Appendix 2. The suggested regimens from these are shown below:

- 1. oral ofloxacin and oral metronidazole <sup>19-21</sup>
- 2. im ceftriaxone or im cefoxitin with oral probenecid followed by oral doxycycline and oral metronidazole  $^{19,20}\,$
- 3. im ceftriaxone or im cefoxitin plus oral probenecid or a third generation cephalosporin and oral doxycycline <sup>21</sup>
- 4. iv cefoxitin and iv doxycycline followed by oral doxycycline and oral metronidazole <sup>19,20</sup>
- 5. iv clindamycin and iv gentamicin followed by either oral doxycycline and oral metronidazole or oral clindamycin<sup>19,20</sup>
- 6. iv ofloxacin and iv metronidazole<sup>19</sup>
- 7. iv ciprofloxacin and iv (or oral) doxycycline and iv metronidazole<sup>20</sup>

In this systematic review these seven treatment regimens are called standard treatments. Any other treatment regimen used in trials and other studies have been called non-standard treatments.

Treatment can be either as an inpatient or outpatient, depending on the severity of clinical symptoms and signs. It is expected that antibiotics will start to work, showing good clinical improvement within 2-3 days. If this has not occurred then further investigation, parenteral drugs or surgery may be required. If an abscess forms it will require surgical drainage. Sexual partners of women with PID should also be treated.

Treatment success can be defined in two ways:

- 1. Clinical cure resolution of symptoms including pain, vaginal discharge pyrexia and lowering of white cell count or C reactive protein levels in the blood. There is no standard definition of clinical cure and the parameters used differ slightly between studies.
- 2. Microbiological cure when bacterial cultures that were previously positive become negative.

Repeat microbiological testing is recommended for all cases of gonorrhoea and can be done at 4 weeks. Repeat testing for chlamydia may also be done at 4 weeks when there are persisting symptoms or possibly incomplete treatment of the woman or her sexual partner(s).<sup>2</sup>

# 2.3 Costs of interventions

The estimated total cost of each standard treatment regimen is shown in Table 3. The costs per day of all the antibiotics included in this systematic review are shown in Appendix 3.

| Table 3. Costs of standard tre | eatment regimens |
|--------------------------------|------------------|
|--------------------------------|------------------|

| Regimen                                                                                                                                                                                                                                                                                                                                              | Cost per regimen                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| oral of loxacin 800mg/day and oral metronidazole 0.8g/day for 14 days $^{19-21}$                                                                                                                                                                                                                                                                     | £61.18                                    |
| im ceftriaxone 250mg once or im cefoxitin 2g once with oral probenecid 1g once followed by oral doxycycline 200mg/day and oral metronidazole 800mg/day for 14 days <sup>19,20</sup>                                                                                                                                                                  | £10.58 or £17.68                          |
| im ceftriaxone 250mg or im cefoxitin 2g plus oral probenecid 1g or a third generation cephalosporin and oral doxycycline 200mg for 14 days <sup>21</sup>                                                                                                                                                                                             | £9.46 or £16.56<br>or £24.62 or<br>£35.37 |
| iv cefoxitin 6g/day and iv (or oral) doxycycline 200mg/day followed by oral doxycycline 200mg/day and oral metronidazole 800mg/day to complete 14 days <sup>19,20</sup>                                                                                                                                                                              | £37.36                                    |
| iv clindamycin 2.7g/day and iv gentamicin 2mg/kg loading dose then 4.5mg/kg/day followed by either oral doxycycline 200mg/day and oral metronidazole 200mg/day or oral clindamycin 1.8g/day to complete 14 days <sup>19,20</sup>                                                                                                                     | £83.79 or<br>£153.09                      |
| iv ofloxacin 800mg/day and iv metronidazole 1.5g/day for 14 days <sup>19</sup>                                                                                                                                                                                                                                                                       | £738.50                                   |
| iv ciprofloxacin 400mg/day and iv (or oral) doxycycline 200mg/day and iv metronidazole 1.5g/day (unspecified length, presume 14 days) <sup>20</sup>                                                                                                                                                                                                  | £533.96                                   |
| Notes: Assume iv treatment for 3 days and oral treatment for 11 days where patients are treated iv then orally. Clindamycin and gentamicin doses assume 70Kg person. Non-proprietary medicine prices given where possible. Doxycycline iv no longer available in BNF. Probenecid available on named patient basis only so no price available in BNF. |                                           |

# 3. EFFECTIVENESS

## 3.1 Methods for reviewing effectiveness

A scoping search was undertaken to identify existing reviews and other background material and to estimate the volume and nature of primary studies. The yield from this was used to develop the protocol. Five systematic reviews were identified.<sup>22-26</sup>

# 3.1.1 Search strategy

The following sources were searched to December 2002:

• Bibliographic databases: Cochrane Library (CDSR, CCTR, DARE), MEDLINE,

EMBASE, CINAHL, Web of Science (Science Citation Index)

- Citations of relevant studies
- Relevant internet sources

Cochrane Library (CDSR, CENTRAL, DARE, HTA), MEDLINE, EMBASE and Web of Science (Science Citation Index) were searched again for literature from 2002 to 2004 in May 2004, using the same search terms and citations of new relevant studies were also searched.

There were no date or language restrictions placed on the literature searches. For search strategies, see Appendix 4.

# 3.1.2 Inclusion and exclusion criteria

The inclusion criteria used in the systematic review to find the most clinically effective classes of antibiotic for acute symptoms and long-term sequelae are shown in Table 4.

| Patient      | Women with PID, diagnosed clinically or laparoscopically                                                                                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Intervention | Any antibiotic or combination                                                                                                            |
| Control      | Placebo or any antibiotic or combination                                                                                                 |
| Outcomes     | Clinical cure, microbiological cure, infertility, ectopic pregnancy,<br>chronic pelvic pain, hysterectomy or any other relevant outcomes |
| Study design | RCTs only                                                                                                                                |

Table 4. Clinical effectiveness review inclusion criteria

These inclusion criteria enabled the following comparisons to be made: (for definitions of standard treatment regimens see section 2.2)

- Standard antibiotic regimen vs placebo
- Standard antibiotic regimen vs another standard antibiotic or combination
- Standard antibiotic regimen vs any other antibiotic or combination
- Any non- standard antibiotic or combination vs placebo
- Any non-standard antibiotic or combination vs any other non-standard antibiotic or combination
- Any antibiotic or combination vs same antibiotic or combination (to establish other parameters including the most effective dose, duration of treatment, route of administration or location of treatment).

Safety and tolerability of antibiotics used to treat PID are reviewed in the context of RCT evidence only.

Exclusion criteria:

- A. RCTs that have not finished recruiting
- B. RCTs publishing only baseline characteristics or only follow up results for a small proportions of the trial participants
- C. Non randomised and observational comparative studies
- D. Studies carried out on animals

Two reviewers, using explicit predetermined criteria, made inclusion and exclusion decisions independently. These were checked for agreement and any differences discussed and resolved, if necessary by a third reviewer. Inclusion and exclusion decisions were made independently of inspection of trial results.

Subsequent to the initial inclusion, exclusion process, it was decided, together with the clinical experts, that it would not be useful to review drugs that were no longer available in the BNF. It was also decided that penicillins and anti-pseudomonal penicillins would not now be used for the treatment of PID so a review of these drugs would not be helpful. Trials which included a variety of pelvic infections, such as endometritis and post surgical infections as well as PID were only included if results were available specifically for the group with PID.

## 3.1.3 Data extraction and quality assessment strategies

Two reviewers independently extracted the effectiveness and quality assessment data from all included studies into pre-defined data extraction and quality assessment forms. Any discrepancies were resolved by discussion and if necessary by a third reviewer arbitrating. The quality of RCTs was assessed by Jadad score<sup>27</sup>.

## 3.1.4 Methods of analysis and synthesis

The tabulated characteristics and results of the included trials were assessed qualitatively, taking into account any observed clinical heterogeneity. Where there were sufficient good quality trials with results for the same outcome measures, synthesis of results was conducted, using both fixed effects and random effects meta-analytic models.

# 3.2 Results

## 3.2.1 Quantity and quality of research available

Database searches found 1126 references of which 122 were duplicates. A total of 187 RCTs and other potentially relevant studies were found from the searches. For a flow diagram of the identification and inclusion of studies see Appendix 5. Thirty-four RCTs were included (32 papers) and 120 studies excluded. A list of excluded studies with reasons for exclusions are shown in Appendix 6. The main reasons for exclusion were that one of the antibiotics used was no longer in the BNF or the study looked at gynaecological infections not including pelvic inflammatory disease.

Of the 34 included trials, one was published as a conference abstract and the others were fully published in one or more peer-reviewed journal articles. However, many were published in the 1980s and the treatment used then may not mirror current practice. One journal article reported two trials, each having three arms. Both had identical treatments in two of the arms and the third had different treatments. Because the results were combined for the two third arms these have been excluded. The remaining two trials have been treated as one trial. The included trials and their drug comparisons and doses used are shown in Appendix 7.

Many of the trials were small (less than 50 patients), conducted in the 1980s in USA or Europe, on in-patients and fewer than half had mandatory laparoscopic diagnosis of PID. Most of the trials reported clinical diagnostic criteria but it is noticeable how much they vary. Drug companies were mentioned in 12 reports, which could be that one of the authors was employed by them,<sup>28-31</sup> the trial was supported by grant<sup>32-38</sup> or the company sponsored the trial.<sup>39</sup> It was noticeable how few mentioned intra-uterine devices for contraception. Where this was mentioned, the rates varied between 2-49%. In 4 trials patients were excluded if they had intra-uterine devices or if these were not removed.

Mostly, ITT analysis was not carried out and the reasons given for exclusion from evaluation of clinical effectiveness are shown in Table 54 on page 80. A number of the trials included pelvic infections rather than just PID and errors in diagnosis and treatment were relatively common. Many of the trals were open label. Given the different recommended daily frequencies of the different drugs, blinding would have been difficult for some comparisons, but was attempted in two of the 34 trials (see Table 55 on page 82). The quality of most of the trials was poor and the median Jadad score was 0. Of the two trials achieving a Jadad score above 1, one was published in 2002<sup>40,41</sup> and the other in 1988.<sup>42</sup>

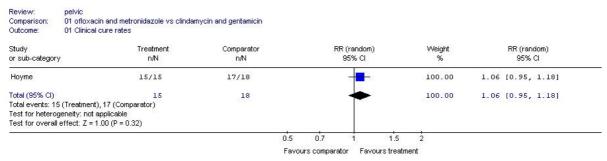
The trials have been organised in 6 groups: (see definitions of standard regimens in section 2.2).

- Standard regimens vs placebo
- Standard regimens vs other standard regimens
- Standard regimens vs non-standard regimens
- Non-standard regimens vs placebo
- Non-standard regimens vs other non-standard regimens
- Any regimen vs same regimen given in a slightly different way (timing of doses, length of administration, outpatient vs inpatient treatment)

All 34 trials have been assigned to one of these groups only. Within each group each trial may take part in more than one comparison, particularly in the non-standard regimen vs other non-standard regimen group where many treatments included antibiotics from more than one category. The standard regimens vs non-standard regimens group are organised in the order they are given in the current treatment section of this systematic review. The non-standard regimens are ordered by categories of antibiotics as they appear in the BNF.

| Regimen                                             | Trial evidence available?            | Sections |
|-----------------------------------------------------|--------------------------------------|----------|
| oral ofloxacin 800mg/day and oral                   | Ofloxacin and metronidazole v        | 3.2.3.1, |
| metronidazole 0.8g/day for 14 days <sup>19-21</sup> | clindamycin and gentamicin           |          |
| im ceftriaxone 250mg once or im                     | Cefoxitin and doxycycline vs         | 3.2.3.3, |
| cefoxitin 2g once with oral probenecid 1g           | cefoxitin, probenecid and            |          |
| once followed by oral doxycycline                   | doxycycline                          |          |
| 200mg/day and oral metronidazole                    |                                      |          |
| 800mg/day for 14 days <sup>19,20</sup>              |                                      |          |
| im ceftriaxone 250mg or im cefoxitin 2g             | Ceftriaxone or cefoxitin plus oral   | 3.2.4.3  |
| plus oral probenecid 1g or a third                  | probenecid or a third generation     |          |
| generation cephalosporin and oral                   | cephalosporin and oral doxycycline v |          |
| doxycycline 200mg for 14 days <sup>21</sup>         | non-standard treatments              |          |
| iv cefoxitin 6g/day and iv (or oral)                | Cefoxitin and doxycycline v          | 3.2.3.2, |
| doxycycline 200mg/day followed by oral              | clindamycin and gentamicin,          | 3.2.3.3, |
| doxycycline 200mg/day and oral                      | Cefoxitin and doxycycline v          |          |
| metronidazole 800mg/day to complete 14              | cefoxitin, probenecid and            |          |
| days <sup>19,20</sup>                               | doxycycline                          |          |
| iv clindamycin 2.7g/day and iv                      | Ofloxacin and metronidazole v        | 3.2.3.1, |
| gentamicin 2mg/kg loading dose then                 | clindamycin and gentamicin,          | 3.2.3.2, |
| 4.5mg/kg/day followed by either oral                | Cefoxitin and doxycycline v          | 3.2.4.5  |
| doxycycline 200mg/day and oral                      | clindamycin and gentamicin,          |          |
| metronidazole 200mg/day or oral                     | Intravenous clindamycin and          |          |
| clindamycin 1.8g/day to complete 14                 | gentamicin followed by either oral   |          |
| days <sup>19,20</sup>                               | doxycycline and oral metronidazole   |          |
|                                                     | or oral clindamycin v non-standard   |          |
|                                                     | treatments                           |          |
| iv ofloxacin 800mg/day and iv                       | Ofloxacin and metronidazole v        | 3.2.3.1, |
| metronidazole 1.5g/day for 14 days <sup>19</sup>    | clindamycin and gentamicin,          |          |
| iv ciprofloxacin 400mg/day and iv (or               | No RCT comparisons                   |          |
| oral) doxycycline 200mg/day and iv                  |                                      |          |
| metronidazole 1.5g/day (unspecified                 |                                      |          |
| length, presume 14 days) <sup>20</sup>              |                                      |          |

## 3.2.2 Clinical effectiveness of standard regimens vs placebo


No RCTs found

# **3.2.3** Clinical effectiveness of standard antibiotic regimens vs any other standard antibiotic regimens

## 3.2.3.1 Ofloxacin and metronidazole vs clindamycin and gentamicin

One trial (Hoyme 1993)<sup>43</sup> compared iv then oral ofloxacin and metronidazole to clindamycin and gentamicin. This small trial took place in Germany, and the report was brief. The clinical cure rate was 15/15 for ofloxacin and 17/18 for clindamycin and gentamicin. This gives a relative risk of 1.06 (95%CI 0.95-1.18) (see Figure 1). No other results were presented.

Figure 1. Clinical cure rates of ofloxacin and metronidazole v clindamycin and gentamicin



## 3.2.3.2 Cefoxitin and doxycycline to clindamycin and gentamicin

Three trials (European 1992,<sup>39</sup> Hemsell 1 1994,<sup>32</sup> Walters 1990<sup>37</sup>) compared cefoxitin and doxycycline (without metronidazole) to clindamycin and gentamicin. Hemsell 1 had a third arm of cefotetan and doxycycline. As cefotetan is no longer in the BNF this arm has been excluded. The drug doses were the same in the included RCTs and duration of treatment was between 10-14 days. Hemsell 1 and Walters trials took place in the US whereas the European trial was located in 10 centres in Europe and Africa. All were inpatient trials that took place in the 1980s and all relatively large. None of the trials had compulsory laparoscopic diagnosis. The results for clinical cure rates are given in Figure 2. Walters also gave microbiological cure rates which were 22/22 and 13/13 for gonorrhoea and 7/8 and 9/10 for chlamydia for the Cefoxitin/doxycycline and clindamycin/gentamicin groups respectively.

| Figure 2. Clinical cure rates of |                           |                              |
|----------------------------------|---------------------------|------------------------------|
| FIGURE 7. Clinical cure rates of | cetoxitin and doxycycline | v clindamycin and gentamicin |
| Tizure 2. Chinear cure races of  |                           |                              |
|                                  |                           |                              |

| Comparison:<br>Outcome:  | 02 cefoxitin and doxycycline vs clindamyci<br>01 Clinical cure rates                  | n and gentamicin  |         |             |                    |            |             |           |                  |
|--------------------------|---------------------------------------------------------------------------------------|-------------------|---------|-------------|--------------------|------------|-------------|-----------|------------------|
| Study<br>or sub-category | Treatment<br>n/N                                                                      | Comparator<br>n/N |         |             | (random)<br>35% Cl |            | Weight<br>% |           | random)<br>5% Cl |
| European                 | 46/55                                                                                 | 52/60             |         | 8           | <b></b>            |            | 21.54       | 0.97 [0.8 | 3, 1.12]         |
| Hemsell 1                | 75/94                                                                                 | 87/104            |         | 21 <u>-</u> | -                  |            | 28.19       | 0.95 [0.8 | 4, 1.09]         |
| Walters                  | 64/67                                                                                 | 57/63             |         |             | -                  |            | 50.27       | 1.06 [0.9 | 6, 1.16]         |
| Total (95% Cl)           | 216                                                                                   | 227               |         |             | +                  |            | 100.00      | 1.01 [0.9 | 3, 1.08]         |
|                          | 5 (Treatment), 196 (Comparator)                                                       |                   |         |             |                    |            |             |           |                  |
|                          | eneity: Chi <sup>z</sup> = 2.22, df = 2 (P = 0.33), l <sup>z</sup> = 9.8 <sup>4</sup> | %                 |         |             |                    |            |             |           |                  |
| Test for overall         | effect: Z = 0.17 (P = 0.87)                                                           |                   |         |             |                    |            |             |           |                  |
|                          |                                                                                       |                   | 0.5     | 0.7         | 1                  | 1.5        | 2           |           |                  |
|                          |                                                                                       |                   | Favours | s comparato | or Favou           | urs treatm | ent         |           |                  |

The results show no significant differences between cefoxitin/doxycycline and clindamycin/gentamicin. The only other results reported were mean duration of inpatient treatment in Hemsell 1, for the cefoxitin/doxycycline group 4.4 days (SD 1.1 days) and for the clindamycin group 4.3 days (SD 2.0 days). Side effects results are given in Table 6. None of the results were statistically significant but the general trend was for more side effects in the clindamycin/gentamicin groups.

|                             | Cefoxitin/Doxycycline | Clindamycin/Gentamicin |
|-----------------------------|-----------------------|------------------------|
| European 1992               |                       |                        |
| Gastrointestinal            | 10/82                 | 15/88                  |
| Vestibular disturbance      | 0/82                  | 3/88                   |
| Allergic reaction           | 0/82                  | 3/88                   |
| Surgical intervention       | 1/60                  | 1/60                   |
| Withdrew from study because | 0/60                  | 1/60                   |
| of side effects             |                       |                        |
| Hemsell 1 1994              |                       |                        |
| Pruritis                    | 2/114                 | 11/116                 |
| Withdrew from study because | 1/114                 | 0/116                  |
| of side effects             |                       |                        |
| Walters 1990                |                       |                        |
| Mild rash                   | 1/67                  | 1/63                   |
| Diarrhoea                   | 2/67                  | 2/63                   |

## 3.2.3.3 Cefoxitin and doxycycline vs cefoxitin, probenecid and doxycycline

The PEACH trial<sup>40</sup> was a large multicentre RCT, recently conducted in USA that sought to determine whether PID could be treated equally well by both an outpatient and an inpatient antibiotic regimen. The regimens used are shown in Table 7. Neither arm included oral metronidazole. Because the treatment regimens are slightly different, the RCT is actually a comparison of treatment regimen and location of treatment combined. Also, because iv doxycycline caused phlebitis, after the first 242 patients were treated the iv doxycycline was changed to a single parenteral dose (does not state whether iv or im) followed by oral administration whilst patients remained in hospital.

| Peach 2002 | iv cefoxitin, iv doxycycline | im cefoxitin with oral      |
|------------|------------------------------|-----------------------------|
|            | followed by oral             | probenecid followed by oral |
|            | doxycycline                  | doxycycline                 |

The 831 patients were recruited from 13 centres out of 2941 women screened. Seventy five percent of those recruited were of black ethnic origin and 75% educated to high school or less. The baseline characteristics were well balanced except that there were more intrauterine devices and more bacterial vaginosis in the outpatient group. Clinical follow up was at 30 days (23/831 lost to follow up) and also longer term fertility outcomes at a mean follow up of 35 months (number followed up not given). Longer-term follow up was conducted by telephone call or medical note review. The quality of this RCT report was fair as it had a

Jadad score of 3. There was no mention as to whether assessment was performed blind to treatment allocation.

There is no mention of 30-day clinical cure rates. The longer-term follow up results are shown in Table 8. The mean follow up period was 35 months. None showed a statistically significant difference. The numbers followed up for each outcome have been calculated from reported percentages so there may be some rounding errors.

|                                    | Outpatient      | Inpatient       |
|------------------------------------|-----------------|-----------------|
| Pregnancy                          | 42.0% (172/410) | 41.7% (166/398) |
| Infertile (for women with at least | 18.4% (71/385)  | 17.9% (67/374)  |
| 1 years' follow up)                |                 |                 |
| Recurrent PID (self-reported)      | 12.4% (51/410)  | 16.6% (66/398)  |
| Hysterectomy                       | 1.7% (7/410)    | 1.5% (6/398)    |
| Ectopic pregnancy                  | 1.0% (4/410)    | 0.3% (1/398)    |
| Tubal obstruction (in women who    | 41.2% (7/17)    | 33.3% (4/12)    |
| had hysterosalpingograms)          |                 |                 |
| Chronic pelvic pain (in women      | 33.7% (128/380) | 29.8% (110/369) |
| who had at least two follow ups)   |                 |                 |

### Table 8. PEACH trial longer-term outcomes

The mean time to pregnancy was the same for inpatients and outpatients at 21 months (95%CI 20-23 months). In a Cox proportional hazards model, adjusting for tubal ligation, intrauterine device use and bacterial vaginosis as covariates, the odds ratio for pregnancy for inpatient vs outpatient treatment was 0.90 (95%CI 0.77-1.05).

The adverse events at 30 days are shown in Table 9. The numbers followed up for each outcome have been calculated from reported percentages so there may be some rounding errors. The only significant difference between the two groups was the increased numbers of phlebitis in the inpatient group, caused by iv doxycycline.

|                        | Outpatient      | Inpatient      |
|------------------------|-----------------|----------------|
| Change in treatment    | 3.3% (14/410)   | 2.9% (12/389)  |
| Tubo-ovarian abcess    | 0.9% (4/410)    | 0.7% (3/398)   |
| Adverse drug reaction  | 1.7% (7/410)    | 1.5% (6/398)   |
| Phlebitis              | 0%              | 3.4% (14/398)  |
| Tender on examination  | 20.6% (69/335)  | 18.4% (63/324) |
| N gonorrhoea           | 3.9% (9/231)    | 2.4% (6/250)   |
| C trachomatis          | 2.7% (9/333)    | 3.6% (12/333)  |
| Endometritis on biopsy | 45.9% (102/222) | 37.6% (85/226) |

#### Table 9. PEACH trial 30 day adverse events

## 3.2.3.4 Other standard regimens

No other RCTs of standard regimens compared to other standard regimens were found.

# **3.2.4** Clinical effectiveness of standard antibiotic regimens vs any other antibiotic or combination

# 3.2.4.1 Oral ofloxacin and oral metronidazole, iv ofloxacin and iv metronidazole

No RCTs found (But see Clinical effectiveness of standard antibiotic regimens vs any other standard antibiotic regimens)

# 3.2.4.2 Intramuscular ceftriaxone or cefoxitin with oral probenecid followed by oral doxycycline and oral metronidazole

No RCTs found

# 3.2.4.3 im ceftriaxone or im cefoxitin plus oral 1g probenecid or a third generation cephalosporin and oral doxycycline

There are six trials included in this section. One trial (Arredondo<sup>28</sup>) compared ceftriaxone and doxycycline to ciprofloxacin and clindamycin. It was a large outpatient trial (n=138) set in South and Central America and diagnosis was confirmed laparoscopically. Two trials (Martens  $2^{35}$  and Wendell<sup>38</sup>) compared im cefoxitin, probenecid and doxycycline to oral ofloxacin. However, neither of the cefoxitin/doxycycline groups included metronidazole in the standard treatment package (although a number in Martens 2 also received it). These were outpatient trials and patients just received Cefoxitin once im with one dose of oral probenecid then given oral cefoxitin. Both trials took place in the USA and were relatively large (Martens 2 n=295, Wendel n=96). Three trials (Landers,<sup>44</sup> Soper<sup>42</sup> and Sweet<sup>45</sup>)compared cefoxitin and doxycycline (without probenecid) to non-standard treatments. In the Sweet abstract route, dose and duration of treatment were not given. Two were inpatient trials and the third (Sweet) did not specify.

| Arredondo 1997 | Ceftriaxone and doxycycline | Ciprofloxacin and       |
|----------------|-----------------------------|-------------------------|
|                |                             | clindamycin             |
| Landers 1991   | Cefoxitin, doxycycline      | Clindamycin, tobramycin |
| Martens 2 1993 | Cefoxitin, Probenecid,      | Ofloxacin               |
|                | doxycycline                 |                         |
| Soper 1988     | Cefoxitin, doxycycline,     | Clindamycin, amikacin   |
| Sweet 1985     | Cefoxitin, doxycycline      | Clindamycin, tobramycin |
| Wendell 1991   | Cefoxitin, Probenecid,      | Ofloxacin               |
|                | doxycycline                 |                         |

| Table 10 Drug companies of im a     | oftriovana coforitin and do | oxycycline v non-standard treatments |
|-------------------------------------|-----------------------------|--------------------------------------|
| Table IV. Drug comparisons of him c | centraxone, ceroxiun and uo | JAVEVEnne v non-stanuaru treatments  |
|                                     | ······                      |                                      |

The clinical cure rates are shown in Figure 3 and other results in Table 11. The results show no significant differences between cefoxitin/probenecid/doxycycline compared to other non-standard treatments. The side effects of treatments are shown in Table 12. They show that there is a general trend towards fewer side effects in the ofloxacin group compared to cefoxitin, probenecid and doxycycline.

### Figure 3. Clinical cure rates of ceftriaxone, cefoxitin and doxycycline v non-standard treatments

| Study                                                                                             | Treatment                                     | Comparator | RR (random)                       | Weight | RR (random)       |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|-----------------------------------|--------|-------------------|
| or sub-category                                                                                   | n/N                                           | n/N        | 95% Cl                            | %      | 95% CI            |
| 01 vs Clindamycin combinatio                                                                      | ns                                            |            |                                   |        |                   |
| Landers                                                                                           | 73/75                                         | 70/73      | -                                 | 47.36  | 1.02 [0.96, 1.08] |
| Soper                                                                                             | 30/31                                         | 28/31      |                                   | 9.95   | 1.07 [0.94, 1.22] |
| Sweet 2                                                                                           | 38/40                                         | 36/39      | a <del>n <mark>a</mark> 200</del> | 13.06  | 1.03 [0.92, 1.15] |
| Subtotal (95% Cl)                                                                                 | 146                                           | 143        | +                                 | 70.37  | 1.03 [0.98, 1.08] |
| Total events: 141 (Treatment<br>Test for heterogeneity: Chi² =<br>Test for overall effect: Z = 0. | 0.58, df = 2 (P = 0.75), l <sup>2</sup> = 0   | %          |                                   |        |                   |
| 02 vs ofloxacin                                                                                   |                                               |            |                                   |        |                   |
| Martens 2                                                                                         | 75/121                                        | 80/128     |                                   | 4.62   | 0.99 [0.82, 1.20] |
| Wendel                                                                                            | 34/35                                         | 35/37      |                                   | 18.91  | 1.03 [0.93, 1.13] |
| Subtotal (95% Cl)                                                                                 | 156                                           | 165        | <b>*</b>                          | 23.53  | 1.02 [0.94, 1.11] |
| Total events: 109 (Treatment<br>Test for heterogeneity: Chi² =<br>Test for overall effect: Z = 0. | 0.26, df = 1 (P = 0.61), l <sup>2</sup> = 0   | %          |                                   |        |                   |
| 03 vs ciprofloxacin, clindamy                                                                     | cin                                           |            |                                   |        |                   |
| Arredondo                                                                                         | 49/64                                         | 57/67      |                                   | 6.09   | 0.90 [0.76, 1.07] |
| Subtotal (95% Cl)                                                                                 | 64                                            | 67         |                                   | 6.09   | 0.90 [0.76, 1.07] |
| Total events: 49 (Treatment),                                                                     |                                               |            | 825020                            |        |                   |
| Test for heterogeneity: not a<br>Test for overall effect: Z = 1.                                  |                                               |            |                                   |        |                   |
|                                                                                                   | 10(( -0.11)                                   |            |                                   |        |                   |
| Total (95% Cl)                                                                                    | 366                                           | 375        | +                                 | 100.00 | 1.02 [0.97, 1.06] |
| Total events: 299 (Treatment                                                                      |                                               |            |                                   |        |                   |
|                                                                                                   | : 3.63, df = 5 (P = 0.60), l <sup>2</sup> = 0 | 96         |                                   |        |                   |
| Test for overall effect: Z = 0.                                                                   | 75 (0 - 0.45)                                 |            |                                   |        |                   |

Favours comparator Favours treatment

### Table 11. Other results of ceftriaxone cefoxitin and doxycycline v non-standard treatments

|                                              | Ceftriaxone, cefoxitin and doxycycline | Comparators  |
|----------------------------------------------|----------------------------------------|--------------|
| Arredondo 1997                               |                                        |              |
| Gonnorroea cure rate                         | 1/1                                    | 1/2          |
| Chlamydia cure rate                          | 7/7                                    | 8/8          |
| Martens 2 1993                               |                                        |              |
| gonorrhoea or chlamydia or both              | 18/30                                  | 17/26        |
| Soper 1988                                   |                                        |              |
| Mean hospital stay duration                  | 6.1 (SD 2.4)                           | 5.8 (SD 3.0) |
| Wendel 1991                                  |                                        |              |
| Gonnorroea cure rate                         | 16/16                                  | 21/21        |
| Chlamydia cure rate                          | 10/10                                  | 5/6          |
| Landers 1991                                 |                                        | ·            |
| Chlamydia cure rate                          | 19/19                                  | 20/20        |
| Soper 1988                                   |                                        |              |
| 6 week clinical and microbiological relapses | 0/31                                   | 0/31         |

|                                  | Ceftriaxone and doxycycline | Comparator             |
|----------------------------------|-----------------------------|------------------------|
| Arredondo 1997                   |                             | · •                    |
| Any side effect                  | 52/69                       | 57/69                  |
| Withdrawal of treatment due to   | 1/69                        | 1/69                   |
| side effects                     |                             |                        |
|                                  | Cefoxitin, Probenecid,      |                        |
|                                  | doxycycline                 |                        |
| Martens 2 1993                   |                             | Ofloxacin              |
| Nausea/vomiting                  | 19/134*                     | 2/138*                 |
| Insomnia                         | 0/134                       | 2/138                  |
| Candidal vaginitis               | 6/134                       | 5/138                  |
| Rash                             | 1/134                       | 2/138                  |
| No of patients with side effects | 20/134*                     | 9/138*                 |
| Wendel 1991                      |                             | Ofloxacin              |
| Nausea/vomiting                  | 3/35                        | 2/37                   |
| Headaches                        | 0/35                        | 1/37                   |
| Candidal vaginitis               | 2/35                        | 1/37                   |
| Allergy                          | 0/35                        | 1/37                   |
| No of patients with side effects | 9/35                        | 6/37                   |
|                                  | Cefoxitin and doxycycline   |                        |
| Landers1991                      |                             | Clindamycin/tobramycin |
| Rash                             | 2/75                        | 1/73                   |
| * p<0.05                         | · ·                         |                        |

# 3.2.4.4 Intravenous cefoxitin and iv doxycycline followed by oral doxycycline and oral metronidazole

No RCTs found (But see Clinical effectiveness of standard antibiotic regimens vs any other standard antibiotic regimens)

# 3.2.4.5 Intravenous clindamycin and gentamicin followed by either oral doxycycline and oral metronidazole or oral clindamycin

(Also see Clinical effectiveness of standard antibiotic regimens vs any other standard antibiotic regimens)

Eight trials (Apuzzio,<sup>46</sup> Balbi,<sup>47</sup> Crombleholme,<sup>48</sup> Hemsell 2,<sup>33</sup> Henry,<sup>30</sup> Larsen,<sup>31</sup> Martens 1b<sup>49</sup> and Thadepalli<sup>36</sup>) compared clindamycin and gentamicin to non-standard treatments. The trials that specified drug regimens gave similar iv doses and all except Larsen specified continuation with oral clindamycin after the iv phase, mostly for 10 to 14 days, rather than changing to doxycycline or metronidazole. Martens specified a minimum 4 days of treatment but the mean treatment duration was between 5-8 days (see results below). Larsen specified treatment for at least 3 days. All of the comparisons included cephalosporins, beta lactams or the quinolone ciprofloxacin (see Table 13). In Crombleholme, clindamycin could be added to the ciprofloxacin arm but only one patient (out of 33) had this extra treatment. Henry was a direct comparison between gentamicin and aztreonam because clindamycin was given in both arms. Larsen patients were given doxycycline if they were chlamydia positive but the number given this extra treatment was not specified. Where stated, all were inpatient trials, 7/8 were

USA based and 5 were part of larger trials of pelvic infections. None used laparoscopic diagnosis criteria. The clinical cure rates are given in Figure 4.

| Apuzzio 1989      | Clindamycin, gentamicin | Ciprofloxacin                |
|-------------------|-------------------------|------------------------------|
| Balbi 1996        | Clindamycin, gentamicin | Ceftazidime, doxycycline     |
| Crombleholme 1989 | Clindamycin, gentamicin | Ciprofloxacin, (clindamycin) |
| Hemsell 2 1997    | Clindamycin, gentamicin | Meropenem                    |
| Henry 1985        | Clindamycin, gentamicin | Aztreonam, clindamycin       |
| Larsen 1985       | Clindamycin, gentamicin | Imipenem, cilastin           |
|                   | (doxycycline)           | (doxycycline)                |
| Martens 1b 1990   | Clindamycin, gentamicin | Cefotaxime                   |
| Thadepalli 1991   | Clindamycin, gentamicin | Ciprofloxacin                |

| Table 13. Drug comparisons of iv | clindamycin and gentamicin v non-standard treatm | ients |
|----------------------------------|--------------------------------------------------|-------|
|                                  |                                                  |       |

#### Figure 4. Clinical cure rates of clindamycin and gentamicin v non-standard treatments

| Review:<br>Comparison:<br>Outcome:   | pelvic<br>04 clindamycin and gentamicin vs anythir<br>01 Clinical cure rates                                                                      | ıg                |                       |             |                       |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-------------|-----------------------|
| Study<br>or sub-category             | Treatment<br>ر n/N                                                                                                                                | Comparator<br>n/N | RR (random)<br>95% Cl | Weight<br>% | RR (random)<br>95% Cl |
| D1 vs Ciprofloxa                     | acin                                                                                                                                              | and a mail        | Country of Antonio    |             |                       |
| Apuzzio                              | 13/15                                                                                                                                             | 10/10             |                       | 4.15        | 0.87 [0.71, 1.06]     |
| Crombleholme                         | 34/35                                                                                                                                             | 33/33             |                       | 26.68       | 0.97 [0.92, 1.03]     |
| Thadepalli                           | 14/14                                                                                                                                             | 15/16             |                       | 9.15        | 1.07 [0.94, 1.21]     |
| Subtotal (95% C                      | CI) 64                                                                                                                                            | 59                | -                     | 39.98       | 0.98 [0.90, 1.07]     |
| fest for heterog                     | l (Treatment), 58 (Comparator)<br>geneity: Chi² = 3.34, df = 2 (P = 0.19), l² = 4<br>effect: Z = 0.45 (P = 0.65)                                  | 0.2%              |                       |             |                       |
| )2 vs Ceftazidir                     | ne, Doxycycline                                                                                                                                   |                   |                       |             |                       |
| Balbi                                | 38/40                                                                                                                                             | 33/36             | 8 <u></u> 88          | 9.78        | 1.04 [0.92, 1.17]     |
| Subtotal (95% C                      | CI) 40                                                                                                                                            | 36                | -                     | 9.78        | 1.04 [0.92, 1.17]     |
| Total events: 38<br>Test for heterog | (Treatment), 33 (Comparator)<br>geneity: not applicable<br>effect: Z = 0.58 (P = 0.56)                                                            |                   |                       |             |                       |
| 04 vs Meropene                       | em, Imipenem                                                                                                                                      |                   |                       |             |                       |
| Hemsell 2                            | 40/40                                                                                                                                             | 41/44             | <b></b>               | 18.10       | 1.07 [0.99, 1.16]     |
| Larsen                               | 39/40                                                                                                                                             | 37/37             | 2- <b>-</b> -         | 30.13       | 0.98 [0.93, 1.02]     |
| Subtotal (95% C                      | 30                                                                                                                                                | 81                | -                     | 48.23       | 1.02 [0.92, 1.13]     |
| Test for heterog                     | 9 (Treatment), 78 (Comparator)<br>geneity: Chi <sup>2</sup> = 5.12, df = 1 (P = 0.02), l <sup>2</sup> = 8<br>effect: Z = 0.34 (P = 0.73)          | ).5%              |                       |             |                       |
| )<br>5 vs Aztreona                   | m, Clindamycin                                                                                                                                    |                   |                       |             |                       |
| Henry                                | 8/8                                                                                                                                               | 5/5               |                       |             | Not estimable         |
| Test for heterog                     | Cl) 0<br>(Treatment), 0 (Comparator)<br>geneity: not applicable<br>effect: not applicable                                                         | 0                 |                       |             | Not estimable         |
| 06 vs Cefotaxin                      | ne                                                                                                                                                |                   |                       |             |                       |
| Martens 1b                           | 21/29                                                                                                                                             | 23/29             |                       | 2.01        | 0.91 [0.68, 1.22]     |
| Fest for heterog                     | Cl) 29<br>  (Treatment), 23 (Comparator)<br>geneity: not applicable<br>effect: Z = 0.61 (P = 0.54)                                                | 29                |                       | 2.01        | 0.91 [0.68, 1.22]     |
| Fest for heterog                     | 221<br>07 (Treatment), 197 (Comparator)<br>geneity: Chi <sup>2</sup> = 8.60, df = 6 (P = 0.20), l <sup>2</sup> = 3<br>effect: Z = 0.04 (P = 0.96) | 210<br>J.3%       | •                     | 100.00      | 1.00 [0.96, 1.04]     |

The results show no significant differences between clindamycin/gentamicin compared to other non-standard treatments. In Balbi the microbiological cure rates were 12/12 and 16/16 for gonorrhoea and 6/7 and 5/6 for chlamydia. In Crombleholme they were 22/22 and 22/22 for gonorrhoea and 6/6 and 6/7 for chlamydia. In Hemsell 2 satisfactory bacteriologic response was defined as eradication of pre-treatment pathogens, with success or presumed success if no specimen was available for culture after treatment. The follow up results for this

trial were at 2-4 weeks after treatment ended. The numbers with satisfactory bacteriologic responses at end of treatment were 40/40 and 42/44 and at follow up were 12/12 and 14/15. The microbiological cure rates in the Henry trial were 8/8 and 5/5. In Thadepalli they were 12/12 for gonorrhoea and 2/2 for chlamydia in the ciprofloxacin group but equivalent results were not given in the Clindamyin/gentamicin group.

The numbers with a satisfactory clinical result in Hemsell 2 at follow up were 30/30 for clindamycin/gentamicin and 32/33 for Meropenem. Martens trial results for hospital stay duration were not separated out between trials 1a and 1b. The clindamycin/gentamicin group spent 7.5 (SD 3.9, range 5-25) days whereas the combined Cefotaxime group spent 7.1 (SD 3.2, range 4-18) days in hospital. The side effects of treatment in PID were only given in 2 trials (see Table 14) because the others either did not give this information or were trials of mixed pelvic infections where the side effects were not given separately for PID.

### Table 14. Side effect of clindamycin and gentamicin v non-standard treatments

|                             | Clindamycin/Gentamicin | Comparison               |
|-----------------------------|------------------------|--------------------------|
| Balbi 1996                  |                        | Ceftazidime, Doxycycline |
| Withdrew from study because | 0/40                   | 0/36                     |
| of side effects             |                        |                          |
| Crombleholme 1989           |                        | Ciprofloxacin            |
| Allergies to drug           | 0/35                   | 2/35                     |

# 3.2.4.6 Intravenous ciprofloxacin and intravenous (or oral) doxycycline and intravenous metronidazole

No RCTs found

## 3.2.5 Any non- standard antibiotic or combination vs placebo

No RCTs found

# **3.2.6** Any non-standard antibiotic or combination compared to any other non-standard antibiotic or combination

## 3.2.6.1 Broad spectrum penicillins

Six trials compared broad-spectrum penicillin with or without other antibiotics to other nonstandard treatments (see Table 15). The doses of amoxicillin/clavulanate varied between 2-4g/day and of ampicillin between 4-12g/day. The Judlin RCT was a direct comparison between ofloxacin and doxycycline because amoxicillin/clavulanate was given to both arms. The Burchell RCT had 3 arms, two of which were a comparison between ampicillin and tetracycline because metronidazole was given in both arms. Only one RCT took place in USA (Spence) with the remainder sited in Europe or South Africa. All were inpatient RCTs, 4 had laparoscopic diagnosis and only one (Judlin) was part of a larger RCT. This last trial had a follow up at six months as opposed to 2-6 weeks for all the other trials.

| Buisson 1989 <sup>50</sup>         | Amoxicillin/clavulanate<br>(tetracycline) | Amoxicillin, an aminoglycoside,<br>metronidazole (tetracycline) |  |
|------------------------------------|-------------------------------------------|-----------------------------------------------------------------|--|
| Burchell 1987 <sup>51</sup>        | Ampicillin, Metronidazole                 | Doxycycline, tetracycline,                                      |  |
|                                    |                                           | oxytetracycline metronidazole                                   |  |
| Ciraru-Vigneron 1986 <sup>52</sup> | Amoxicillin/clavulanate                   | Ampicillin (or amoxicillin),                                    |  |
|                                    | (doxycycline)                             | gentamicin, metronidazole                                       |  |
|                                    |                                           | (doxycycline)                                                   |  |
| de Beer 1983 <sup>53</sup>         | Ampicillin                                | Cefoxitin                                                       |  |
| Judlin 1995 <sup>54</sup>          | Amoxicillin/clavulanate,                  | Amoxicillin/clavulanate,                                        |  |
|                                    | ofloxacin                                 | doxycycline                                                     |  |
| Spence 1981 <sup>55</sup>          | Ampicillin                                | Doxycycline                                                     |  |

The clinical cure rates are shown in Figure 5. In the third arm of the Burchell RCT the clinical cure rate was also 10/10. The results show no significant differences between broad spectrum penicillins compared to other non-standard treatments. No microbiological cure rates were given. Other results are shown in Table 16 and side effects of treatment in Table 17.

### Figure 5. Clinical cure rates of broad-spectrum penicillin comparisons

| Study<br>r sub-category                   | Treatment<br>n/N                                           | Comparator<br>D/N | RR (random)<br>95% Cl                                                                                           | Weight<br>% | RR (random)<br>95% Cl                  |
|-------------------------------------------|------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|
|                                           | 0.0000                                                     | 19776             | 0.000                                                                                                           | 16          |                                        |
| 11 ampicillin<br>Burchell                 | 2/10                                                       | 10/10             |                                                                                                                 | 1.36        | 0.20 [0.06, 0.69]                      |
| Spence                                    | 22/23                                                      | 18/24             |                                                                                                                 | 17.84       | 1.28 [1.00, 1.63]                      |
| de Beer                                   | 28/30                                                      | 28/30             | and the second second                                                                                           | 27.47       | 1.28 [1.00, 1.63]<br>1.00 [0.87, 1.14] |
| Subtotal (95% CI)                         | 63                                                         | 28/30             |                                                                                                                 | 46.67       | 0.94 [0.61, 1.47]                      |
| otal events: 52 (Treatment),              |                                                            | 04                | 1. The second | 40.07       | 0.54 [0.61, 1.4/]                      |
|                                           | = 12.46, df = 2 (P = 0.002), l <sup>2</sup> =              | 83.0%             |                                                                                                                 |             |                                        |
| est for overall effect: Z = 0.            |                                                            | 00.070            |                                                                                                                 |             |                                        |
|                                           |                                                            |                   |                                                                                                                 |             |                                        |
| 2 amoxicillin                             |                                                            |                   |                                                                                                                 |             |                                        |
| Buisson                                   | 10/42                                                      | 9/39              | <u> 10 </u>                                                                                                     | 3.18        | 1.03 [0.47, 2.27]                      |
| Ciraru-Vigneron                           | 20/22                                                      | 19/22             |                                                                                                                 | 20.52       | 1.05 [0.85, 1.30]                      |
| Judlin                                    | 15/15                                                      | 17/18             | -                                                                                                               | 29.63       | 1.06 [0.95, 1.18]                      |
| Subtotal (95% CI)                         | 79                                                         | 79                | •                                                                                                               | 53.33       | 1.06 [0.96, 1.17]                      |
| otal events: 45 (Treatment),              | 45 (Comparator)                                            |                   |                                                                                                                 |             |                                        |
| est for heterogeneity: Chi <sup>2</sup> = | = 0.02, df = 2 (P = 0.99), l <sup>2</sup> = 0 <sup>4</sup> | %                 |                                                                                                                 |             |                                        |
| est for overall effect: Z = 1.            | 11 (P = 0.27)                                              |                   |                                                                                                                 |             |                                        |
| 'otal (95% Cl)                            | 142                                                        | 143               | L                                                                                                               | 100.00      | 1.05 [0.91, 1.22]                      |
| otal events: 97 (Treatment),              |                                                            |                   |                                                                                                                 |             |                                        |
|                                           | = 12.13, df = 5 (P = 0.03), l <sup>2</sup> = 5             | 58.8%             |                                                                                                                 |             |                                        |
| est for overall effect: Z = 0.            |                                                            |                   |                                                                                                                 |             |                                        |
|                                           | 70/%(00/7070%)                                             |                   |                                                                                                                 |             |                                        |
|                                           |                                                            | 0.                | 2 0.5 1 2                                                                                                       | 5           |                                        |
|                                           |                                                            |                   |                                                                                                                 |             |                                        |

|                                              | Broad-spectrum penicillin | Comparator                |
|----------------------------------------------|---------------------------|---------------------------|
| Buisson 1989                                 |                           |                           |
| Clinical cure at 5-6 weeks                   | 18/27                     | 22/29                     |
| Ciraru-Vigneron 1986                         |                           |                           |
| Mean duration of hospital treatment          | 5.3 days                  | 5.7 days                  |
| Mean time to normalisation of temperature    | 2.16 days                 | 1.75 days                 |
| Mean time to resolution of spontaneous pain  | 3.8 days                  | 3.7 days                  |
| Mean time to resolution of provoked pain     | 5.7 days                  | 7.8 days                  |
| Mean time to resolution of hyperleucocytosis | 5.8 days                  | 6.3 days                  |
| de Beer 1983                                 |                           |                           |
| Mean ESR at 3 days                           | 40.5 mm/1 <sup>st</sup> h | 50.3 mm 1 <sup>st</sup> h |
| Mean leucocyte count at 3 days               | 5.7 x 10 <sup>9</sup> /1  | 8.5 x 10 <sup>9</sup> /1  |
| Mean hospital stay duration                  | 3.43 days                 | 3.93 days                 |

### Table 16. Other results for broad-spectrum penicillins

### Table 17. Side effects of broad-spectrum penicillins

|                                             | Broad-spectrum penicillin | Comparator |
|---------------------------------------------|---------------------------|------------|
| Buisson 1989                                |                           |            |
| Angioedema                                  | 0/42                      | 1/39       |
| Any side effects                            | 5/42                      | 2/39       |
| Withdrawal of treatment due to side effects | 0/42                      | 1/39       |
| Ciraru-Vigneron 1986                        |                           |            |
| Cutaneous allergy                           | 1/22                      | 0/22       |
| Judlin 1995                                 |                           |            |
| Withdrawal of treatment due to side effects | 0/15                      | 0/18       |

## 3.2.6.2 Cephalosporins, cephamycins and beta-lactams

Four RCTs compared cephalosporins, cephamycins and beta-lactams with or without other antibiotics to other non-standard combinations. For RCTs and comparisons, see Table 18. Three are comparisons to other antibiotics in this group, one to clindamycin combinations and one to ampicillin (de Beer, reviewed in section 3.2.6.1). They were all inpatient RCTs in USA or Europe. Two were part of larger RCTs of pelvic infections.

| Table 18. Non-standard cephalosporins, | cephamycins and beta-lactam comparisons |
|----------------------------------------|-----------------------------------------|
|----------------------------------------|-----------------------------------------|

| de Beer 1983 <sup>53</sup>     | Cefoxitin                | Ampicillin |
|--------------------------------|--------------------------|------------|
| Gerstner 1990 <sup>56-58</sup> | Ceftriaxone              | Cefotaxime |
| Maggioni 1998 <sup>34</sup>    | Imipenem with cilastatin | Meropenem  |
| Martens 1a 1990 <sup>49</sup>  | Cefoxitin                | Cefotaxime |

The clinical cure rates are shown in Figure 6. The other results are shown in Table 19. The results show no significant differences between cephalosporins, cephamycins and betalactams compared to other non-standard treatments.

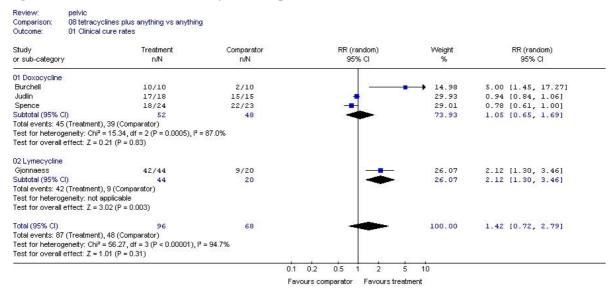
| Study                           | Treatment                                                | Comparator | RR (random) | Weight | RR (random)       |
|---------------------------------|----------------------------------------------------------|------------|-------------|--------|-------------------|
| or sub-category                 | n/N                                                      | n/N        | 95% CI      | %      | 95% CI            |
| 02 Cefotaxime                   |                                                          |            |             |        |                   |
| Martens 1a                      | 16/19                                                    | 14/17      |             | 9.75   | 1.02 [0.76, 1.37] |
| Subtotal (95% Cl)               | 19                                                       | 17         |             | 9.75   | 1.02 [0.76, 1.37] |
| Total events: 16 (Treatment),   | 14 (Comparator)                                          |            |             |        |                   |
| Test for heterogeneity: not ap  | plicable                                                 |            |             |        |                   |
| Test for overall effect: Z = 0. | 15 (P = 0.88)                                            |            |             |        |                   |
| 03 Cefoxitin                    |                                                          |            |             |        |                   |
| de Beer                         | 28/30                                                    | 28/30      | 100 CT      | 46.00  | 1.00 [0.87, 1.14] |
| Subtotal (95% CI)               | 30                                                       | 30         | -           | 46.00  | 1.00 [0.87, 1.14] |
| Total events: 28 (Treatment),   | 28 (Comparator)                                          |            |             |        |                   |
| Test for heterogeneity: not as  |                                                          |            |             |        |                   |
| Test for overall effect: Z = 0. |                                                          |            |             |        |                   |
|                                 |                                                          |            |             |        |                   |
| 04 Ceftriaxone                  |                                                          |            | 1.22        |        |                   |
| Gerstner                        | 9/10                                                     | 8/8        |             | 19.72  | 0.90 [0.73, 1.11] |
| Subtotal (95% Cl)               | 10                                                       | 8          |             | 19.72  | 0.90 [0.73, 1.11] |
| Total events: 9 (Treatment), 8  |                                                          |            |             |        |                   |
| Test for heterogeneity: not ap  |                                                          |            |             |        |                   |
| Test for overall effect: Z = 1. | UU (P = 0.32)                                            |            |             |        |                   |
| 05 Meropenem                    |                                                          |            |             |        |                   |
| Maggioni                        | 14/16                                                    | 18/18      |             | 24.53  | 0.88 [0.73, 1.05] |
| Subtotal (95% Cl)               | 16                                                       | 18         |             | 24.53  | 0.88 [0.73, 1.05] |
| fotal events: 14 (Treatment),   | 18 (Comparator)                                          |            | 1000        |        |                   |
| Test for heterogeneity: not ap  | plicable                                                 |            |             |        |                   |
| Test for overall effect: Z = 1. | 41 (P = 0.16)                                            |            |             |        |                   |
| Total (95% CI)                  | 75                                                       | 73         | -           | 100.00 | 0.95 [0.87, 1.04] |
| Total events: 67 (Treatment),   | 68 (Comparator)                                          |            |             |        |                   |
|                                 | 1.88, df = 3 (P = 0.60), l <sup>2</sup> = 0 <sup>4</sup> | %          |             |        |                   |
| Test for overall effect: Z = 1. |                                                          | 15         |             |        |                   |

#### Figure 6. Clinical cure rates of cephalosporins, cephamycins and beta-lactams comparisons

Table 19. Non-standard cephalosporins, cephamycins and beta-lactams other results

|                                | Cephalosporins, cephamycins<br>and beta-lactams | Comparator                |
|--------------------------------|-------------------------------------------------|---------------------------|
| de Beer 1983                   |                                                 |                           |
| Mean ESR at 3 days             | 50.3 mm 1 <sup>st</sup> h                       | 40.5 mm/1 <sup>st</sup> h |
| Mean leucocyte count at 3 days | 8.5 x 10 <sup>9</sup> /l                        | $5.7 \ge 10^9/l$          |
| Mean hospital stay duration    | 3.93 days                                       | 3.43 days                 |

### 3.2.6.3 Tetracyclines


Five trials compared tetracyclines with or without other antibiotics to other non-standard treatments. Four of the five RCTs included doxycycline, the doses of which varied between 100mg-200mg/day for between 1 day and six weeks. The RCTs took place in Europe, Africa, USA and were all small inpatient RCTs. Only one (Judlin) was part of a larger RCT of pelvic infections. The Burchell trial had three arms. The RCTs by Burchell, Judlin and Spence RCTs have already been discussed previously. The Gjonnaess RCT was initially randomised then they closed enrolment to the clindamycin group after 20 patients because of a relatively high number of treatment failures in that group. Results for all patients before and after the randomisation finished are given together. The antibiotic comparisons are shown in Table 20.

| Burchell 1987 <sup>51</sup>    | Doxycycline,            | Amp  | picillin,     | Tetracycline, |
|--------------------------------|-------------------------|------|---------------|---------------|
|                                | oxytetracycline         | Met  | ronidazole    | metronidazole |
| Gjonnaess 1981 <sup>59</sup>   | Lymecycline             |      | Clindamycin   |               |
| Heinonen 1989 <sup>60,61</sup> | Doxycycline, metronidaz | zole | Ciprofloxacin | 1             |
| Judlin 1995 <sup>54</sup>      | Doxycycline,            |      | Ofloxacin,    |               |
|                                | amoxicillin/clavulanate |      | amoxicillin/c | lavulanate    |
| Spence 1981 <sup>55</sup>      | Doxycycline             |      | Ampicillin    |               |

| Table 20. No | on-standard | tetracyclines | comparisons |
|--------------|-------------|---------------|-------------|
|--------------|-------------|---------------|-------------|

The clinical cure rates are shown in Figure 7. The other results are shown in Table 21 and the side effects are shown in Table 22. Heinonen did not give a clinical cure rate but presented their results as a clinical severity score. The results show no significant differences between tetracycline combinations compared to other non-standard treatments apart from the one trial that used clindamycin on its own, where lymecycline was found to be more effective.

#### **Figure 7. Clinical cure rates of tetracycline comparisons**



#### Table 21. Non-standard tetracycline combinations other results

|                                          | Tetracycline<br>combinations | Comparator            |
|------------------------------------------|------------------------------|-----------------------|
| Gjonnaess 1981                           |                              |                       |
| Mean duration of hospital stay           | 6.5 days                     | 6.5 days              |
| Heinonen 1989                            |                              |                       |
| Clinical severity score                  | 12 (SD 5, range 6-24)        | 14 (SD 5, range 7-27) |
| Gonorrhoea cure rate                     | 1/1                          | 0                     |
| Chlamydia cure rate                      | 3/3                          | 6/6                   |
| Total microbiological treatment failures | 6/20                         | 1/16                  |

|                                             | Tetracycline combinations | Comparator |
|---------------------------------------------|---------------------------|------------|
| Heinonen 1989                               |                           |            |
| Any side effect                             | 11/20                     | 3/16       |
| Withdrawal of treatment due to side effects | 0/20                      | 0/16       |
| Judlin 1995                                 |                           |            |
| Withdrawal of treatment due to side effects | 0/18                      | 0/15       |

### Table 22. Non-standard tetracycline combinations side effects

# 3.2.6.4 Aminoglycosides

Three trials compared an aminoglycoside with or without other antibiotics to other nonstandard combinations. All took place in the 1980's, all were inpatient trials and two of the three used laparoscopic diagnosis. The one that did not (Gall) was part of a larger RCT of pelvic infections. This RCT had tobramycin in both arms so directly compared clindamycin to metronidazole. They also used spectinomycin for some patients but do not say whether it was used in the PID patients. (Spectinomycin is no longer included in the BNF). The antibiotic combinations used are shown in Table 23.

| Buisson 1989 <sup>50</sup>         | Amoxycillin, an              | Amoxicillin/clavulanate |
|------------------------------------|------------------------------|-------------------------|
|                                    | aminoglycoside,              |                         |
|                                    | metronidazole                |                         |
| Ciraru-Vigneron 1986 <sup>52</sup> | Ampicillin (or amoxycillin), | Amoxicillin/clavulanate |
|                                    | gentamicin, metronidazole    | (doxycycline)           |
|                                    | (doxycycline)                |                         |
| Gall 1981 <sup>62</sup>            | Tobramycin, Metronidazole    | Tobramycin, Clindamycin |
|                                    | (spectinomycin)              | (spectinomycin)         |

The clinical cure rates are shown in Figure 8. The other results are shown in Table 24. The mean fever index in the Gall RCT includes the mean number of hours with an elevated temperature. The results show no significant differences between aminoglycoside combinations compared to other non-standard treatments. The side effects results are shown in Table 25.

### Figure 8. Clinical cure rates of aminoglycoside comparisons

| Study                 | Treatment                                                            | Comparator | RR (random)                  | Weight | RR (random)                       |
|-----------------------|----------------------------------------------------------------------|------------|------------------------------|--------|-----------------------------------|
| or sub-category       | n/N                                                                  | n/N        | 95% CI                       | %      | 95% CI                            |
| 01 Aminoglycoside     |                                                                      |            |                              |        |                                   |
| Buisson               | 9/39                                                                 | 10/42      | <u>+</u>                     | 6.76   | 0.97 [0.44, 2.13]                 |
| Subtotal (95% CI)     | 39                                                                   | 42         |                              | 6.76   | 0.97 [0.44, 2.13]                 |
|                       | atment), 10 (Comparator)                                             |            | and the second second second |        |                                   |
| Test for heterogene   |                                                                      |            |                              |        |                                   |
| Test for overall effe | ect: Z = 0.08 (P = 0.94)                                             |            |                              |        |                                   |
| 02 Gentamycin         |                                                                      |            |                              |        |                                   |
| Ciraru-Vigneron       | 19/22                                                                | 20/22      | -                            | 93.24  | 0.95 [0.77, 1.17]                 |
| Subtotal (95% CI)     | 22                                                                   | 22         |                              | 93.24  | 0.95 [0.77, 1.17]                 |
| Total events: 19 (Tr  | eatment), 20 (Comparator)                                            |            | 1000                         |        |                                   |
| Test for heterogene   | ity: not applicable                                                  |            |                              |        |                                   |
| Test for overall effe | ct: Z = 0.47 (P = 0.64)                                              |            |                              |        |                                   |
| 03 Tobramycin         |                                                                      |            |                              |        |                                   |
| Gall                  | 4/4                                                                  | 5/5        |                              |        | Not estimable                     |
| Subtotal (95% CI)     | 0                                                                    | 0          |                              |        | Not estimable                     |
| Total events: 0 (Tre  | atment), 0 (Comparator)                                              |            |                              |        |                                   |
| Test for heterogene   |                                                                      |            |                              |        |                                   |
| Test for overall effe | ct: not applicable                                                   |            |                              |        |                                   |
| Total (95% Cl)        | 65                                                                   | 69         | -                            | 100.00 | 0.95 [0.78, 1.17]                 |
|                       | eatment), 35 (Comparator)                                            |            | 155.000                      |        | and the state state and the state |
|                       | ity: Chi <sup>2</sup> = 0.00, df = 1 (P = 0.94), l <sup>2</sup> = 0% |            |                              |        |                                   |
| T                     | ct: Z = 0.48 (P = 0.63)                                              |            |                              |        |                                   |

### Table 24. Non-standard aminoglycoside combinations other results

|                                        | Aminoglycoside combinations | Comparators     |
|----------------------------------------|-----------------------------|-----------------|
| Buisson 1989                           |                             |                 |
| Clinical cure rates at 5-6 weeks       | 9/39                        | 10/42           |
| Ciraru-Vigneron 1986                   |                             |                 |
| Mean duration of hospital treatment    | 5.7 days                    | 5.3 days        |
| Mean time to normalisation of          | 1.75 days                   | 2.16 days       |
| temperature                            |                             |                 |
| Mean time to resulution of spontaneous | 3.7 days                    | 3.8 days        |
| pain                                   |                             |                 |
| Mean time to resolution of provoked    | 7.8 days                    | 5.7 days        |
| pain                                   |                             |                 |
| Mean time to resolution of             | 6.3 days                    | 5.8 days        |
| hyperleucocytosis                      |                             |                 |
| Gall 1981                              |                             |                 |
| Mean fever index                       | 20.4F (SEM 7.7)             | 34.2F (SEM 6.2) |

### Table 25. Non-standard aminoglycoside combinations side effects

|                                             | Aminoglycoside combinations | Comparator |
|---------------------------------------------|-----------------------------|------------|
| Buisson 1989                                |                             |            |
| Angioedema                                  | 1/39                        | 0/42       |
| Any side effects                            | 2/39                        | 5/42       |
| Withdrawal of treatment due to side effects | 1/39                        | 0/42       |
| Ciraru-Vigneron 1986                        |                             |            |
| Cutaneous allergy                           | 0/22                        | 1/22       |

# 3.2.6.5 Macrolides

Two RCTs (Bevan A and Bevan B reported in one journal article<sup>29</sup>) compared Azithromycin to azithromycin plus metronidazole. The doses of metronidazole varied slightly in the two trials. There was a third arm to each trial which was metronidazole plus doxycycline plus cefoxitin plus probenecid for the first trial and doxycycline plus amoxycillin in the second. The results of the two trials have been reported together so it will be treated here as one trial with the combined third arm excluded. This trial was not well reported. It was described as multicentre but was unclear whether it took place in Great Britain or Europe. It may have been sponsored by Pfizer Inc. because one of the three authors was an employee although there is no sponsorship statement. The total number of patients who started the trials in the two arms reviewed here was 213 but only 79 were followed up at 2 weeks. The clinical cure rates were 38/40 for the azithromycin group and 40/40 for the combination group (not statistically significant). The microbiological results at follow up of 35-44 days are shown in Table 26 and the side effects in Table 27. The results show no significant differences between macrolide combinations compared to other non-standard treatments. The severe adverse events in the combination group included gastrointestinal tract problems, headache, dizziness, dyspnoea and hypotension.

|                       | Azithromycin | Azithromycin+metronidazole |
|-----------------------|--------------|----------------------------|
| Chlamydia cure rates  | 21/22        | 22/22                      |
| M hominis cure rates  | 9/10         | 13/16                      |
| Gonorrhoea cure rates | 5/5          | 4/5                        |

|                            | Azithromycin | Azithromycin+metronidazole |
|----------------------------|--------------|----------------------------|
| Any adverse event          | 26/106       | 32/107                     |
| Severe adverse event       | 2/106        | 8/107                      |
| Withdrawn treatment due to | 2/106        | 4/107                      |
| adverse event              |              |                            |
| Deaths                     | 0/106        | 0/107                      |

## 3.2.6.6 Clindamycin

Two RCTs compared clindamycin with or without other antibiotics to other non-standard combinations and were small inpatient trials in USA and Europe. The dosage of clindamycin varied between 600mg - 2.4g per day. All trials have been reviewed in previous categories. The antibiotic combinations are shown in Table 28.

| Table 28. Non-stand | ard clindamycin | comparisons |
|---------------------|-----------------|-------------|
|---------------------|-----------------|-------------|

| Gall 1981 <sup>62</sup>      | Tobramycin, clindamycin | Tobramycin, metronidazole |
|------------------------------|-------------------------|---------------------------|
|                              | (spectinomycin)         | (spectinomycin)           |
| Gjonnaess 1981 <sup>59</sup> | Clindamycin             | Lymecycline               |

The clinical cure rates are shown in Figure 9 and the other results are shown in Table 29. The results show a significant difference between clindamycin used on its own compared to the other non-standard treatment of lymecycline.

| Figure Q  | <b>Clinical cure</b> | rates of clin   | damvein con | ingrisons  |
|-----------|----------------------|-----------------|-------------|------------|
| Figure 7. | Chinear cure         | , races or chin | uamycin con | ipai isons |

| Study                | Treatment                 | Comparator | RR (random) | Weight | RR (random)       |
|----------------------|---------------------------|------------|-------------|--------|-------------------|
| or sub-category      | n/N                       | n/N        | 95% CI      | %      | 95% CI            |
| 01 Clindamycin v c   | omparators                |            |             |        |                   |
| Gall                 | 5/5                       | 4/4        | 1000        |        | Not estimable     |
| Gjonnaess            | 9/20                      | 42/44      |             | 100.00 | 0.47 [0.29, 0.77] |
| Subtotal (95% CI)    | 25                        | 48         |             | 100.00 | 0.47 [0.29, 0.77] |
| Total events: 14 (1  | eatment), 46 (Comparator) |            | 22742       |        |                   |
| Test for heterogen   | eity: not applicable      |            |             |        |                   |
| Test for overall eff | ect: Z = 3.02 (P = 0.003) |            |             |        |                   |
| Total (95% Cl)       | 25                        | 48         | -           | 100.00 | 0.47 [0.29, 0.77] |
| Total events: 14 (1  | eatment), 46 (Comparator) |            |             |        |                   |
| Test for heterogen   | eity: not applicable      |            |             |        |                   |
| Test for overall eff | ect: Z = 3.02 (P = 0.003) |            |             |        |                   |

#### Table 29. Non-standard clindamycin combinations other results

|                                | Clindamycin combinations | Comparators     |
|--------------------------------|--------------------------|-----------------|
| Gjonnnaess 1981                |                          |                 |
| Mean duration of hospital stay | 6.5 days                 | 6.5 days        |
| Gall 1981                      |                          |                 |
| Mean fever index               | 34.2F (SEM 6.2)          | 20.4F (SEM 7.7) |

### 3.2.6.7 Other antibacterials

This category includes chloramphenicol, fucidic acid, vancomycin, teicoplanin, linezolid, quinupristin, dalfopristin, polymixins, sulphonamides and trimethoprim. No RCTs were found using any of these antibacterials alone or in any combination.

## 3.2.6.8 Metronidazole

Six trials compared metronidazole with or without other antibiotics v. other combinations and all RCTs have been reviewed above. The two Bevan trials were reported together and have been counted as one large inpatient trial. The other five RCTs were small inpatient trials from Europe, South Africa and USA and one (Gall) was part of a larger RCT of pelvic infections. The antibiotic combinations used are shown in Table 30. The doses of metronidazole ranged from 1.2g - 2g per day. Two RCTs (Bevan, Burchell) had three arms The Bevan trials third arms used different antibiotics and the results were not separated so these arms have been excluded and are not shown in Table 30. The Burchell trial also had three arms and two of these used metronidazole. The ampicillin plus metronidazole arm had a much lower clinical cure rate than the tetracycline plus metronidazole arm. Both comparisons have been used in the Forest plot of clinical cure rates, shown in Figure 10. The other results are shown in Table 31 and side effects in Table 32. The results show no significant differences between metronidazole combinations compared to other non-standard treatments.

| Bevan 2003 <sup>29</sup>           | Azithromycin, metronidazole     |  | Azithromycin            |               |
|------------------------------------|---------------------------------|--|-------------------------|---------------|
| Buisson 1989 <sup>50</sup>         | Amoxycillin, an aminoglycoside, |  | Amoxicillin/clavulanate |               |
|                                    | metronidazole                   |  |                         |               |
| Burchell 1987 <sup>51</sup>        | Ampicillin, Doxycyd             |  | vcline,                 | Tetracycline, |
|                                    | Metronidazole oxytetra          |  | acycline                | metronidazole |
| Ciraru-Vigneron 1986 <sup>52</sup> | Ampicillin (or amoxycillin),    |  | Amoxicillin/clavulanate |               |
| _                                  | gentamicin, metronidazole       |  | (doxycycline            | e)            |
|                                    | (doxycycline)                   |  |                         |               |
| Gall 1981 <sup>62</sup>            | Tobramycin, metronidazole       |  | Tobramycin, clindamycin |               |
|                                    | (spectinomycin)                 |  | (spectinomy             | cin)          |
| Heinonen 1989 <sup>60,61</sup>     | Doxycycline, metronidazole      |  | Ciprofloxacin           |               |

## Table 30. Non-standard metronidazole comparisons

## Figure 10. Clinical cure rates of metronidazole comparisons

| Study                                                                                                      | Treatment                                      | Comparator | RR (random) | Weight | RR (random)       |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|-------------|--------|-------------------|
| or sub-category                                                                                            | n/N                                            | n/N        | 95% CI      | %      | 95% CI            |
| 01 metronidazole and broad                                                                                 | spectrum penicillins                           |            |             |        |                   |
| Buisson                                                                                                    | 9/39                                           | 10/42      |             | 14.41  | 0.97 [0.44, 2.13] |
| Burchell                                                                                                   | 2/10                                           | 10/10 🔶    |             | 8.48   | 0.20 [0.06, 0.69] |
| Ciraru-Vigneron                                                                                            | 19/22                                          | 20/22      |             | 25.76  | 0.95 [0.77, 1.17] |
| Subtotal (95% Cl)                                                                                          | 71                                             | 74         |             | 48.64  | 0.67 [0.28, 1.57] |
| Total events: 30 (Treatment)<br>Test for heterogeneity: Chi <sup>2</sup><br>Test for overall effect: Z = 0 | = 8.83, df = 2 (P = 0.01), l <sup>2</sup> = 77 | /.3%       |             |        |                   |
| )2 other metronidazole com                                                                                 | pinations                                      |            |             |        |                   |
| Burchell                                                                                                   | 10/10                                          | 10/10      |             |        | Not estimable     |
| Gall                                                                                                       | 4/4                                            | 5/5        |             |        | Not estimable     |
| Heinonen                                                                                                   | 14/20                                          | 15/16      |             | 24.01  | 0.75 [0.55, 1.02] |
| Bevan                                                                                                      | 40/40                                          | 38/39      |             | 27.35  | 1.03 [0.98, 1.08] |
| Subtotal (95% Cl)                                                                                          | 74                                             | 70         |             | 51.36  | 0.89 [0.50, 1.57] |
| Total events: 68 (Treatment)<br>Test for heterogeneity: Chi²<br>Test for overall effect: Z = 0             | = 13.05, df = 1 (P = 0.0003), l <sup>2</sup>   | = 92.3%    | stand Digit |        |                   |
|                                                                                                            |                                                | 144        | -           | 100.00 | 0.80 [0.52, 1.24] |
| Total (95% CI)                                                                                             | 145                                            |            |             |        |                   |

Favours comparator Favours treatment

|                                              | Metronidazole combinations | Comparator |
|----------------------------------------------|----------------------------|------------|
| Bevan 2003                                   |                            | · •        |
| N gonorrhoeae                                | 4/5                        | 5/5        |
| C trachomatis                                | 22/22                      | 21/22      |
| M hominis                                    | 13/16                      | 9/10       |
| Buisson 1989                                 |                            |            |
| Clinical cure at 5-6 weeks                   | 18/27                      | 22/29      |
| Ciraru-Vigneron 1986                         |                            |            |
| Mean duration of hospital treatment          | 5.3 days                   | 5.7 days   |
| Mean time to normalisation of temperature    | 2.16 days                  | 1.75 days  |
| Mean time to resulution of spontaneous pain  | 3.8 days                   | 3.7 days   |
| Mean time to resolution of provoked pain     | 5.7 days                   | 7.8 days   |
| Mean time to resolution of hyperleucocytosis | 5.8 days                   | 6.3 days   |
| Gall 1981                                    |                            |            |
| Mean fever index                             | 20.4F (SEM 7.7)            | 34.2F (SEM |
|                                              |                            | 6.2)       |
| Heinonen 1989                                |                            |            |
| Gonorrhoea                                   | 1/1                        | 0          |
| Chlamydia                                    | 3/3                        | 6/6        |

#### Table 31. Non-standard metronidazole combinations other results

#### Table 32. Non-standard metronidazole combinations side effects

|                                             | Metronidazole combinations | Comparator |  |  |  |
|---------------------------------------------|----------------------------|------------|--|--|--|
| Bevan 2003                                  |                            |            |  |  |  |
| Any adverse event                           | 32/107                     | 26/106     |  |  |  |
| Severe adverse event                        | 8/107                      | 2/106      |  |  |  |
| Withdrawn treatment due to adverse event    | 4/107                      | 2/106      |  |  |  |
| Deaths                                      | 0/107                      | 0/106      |  |  |  |
| Buisson 1989                                |                            |            |  |  |  |
| Angioedema                                  | 0/42                       | 1/39       |  |  |  |
| Any side effects                            | 5/42                       | 2/39       |  |  |  |
| Withdrawal of treatment due to side effects | 0/42                       | 1/39       |  |  |  |
| Ciraru-Vigneron 1986                        |                            |            |  |  |  |
| Cutaneous allergy                           | 1/22                       | 0/22       |  |  |  |
| Heinonen 1989                               |                            |            |  |  |  |
| Any side effect                             | 11/20                      | 3/16       |  |  |  |
| Withdrawal of treatment due to side effects | 0/20                       | 0/16       |  |  |  |

# 3.2.6.9 Quinolones

Two RCTs compared quinolones with or without other antibiotics to other non-standard combinations and were smaller inpatient trials from Europe. Judlin was part of a larger trial of pelvic infections. All trials have been reviewed above. The antibiotic comparisons are shown in Table 33 clinical cure rates in Figure 11, other results in Table 34 and side effects in Table 35. The results show no significant differences between quinolone combinations compared to other non-standard treatments.

#### Table 33. Non-standard quinolone comparisons

| Heinonen 1989 <sup>60,61</sup> | Ciprofloxacin           | Doxycycline, Metronidazole |
|--------------------------------|-------------------------|----------------------------|
| Judlin 1995 <sup>54</sup>      | Ofloxacin,              | Doxycycline,               |
|                                | amoxicillin/clavulanate | amoxicillin/clavulanate    |

#### Figure 11. Clinical cure rates of quinolone comparisons

| Study                        | Treatment                                                    | Comparator | RR (random)                              | Weight   | RR (random)       |
|------------------------------|--------------------------------------------------------------|------------|------------------------------------------|----------|-------------------|
| or sub-category              | n/N                                                          | n/N        | 95% Cl                                   | %        | 95% CI            |
| 01 Ciprofloxacin             |                                                              |            |                                          |          |                   |
| Heinonen                     | 15/16                                                        | 14/20      |                                          | - 41.23  | 1.34 [0.98, 1.83] |
| Subtotal (95% Cl)            | 16                                                           | 20         |                                          | 41.23    | 1.34 [0.98, 1.83] |
| Total events: 15 (Treatme    |                                                              |            | 0.0000000000000000000000000000000000000  |          |                   |
| Test for heterogeneity: no   |                                                              |            |                                          |          |                   |
| Test for overall effect: Z = | 1.83 (P = 0.07)                                              |            |                                          |          |                   |
| 02 Ofloxacin                 |                                                              |            |                                          |          |                   |
| Judlin                       | 15/15                                                        | 17/18      |                                          | 58.77    | 1.06 [0.95, 1.18] |
| Subtotal (95% Cl)            | 15                                                           | 18         |                                          | 58.77    | 1.06 [0.95, 1.18] |
| Total events: 15 (Treatme    | nt), 17 (Comparator)                                         |            |                                          |          |                   |
| Test for heterogeneity: no   | applicable                                                   |            |                                          |          |                   |
| Test for overall effect: Z = | 1.00 (P = 0.32)                                              |            |                                          |          |                   |
| Total (95% Cl)               | 31                                                           | 38         |                                          | - 100.00 | 1.17 [0.83, 1.65] |
| Total events: 30 (Treatme    | nt), 31 (Comparator)                                         |            | 11.0 (10.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 |          |                   |
| Test for heterogeneity: Ch   | i <sup>2</sup> = 4.41, df = 1 (P = 0.04), l <sup>2</sup> = 7 | 7.3%       |                                          |          |                   |
| Test for overall effect: Z = | 0.88 (P = 0.38)                                              |            |                                          |          |                   |

#### Table 34. Non-standard quinolone combinations other results

|                      | Tetracycline combinations | Comparator |
|----------------------|---------------------------|------------|
| Heinonen 1989        |                           |            |
| Gonorrhoea cure rate | 0                         | 1/1        |
| Chlamydia cure rate  | 6/6                       | 3/3        |

### Table 35. Non-standard quinolone combinations side effects

|                                             | Tetracycline combinations | Comparator |
|---------------------------------------------|---------------------------|------------|
| Heinonen 1989                               |                           |            |
| Any side effect                             | 3/16                      | 11/20      |
| Withdrawal of treatment due to side effects | 0/16                      | 0/20       |
| Judlin 1995                                 |                           |            |
| Withdrawal of treatment due to side effects | 0/15                      | 0/18       |

### 3.2.7 Any antibiotic or combination vs same antibiotic or combination

# 3.2.7.1 Amikacin and Netilmicin given once per day vs more than once per day

Two trials compared the pharmacokinetics, efficacy and safety of amikacin and netilmicin given either once daily or the dame dose divided into two for amikacin and three for netilmicin. These two trials were published in the same trial report three times, once where Ibrahim was lead author<sup>63</sup> and twice where Tulkens was lead author.<sup>64,65</sup> The intension of the two RCTs was to establish whether these two drugs were just as effective and safe in single daily doses compared to divided doses. They particularly looked for any signs of hearing loss caused by different dosing regimens.

| Ibrahim a 1990 | Amikacin x1 tinidazole, ampicillin   | Amikacin x2 tinidazole, ampicillin      |
|----------------|--------------------------------------|-----------------------------------------|
| Ibrahim b 1990 | Netilmicin x1 tinidazole, ampicillin | Netilmicin x3 tinidazole,<br>ampicillin |

All patients were clinically cured by the treatments received. One patient had persistence in the offending microbial pathogen in the Netilmicin 3xdaily group. The serum creatinine levels at the seventh day and the numbers of patients with a loss of 15 decibels or more are shown in Table 37. The trial report did not state whether the variations around the point estimates were standard deviations or standard errors.

Table 37. Side effects of amikacin and netilmicin

|                               | Intervention | Control     |
|-------------------------------|--------------|-------------|
| Amikacin (serum creatinine)   | 0.86 (0.11)  | 0.81 (0.12) |
| Netilmicin (serum creatinine) | 0.83 (0.13)  | 0.83 (0.11) |
| Amikacin (0.25-8Hz)           | 1            | 2           |
| Netilmicin (0.25-8Hz)         | 0            | 2           |
| Amikacin (10-18Hz)            | 3            | 4           |
| Netilmicin (10-18Hz)          | 3            | 9           |

# 3.2.7.2 The length of antibiotic therapy needed for each of the antibiotics assessed to achieve clinical cure or microbiological cure

There are no RCTs that specifically address this question

# 3.2.8 Whether outpatient treatment is more or less effective than inpatient treatment

To some extent the PEACH trial addressed this question and this has been reviewed above (see section 3.2.3.3). There were no other RCTs found.

# 3.2.9 Assessment of effectiveness

This systematic review has assessed results from 34 different RCTs. The trials were published between 1980 and 2003 and antibiotic practices have changed considerably over this time. It is noticeable from Table 38 that the busiest period of trial investigation was 1990-1994 and that the size of trials has gradually become larger. (Three of the five trials in 1995-1999 were larger trials of pelvic infections which included some PID patients).

| Date of publication | Number of | Number of patients | Number of patients per |
|---------------------|-----------|--------------------|------------------------|
|                     | trials    | randomised         | trial                  |
| 1980-1984           | 4         | 180                | 45                     |
| 1985-1989           | 9         | 465                | 52                     |
| 1990-1994           | 14        | 1438               | 103                    |
| 1995-1999           | 5         | 388                | 78                     |
| 2000-2004           | 2         | 1077               | 538                    |

 Table 38. Size and date of trials

It is also noticeable that in a large number of trials patients were excluded from evaluation of effectiveness for a wide variety of different reasons (see Table 54). Eleven used ITT analysis and the remainder gave reasons for not reporting results for all randomised patients. The quality of the trial reports is generally poor, with all but two trials having a Jadad score of 0 or 1. Of the two trials achieving a Jadad score above 1, one was published in  $2002^{40,41}$  and the other in 1988.<sup>42</sup>

The vast majority of results demonstrate no clinical superiority of one treatment over another. This may be because of ceiling effects, ie many of the smaller trials had 100% effectiveness in one or both arms. Another possible reason is that all antibiotics are similarly effective, or it could be that most of the trials were underpowered to find a small difference in effectiveness. Lastly, random effects models were used in the meta-analyses, which are known to be less likely to show a significant difference. The reason for using random effects models was because of the clinical heterogeneity of the trials, which was likely to lead to statistical heterogeneity. Some comparisons that were more clinically heterogeneous have subgroups shown on the Forest plots. It could be argued that meta-analysis was inappropriate for some of the more clinically heterogeneous comparisons but in the end surprisingly little statistical heterogeneity was found in some comparisons whereas more was found in others.

The only antibiotic found to be less effective than comparator is clindamycin used on its own. This is from the result of one early RCT where enrolment was discontinued after 20 patients in the clindamycin arm when it was seen that there were a large number of treatment failures (the other arm given lymecycline eventually enrolled 44 patients). The reason for this lack of success could be a statistical 'blip' from a small sample size or that clindamycin on its own is not an effective treatment for PID. However, clindamycin is now not used on its own for the treatment of PID so this finding is of academic importance only.

The microbiological results were very mixed. Where reported, a considerable number failed to isolate specific causative agents for PID at the start of the trial so could not ascertain whether the antibiotics had removed the pathogens. There is also the problem of patients having unprotected sex with infected partners after treatment so reinfecting themselves before the follow up swab is taken. The results that were reported were often near 100% cure rates so finding a significant difference between comparators was unlikely. Therefore the microbiological results were inconclusive.

The side effects results varied with the different antibiotics and combinations used. Inevitably, vestibular disturbance and other symptoms of ototoxicity were more common with the aminoglycosides. Nausea and vomiting appeared more common with cefoxitin, probenecid and doxycycline than comparators (Martens 2) and 'any side effect' more common in tetracyclines (Heinonen) and azithromycin (Bevan)

# 3.2.10 Equity issues

A review was made of the number of included RCTs that mentioned the ethnic background of patients included in each trial. The results are shown in Table 39. It is noticeable that only 6 of the 34 trials included mention of ethnic background, many recent ones did not. Also, most of the ones that did report ethnic background have a very high number of participants of black ethnic origin. This may be for a number of reasons:

- The diagnosis rate is higher in black people (the prevalence is higher in black people –see section 2.1.1- but not to this extent)
- Trials are carried out in hospitals where the majority of local residents are of black ethnic origin (this may be true for some single-centre trials but is unlikely for very large multi-centre trials such as PEACH)
- People of black ethnic origin tend to be amongst the poorer in society in USA. This means that often they do not have medical insurance. Therefore, to receive adequate medical treatment enrollment into a clinical trial means that they can obtain free treatment.

| Trial             | Ethnic group | Percentage of | Trial location    |
|-------------------|--------------|---------------|-------------------|
|                   |              | patients      |                   |
| Arredondo 1997    | Hispanic     | 96-99%        | South and Central |
|                   |              |               | America           |
| Crombleholme 1989 | Black        | 71%           | USA               |
| Landers 1991      | Black        | 49-50%        | USA               |
| Martens 2 1993    | Black        | 57%           | USA               |
| Peach 2002        | Black        | 75%           | USA               |
| Soper 1988        | Black        | 10-13%        | USA               |

Table 39. Ethnic background in trials

The question is whether antibiotic effectiveness is similar in different ethnic groups. There is a suggestion from one study of consecutive patients treated in the Netherlands that antibiotic resistance for some antibiotics (metronidazole, clarithromycin) may be higher in people originating from Africa and Turkey than in ethnic Dutch participants.<sup>66</sup> This may be due to the different ethnic group forming sub-populations with specific subtypes of bacteria prevalent resulting in different antibiotic resistances or it could be because people of different ethnic backgrounds having different antibiotic resistances.

Subgroup analysis of the PEACH trial with its large number of participants, looking at clinical outcomes by ethnic group and the bacterial strains present may help to resolve this question.

If antibiotic resistance is higher in some ethnic groups compared to others then the results from trials may not be as transferable to another setting as was previously thought. It would also be very important for all trials to publish the ethnic background of participants.

# 4. ECONOMIC ANALYSIS

# 4.1 Methods for economic analysis

# 4.1.1 Costs and cost effectiveness review

A systematic review of the literature on costs, health economic impact and quality of life of PID was carried out. The clinical effectiveness searches were extended to identify relevant economic analyses or any studies reporting costs, cost effectiveness, cost utility or generic quality of life outcomes.

# Search Strategy

The following sources were searched to December 2002:

- Bibliographic databases: MEDLINE, EMBASE, NHS EED, HEED
- Internet sites of national economic units

Relevant information found during the clinical effectiveness searches were also used.

A second search of the following sources was carried out to May 2004:

- Bibliographic databases: MEDLINE, EMBASE, NHS EED
- Citations of included studies

**Inclusion and exclusion criteria, data extraction and quality assessment** Studies were only included if they met the criteria shown in Table 40:

| Patient      | Women with PID, diagnosed clinically or laparoscopically       |  |
|--------------|----------------------------------------------------------------|--|
| Intervention | Any antibiotic or combination                                  |  |
| Control      | Not applicable                                                 |  |
| Outcomes     | Cost, cost consequence, cost effectiveness, cost utility, cost |  |
|              | minimization, cost consequences or any generic quality of life |  |
| Study design | Any                                                            |  |

### Table 40. Cost effectiveness review inclusion criteria

One reviewer, using explicit predetermined criteria, made the inclusion and exclusion decisions for the economic evaluation review. This was checked by a second researcher. Quality of included studies was assessed using the modified Drummond checklist<sup>67</sup>.

# Analysis

Analysis of results of included studies was qualitative only. Conclusions were based on clearly tabulated data from included studies.

# 4.2 Cost effectiveness review results

A total of 22 potentially relevant studies were found from the searches. Eight studies were included and 18 studies excluded. A list of excluded studies with reasons for exclusions are shown in Appendix 6. The main reasons for exclusion were that the studies looked at treating uncomplicated genital infections with the aim to prevent PID and other expensive sequelae. All eight included studies were published in USA between 1980 and 2000 so the treatment used in some may not mirror current practice and the costs may not be relevant to the UK. All were fully published in one or more peer-reviewed journal articles. Five of the eight are cost studies, two are cost-effectiveness studies and one is a quality of life study. All costs are given in US dollars. The included studies details are shown in Table 41, Table 42 and Table 43.

# 4.2.1 Cost studies

Three of the five cost studies<sup>68-70</sup> show a general trend of increasing direct cost per case of PID between 1980 and 1991. The fourth study<sup>71</sup> is measuring lifetime cost for PID rather than annual cost. However, one would expect that the lifetime cost of PID would be higher than the annual cost per case because of the relative frequency of sequelae so the reason for the lower cost found is unclear.

The Yeh study used much more sophisticated ways to derive an average lifetime cost of PID than the Rein study. It was widely researched for probability and timing of complications from PID. The sensitivity analysis was extensive and the journal article very detailed. The resulting range of lifetime cost of PID per person was similar to that from the Rein study (the only cost study to calculate lifetime cost) (\$1,060 - \$3,180 vs \$1,519). Possibly more useful is the cost where initial treatment has been unsuccessful. Here the discounted average per person lifetime cost was \$1,270 - \$6,840 depending on the specific complications (CPP - \$6,350, ectopic pregnancy - \$6,840 and infertility - \$1,270) The low cost associated with infertility reflects the fact that many infertile women do not seek infertility treatment. The sensitivity analysis showed that costs were most sensitive to major complications resulting from PID and the cost of surgery for CPP.

For all of the cost studies there are some inherent problems with using hospital discharge data and patient charges for costs. Although they can give an idea of what happens in the real world, as opposed to clinical opinion that gives a more idealised picture of what should happen, they rely on accurate coding and record-keeping. PID could be included in ICD codes in one of three categories (see Table 2 in the epidemiology section) so miscoding is a potential source of error.

|                                             | Curran 1980 <sup>68</sup>                                                                                                                                                   | Washington 1986 <sup>69</sup>                                                                                                                                                                                                        | Washington 1991 <sup>70</sup>                                                                                                                                                                                 |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of economic evaluation                 | Cost of condition study                                                                                                                                                     | Cost of condition study                                                                                                                                                                                                              | Cost of condition study                                                                                                                                                                                       |
| Date of costs                               | 1979                                                                                                                                                                        | 1982-4                                                                                                                                                                                                                               | 1987-8                                                                                                                                                                                                        |
| Location of study                           | One hospital in San Francisco, USA                                                                                                                                          | Two hospitals in San Francisco,<br>USA                                                                                                                                                                                               | Two hospitals in San Francisco,<br>USA                                                                                                                                                                        |
| Perspective                                 | Societal                                                                                                                                                                    | Societal                                                                                                                                                                                                                             | Societal                                                                                                                                                                                                      |
| Data collection                             | Probably retrospective                                                                                                                                                      | Probably retrospective                                                                                                                                                                                                               | Probably retrospective                                                                                                                                                                                        |
| Source of cost data                         | Hospital administration database charges                                                                                                                                    | National and state hospital cost databases                                                                                                                                                                                           | National and state hospital cost databases                                                                                                                                                                    |
| Costs included:                             | Direct – hospitalisation, gynaecologic<br>surgery, outpatient visits.<br>Indirect – costs of loss of housewives'<br>services, lost work output<br>Intangible – not included | Direct – average cost per admission<br>and surgical procedures at one of the<br>hospitals, cost per outpatient visit<br>Indirect – lost wages, lost value of<br>household management, lost value<br>of lifetime earnings from deaths | Direct – physician charges,<br>preadmission visit via A&E or<br>outpatients, hospital charges<br>Indirect – lost wages, lost value of<br>household management, lost value<br>of lifetime earnings from deaths |
| Quantities and costs reported separately    | No                                                                                                                                                                          | Yes                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                                           |
| Source of effectiveness data                | Hospital discharge surveys                                                                                                                                                  | National hospital discharge data                                                                                                                                                                                                     | California state hospital discharge data                                                                                                                                                                      |
| Effectiveness parameters taken into account | Incidence of PID, ectopic pregnancy                                                                                                                                         | Incidence of PID, ectopic<br>pregnancy, infertility                                                                                                                                                                                  | Incidence of PID, ectopic pregnancy, infertility                                                                                                                                                              |
| Discount rate?                              | 4% for economic losses from premature deaths                                                                                                                                | 4% for expected lost lifetime earnings from deaths                                                                                                                                                                                   | 4% for expected lost lifetime earnings from deaths                                                                                                                                                            |
| Sensitivity analysis?                       | Not reported                                                                                                                                                                | Not reported                                                                                                                                                                                                                         | Not reported                                                                                                                                                                                                  |
| Other factors                               | -                                                                                                                                                                           | Total cost projected to year 1990<br>assuming different incidence rates of<br>PID                                                                                                                                                    | Total cost projected to year 2000<br>assuming different incidence rates of<br>PID                                                                                                                             |

# Table 41. Review of annual cost studies comparisons table

|                          | Curran 1980 <sup>68</sup>         | Washington 1986 <sup>69</sup>     | Washington 1991 <sup>70</sup>     |
|--------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Cost result              | Total cost in USA \$1,256,322,600 | Total cost in USA \$2,620,000,000 | Total cost in USA \$4,236,470,000 |
|                          | Direct - \$698,986,250            | Direct - \$1,225,496,000          | Direct - \$2,728,070,000          |
|                          | Indirect - \$557,336,400          | Indirect - \$1,389,600,000        | Indirect -\$1,508,400,000         |
| Total number of cases or | 850,000                           | 1,272,600                         | 1,477,700                         |
| treatment visits         |                                   |                                   |                                   |
| Total cost per case of   | \$1,478                           | \$2,059                           | \$2,867                           |
| PID                      |                                   |                                   |                                   |
| Direct cost per case of  | \$822                             | \$963                             | \$1,846                           |
| PID                      |                                   |                                   |                                   |

|                          | Rein 2000 <sup>71</sup>                        | Yeh 2003 <sup>16</sup>                                       |
|--------------------------|------------------------------------------------|--------------------------------------------------------------|
| Type of economic         | Lifetime cost per case of PID                  | Cost study (Markov model) to determine average lifetime      |
| evaluation               |                                                | cost of PID                                                  |
| Date of costs            | 1998                                           | 2000                                                         |
| Location of study        | -                                              | USA                                                          |
| Perspective              | Societal                                       | Societal                                                     |
| Data collection          | Probably retrospective                         | Retrospective from published literature                      |
| Source of cost data      | MarketScan database                            | MarketScan database (from <sup>71</sup> )                    |
| Costs included:          | Direct only – Actual patient and insurance     | Outpatient and inpatient treatment for PID and sequelae of   |
|                          | payments for outpatient, inpatient and         | CPP and ectopic pregnancy, infertility and its treatment.    |
|                          | pharmacy costs                                 |                                                              |
| Quantities and costs     | Yes                                            | Yes                                                          |
| reported separately      |                                                |                                                              |
| Source of effectiveness  | National hospital discharge data               | From published literature (extensive referencing)            |
| data                     |                                                |                                                              |
| Effectiveness parameters | Incidence of PID, ectopic pregnancy,           | PID infection, CPP, ectopic pregnancy, infertility           |
| taken into account       | infertility, chronic pelvic pain               |                                                              |
| Discount rate?           | 5% for expected lifetime costs of treatments   | Costs and benefits at 3% per annum                           |
| Sensitivity analysis?    | Yes on effectiveness estimates                 | Yes, extensive, on costs, natural history of PID, timing and |
|                          |                                                | duration of major clinical complications.                    |
| Cost result              | Direct cost in USA = \$1,880,000,000           | \$1,060 - \$3,180 lifetime cost of PID per person.           |
|                          | Total number of treatment visits = $1,237,309$ |                                                              |
|                          | Lifetime cost of PID per person = $$1,519$     |                                                              |

### Table 43. Review of cost-effectiveness studies comparisons table

|                       | McNeely 1998 <sup>72</sup>                                           | Adams 2003 <sup>73</sup>                                     |
|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| Type of economic      | Cost-effectiveness study of 3 antibiotic regimens                    | Cost effectiveness study of training pharmacy workers in     |
| evaluation            |                                                                      | syndromic management of STDs                                 |
| Date of costs         | Not stated (data collected between 1993-7                            | 1997-2000                                                    |
| Location of study     | One hospital in Detroit, USA                                         | Lima, Peru                                                   |
| Perspective           | Hospital                                                             | Societal                                                     |
| Data collection       | Prospective costing on same patient sample as used for effectiveness | Prospective                                                  |
| Source of cost data   | Accounting offices of the Detroit Medical Centre                     | Pharmacy costs, study budget reports                         |
| Costs included:       | Direct - pharmacy costs, physician charges, hospital                 | Medication, pharmacy personnel costs (not included are       |
|                       | charges,                                                             | referral to physician, transport to physician, consultation, |
|                       |                                                                      | subsequent care)                                             |
| Quantities and costs  | No                                                                   | Yes                                                          |
| reported separately   |                                                                      |                                                              |
| Source of             | Consecutive case series from single hospital n=179                   | Estimated from census and prevalence studies                 |
| effectiveness data    |                                                                      |                                                              |
| Effectiveness         | Efficacy of treatment, incidence of tubo-ovarian abscess,            | Proportion of patients where adequate management was         |
| parameters taken      | surgical intervention, hospital stay duration                        | given                                                        |
| into account          |                                                                      |                                                              |
| Discount rate?        | None undertaken due to short study period                            | Not reported                                                 |
| Sensitivity analysis? | Not reported                                                         | Yes                                                          |
| Other factors         | Effectiveness results –                                              | The proportion of patients with PID or vaginal discharge     |
|                       | Clindamycin/gentamicin – 47%                                         | had greatest impact on cost effectiveness of programme,      |
|                       | Ampicillin/clindamycin/gentamicin – 87.5%                            | and medication costs under the societal perspective.         |
| Cost result           | Mean hospital costs for PID patients with or without tubo-           | Mean societal cost per PID episode -                         |
|                       | ovarian abscess – clindamycin/gentamicin - \$4,976                   | Intervention districts = $1.78$ (SD 2.35)                    |
|                       | Ampicillin/clindamycin/gentamicin - \$5,228                          | Control districts = $2.32$ (SD 2.73)                         |
|                       |                                                                      | (data extracted from part of cost effectiveness results)     |

# 4.2.2 Cost-effectiveness studies

The two cost effectiveness studies investigate quite different aspects of care for PID.

McNeely describes itself as a cost-effectiveness study of different antibiotic regimens but there is no attempt to combine costs and effectiveness results into a cost per case cured or a cost per QALY. There were three antibiotic comparisons of cefotetan plus doxycycline (n=103), clindamycin plus gentamicin (n=46) and ampicillin plus clindamycin plus gentamicin (n=30). As cefotetan is no longer in BNF, the results from the other two groups have been reported here only. It is interesting to note that none of the RCTs reviewed in the clinical effectiveness part of this systematic review had the treatment of ampicillin/clindamycin/gentamicin. Also, the effectiveness estimate in the clindamycin/gentamicin case series is not mirrored by any of the RCT results for the same treatment. Although case series are lower in the hierarchy of evidence than RCT evidence, in this instance the case series used may mirror actual clinical practice better. This is because it was a case series of consecutive patients and because the RCTs in the systematic review had such high clinical cure rates whereas the actual incidence of sequelae is relatively high in clinical practice. The resulting mean hospital costs for the two reviewed groups do not differ by much in spite of the fact that the effectiveness estimates were so different.

The Adams study is really investigating the cost effectiveness of a type of training for pharmacists, where the example used was sexually transmitted diseases. The existing and new teaching programmes were assessed using simulated patients, ie healthy people with standardised symptom set descriptions visiting pharmacies. The costing of PID, along with vaginal discharge, urethral discharge and genital ulcer disease was done in order to evaluate the costs and benefits to the wider community of pharmacists' improvements in diagnostic ability. The resulting cost per PID episode was remarkably low.

All seven cost or cost-effectiveness studies were based in the USA and the results may not be that applicable to conditions in the UK for a number of reasons:

- There are different structures of health provision in the USA compared to UK
- The different admissions policies in the USA means that fewer patients are treated as outpatients in the USA than UK and more are treated as inpatients
- Hospital and physician charges are not the same as costs
- The rates of sequelae may be different, depending on the relative success of the different treatments used

# 4.2.3 Quality of life studies

There was one health related quality of life study found <sup>15</sup> which reported results from the PEACH trial. From 798 women followed up in that trial, 547 had at least two follow up interviews and completed the SF-36 questionnaire. The demographic characteristics of this subgroup were similar to those in the whole trial except that there were more participants of black ethnic origin in this subgroup (79%). Unfortunately the results are not separated by treatment group but are split by presence or absence of CPP and by mild/moderate/severe CPP at follow up of a mean of 35 months. The results are depicted graphically for the six domains of physical functioning, bodily pain, general health, vitality, social functioning and mental health and the two composite scores of physical health and mental health. The results vary widely for all scores and have large standard deviations. Unsurprisingly those with CPP have lower mean scores in all domains and the trend was to have worse scores with worse

CPP but there were no significant differences between CPP and non-CPP groups or mild/moderate/severe groups.

# 4.2.4 Economic evaluation

As there was no clear benefit in favour of one antibiotic treatment compared to any others, no economic modelling has been undertaken.

# 5. DISCUSSION AND CONCLUSIONS

# 5.1 Main results

A wide variety of antibiotics were used in 34 RCTs included in this systematic review. There is not a large amount of evidence available regarding the current recommended treatment regimens for PID and one of the seven regimens had no RCT evidence to reinforce it. There may be cohort or case-control study evidence where RCT evidence is lacking but the protocol for this systematic review excluded these study designs. Although RCTs are generally the best evidence available for clinical effectiveness questions, the quality of RCT evidence in this systematic review is poor. The median Jadad score of the included trials was 0 and only two trials score above 1. A well-conducted, large cohort study may provide better evidence than a small, poor quality RCT and further systematic reviews on treatment for PID may benefit from inclusion of these types of studies.

There were almost no trials carried out in the UK and treatment sensitivities may vary from one country to another. Also where trials stated ethnic origin of participants, a much higher proportion than expected were of black origin. This may have implications on the generalisability of results as antibiotic resistance may vary in different ethnic groups.

In systematic reviews, publication bias is always a potential problem and happens particularly where trials do not find significantly different results. However, in this case most of the trials had no significant differences so publication bias appears to be less of a problem here. It was also useful to note that the general trend over time is for trials to recruit more patients and so increase power to detect small differences in treatment effects.

The evidence that was available suggests that almost every treatment used was about as effective as the other, ie there were no significant differences found between treatments. The notable exception to this was for clindamycin used on its own. As it is not a clinically important treatment option, this finding will not be discussed further. The reasons why there were no significant differences in treatment effectiveness may be because:

- The apparent ceiling effect found in the trial results, or
- The possibility that all antibiotic regimens are effective so differences in effects will be small, or
- Most of the trials were underpowered to find any treatment effects

This finding on clinical effectiveness tallies with the review by Ross in clinical evidence<sup>13</sup>. There, RCT and case series evidence were aggregated to give clinical cure rates for standard inpatient and outpatient treatments. The clinical cure rates varied between 88% to 100% except for doxycycline and metronidazole which had a clinical cure rate of 75%. In this systematic review, there was only one trial that used doxycycline and metronidazole (Heinonen) and compared it to ciprofloxacin. Unfortunately this was the one trial that did not present clinical cure rates but it was noticeable that the microbiological cure rates for the doxycycline/metronidazole group were less than for the comparator. Unfortunately the trial was underpowered to find a significant difference between the two arms, having only 40 patients enrolled and 36 followed up.

What is particularly interesting to note is that the RCT evidence for the most part suggests that the antibiotic regimens used have 90-100% clinical cure rates. However, the incidence of sequelae is somewhere between 18-36%. Obviously these two findings do not tally. The PEACH trial unfortunately does not give the clinical cure rates at the first follow up, so it cannot be used to compare the initial clinical cure rates to rates of subsequent sequelae. None of the other trials give long-term follow-ups, they only give results at between two to six weeks only except for one small trial with follow up at six months. This means that there is a considerable gap in the evidence about effective treatment of PID.

Regarding findings of the costs and cost-effectiveness studies, the annual cost per patient and the lifetime cost per patient were considerable, particularly where the initial treatment was unsuccessful and patients suffered the sequelae of CPP and ectopic pregnancy. The latter is also a life-threatening event. The cost studies suggest that the most efficient treatment is not only beneficial to the patient but potentially also to the NHS. It is interesting to note that the actual costs of the different standard regimens vary from £10.50 to £738.50. At the moment it is difficult to determine whether these cost differences are also mirrored in differences of effectiveness. If there are no differences in clinical effectiveness then tentative conclusions can be made about which of the standard treatment regimens to use, based on their relative costs. For example, cost minimisation suggests that cephalosporins with oral doxycycline and metronidazole would be preferred to oral ofloxacin and metronidazole for outpatient treatment is iv ofloxacin and metronidazole but there is no evidence to suggest that is any more effective than other regimens intended for inpatient treatment.

# 5.2 Potential methodological strengths and weaknesses this systematic review

We identified the following features as being methodologically robust:

- A clearly defined question
- A comprehensive search strategy incorporating published and partially published material
- Duplicate selection of studies for inclusion and exclusion. Rigorous application of inclusion and exclusion criteria. Details of excluded studies with reasons for exclusions
- Duplicate data extraction and assessment of included study quality
- The inclusion of only clinically meaningful comparisons where antibiotics are available in the UK.
- Use of meta-analysis to amplify the assessment of patterns of results across several trials measuring the same outcome

All of these features are undertaken with the explicit intension of minimising bias, both for and against the interventions reviewed.

# 5.2.1 Potential weaknesses

Firstly, abstracting data from 34 trials means that there is a large amount of information in this systematic review. Although considerable efforts have been made to prevent errors, it will be inevitable that some have occurred. However, this is likely to generate random error rather than systematic bias.

We did not search for any study designs other than RCTs when carrying out this systematic review. This was the planned policy when developing the protocol for the review and was done because there was RCT evidence available. After appraising this, it is now apparent that

there are considerable gaps in the evidence, not least for assessment of the clinical guidelines for treatment of PID. Therefore a further systematic review incorporating descriptive study evidence may be warranted.

Women who use intra-uterine devices for contraception have an increased risk of PID and may represent a distinct subgroup of the population. It may have been more appropriate to look at the effectiveness of antibiotics for PID separately for this subgroup. Unfortunately 20 of the 34 included trials did not mention intra-uterine devices at all and none looked specifically at PID in this subgroup so there was insufficient information available.

Many trials were published before the Jadad score was widely used and the CONSORT statement was available (1996) so it may not be so appropriate to judge them now on criteria not available when they were written.

Meta-analysis has been used widely to combine results from similar classes of antibiotics where the compartors differed. The reason for this was to determine if there were any general trends in treatment effects. However, it is acknowledged that for some of the comparisons we have not been combining like with like. Partially to offset this we have used subgroups within the Forest plots to distinguish different groups more clearly.

The choice of route of antibiotic administration for a particular patient is especially dependent on the clinical state of the patient when they start treatment. This means that, for example, oral ofloxacin and metronidazole would not be comparable to iv clindamycin and gentamicin. Therefore the patient populations could have been split into mild, moderate or severe PID and a review made of standard regimens for use in each of these categories. However, none of the RCTs reviewed compared a standard regimen for intended for mild PID to one intended for severe PID because it would not be a clinically useful comparison.

# 5.2.2 Need for further research

Below is a list of potential further research that may be useful to further understanding of the treatment of PID.

- Conducting a systematic review that includes good quality cohort, case-control and case series study designs as well as RCTs to establish evidence base of the current clinical guidelines.
- Conducting large-scale RCTs to determine whether the current clinical guidelines offer the best treatment options. Another possibility is to set up a registry for PID with treatment outcomes. This could be useful also to determine how patients are treated at the moment and whether GP treatment as effective as that in GUM clinics and A&E departments. It would need long-term follow up to establish links between treatment options and subsequent sequelae rates
- The cost effectiveness of best possible treatment regimen compared to current practice

# 6. CONCLUSIONS

The clinical effectiveness evidence of six of the seven standard antibiotic regimens has been systematically reviewed. There was no evidence to suggest the superiority of any one regimen over another. There was no evidence for one of the standard recommended treatment regimens. All non-standard treatment regimens were similarly effective except one (clindamycin on its own) which would not normally be used now for the treatment of PID. There was no evidence available on the length of antibiotic treatment required. There was limited evidence about a combination of different routes of administration and inpatient versus outpatient treatment for one standard regimen which showed equivalent effectiveness. There were no UK cost or cost-effectiveness studies available. The US cost studies of different treatment regimens used non-standard treatments and case series effectiveness estimates. The cost of inpatient treatment varied between \$4,967 and \$5,228. The annual cost per PID case varied between \$822 and \$1,846 and the lifetime cost between \$1,060 and \$3,180. This increased to \$6,350 where patients subsequently developed chronic pelvic pain and \$6,840 where they developed ectopic pregnancy.

# 7. APPENDICES

### Appendix 1. Hager and Soper diagnostic criteria

# Hager criteria<sup>74</sup>

# Table 44. Hager clinical criteria for diagnosis

| Criteria                                                      | Comments                             |  |
|---------------------------------------------------------------|--------------------------------------|--|
| Abdominal direct tenderness, with or without rebound          |                                      |  |
| tenderness                                                    | All 3 necessary for                  |  |
| Tenderness with motion of cervix and uterus                   | diagnosis                            |  |
| Adnexal tenderness                                            |                                      |  |
|                                                               | Plus                                 |  |
| Gram stain of endocervix – positive for gram negative,        |                                      |  |
| intracellular diplococci                                      | 1 or more necessary for<br>diagnosis |  |
| Temperature (greater than 38C)                                |                                      |  |
| Leukocytosis (greater than 10,000)                            |                                      |  |
| Purulent material (white blood cells present) from peritoneal |                                      |  |
| cavity by culdocentesis or laparoscopy                        |                                      |  |
| Pelvic abscess or inflammatory complex on bimanual exam or    |                                      |  |
| by sonography                                                 |                                      |  |

### Table 45. Hager criteria for grading of severity of disease by laparoscopic examination.

| Severity | Criteria                                                                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Mild     | Erythema, oedema, no spontaneous purulent exudates (the tubes may require manipulation to produce purulent exudates), tubes freely moveable |
| Moderate | Gross purulent material evident, erythema and oedema more marked, tubes<br>may not be freely moveable and fimbria stoma may not be patent   |
| Severe   | <ol> <li>Pyosalpinx or inflammatory complex</li> <li>Abscess (size of any pelvic abscess should be measured)</li> </ol>                     |

### Table 46. Hager criteria for grading of PID by clinical examination

| Grade | Criteria                                                              |
|-------|-----------------------------------------------------------------------|
| I.    | Uncomplicated (limited to tube[s] and/or ovary[ies]),                 |
|       | Without pelvic peritonitis                                            |
|       | With pelvic peritonitis                                               |
| II.   | Complicated (inflammatory mass involving tube[s] and/or ovary[ies]    |
|       | Without pelvic peritonitis                                            |
|       | With pelvic peritonitis                                               |
| III.  | Spread to structures beyond pelvis, ie, ruptured tubo-ovarian abscess |

# Soper criteria<sup>75</sup>

### Table 47. Soper clinical criteria for diagnosis

| Criteria                                                      | Comments                |
|---------------------------------------------------------------|-------------------------|
| Adnexal tenderness                                            | Both necessary for      |
| Signs of a lower genital tract infection                      | diagnosis               |
|                                                               | Plus                    |
| Endometrial biopsy = endometritis                             |                         |
| Elevated C-reactive protein or erythrocyte sedimentation rate |                         |
| Temperature (greater than 38C)                                |                         |
| Leukocytosis                                                  | 1 or more necessary for |
| Positive test for chlamydia or gonorrhoea                     | diagnosis               |

Soper minimum criteria for laparoscopic diagnosis of PID are:

- 1. Pronounced hyperaemia of the tubal surface
- 2. Oedema of the tubal wall
- 3. A sticky exudate on the tubal surface and from the fimbrated ends when patent

# Thompson's criteria<sup>51</sup>

### Table 48. Thompson's criteria for clinical severity

| Sympton                                                                                | Score |  |
|----------------------------------------------------------------------------------------|-------|--|
| Abdominal tenderness (direct)                                                          | 0-3   |  |
| Rebound tenderness                                                                     | 0-3   |  |
| Decreased bowel sounds                                                                 | 0-3   |  |
| Pain on cervical movement                                                              | 0-3   |  |
| Adnexal enlargement (right)                                                            | 0-3   |  |
| Adnexal enlargement (left)                                                             | 0-3   |  |
| Adnexal tenderness (right)                                                             | 0-3   |  |
| Adnexal tenderness (left)                                                              | 0-3   |  |
| 0=absent, 1=minimal, 2=moderate, 3=marked. Total severity score range =0 (normal) – 24 |       |  |
| (most ill)                                                                             |       |  |

### Appendix 2. Clinical guideline extracts

A. Royal College of Obstetricians and Gynaecologists Guideline No 32. Management of acute pelvic inflammatory disease<sup>19</sup>

# 4.1 Outpatient treatment

Outpatient antibiotic treatment should be commenced as soon as the diagnosis is suspected. In mild or moderate PID (in the absence of a tubo-ovarian abscess), there is no difference in outcome when patients are treated as outpatients or admitted to hospital.<sup>41</sup> It is likely that delaying treatment, especially in chlamydial infections, increases the severity of the condition and the risk of long-term sequelae such as ectopic pregnancy, subfertility and pelvic pain.<sup>76,77</sup> (Evidence level 1b)

Outpatient treatment should be based on one of the following regimens: (Evidence level 1b)

• Oral ofloxacin 400mg twice a day plus oral metronidazole 400mg twice a day for 14 days<sup>25,35,78,79</sup>

OR

• Intramuscular ceftriaxone 250mg immediately or intramuscular cefoxitin 2g immediately with oral probenecid 1g, followed by oral doxycycline 100mg twice a day plus metronidazole 400mg twice a day for 14 days<sup>25,28,32,35,39,80</sup>

Broad spectrum antibiotic therapy is required to cover *N. gonorrhoeae*, *C. trachomatis* and anaerobic infection.<sup>1,80,81</sup> The recommendation to cover *N. gonorrhoeae* in patients presenting with suspected PID in the UK is based on the following facts:

- The most recent British study found gonoccocal infection in 14% of PID patients<sup>1</sup>
- The absence of endocervical gonorrhoea does not exclude gonococcal PID
- At present, there are no large controlled trials from the UK which support the use of regimens that do not cover *N. gonorrhoeae*
- The increasing incidence of gonorrhoea in the UK<sup>82</sup>

Although the combination of oral doxycycline and metronidazole is in common use in the UK, there are no clinical trials assessing its effectiveness.<sup>23</sup> (Evidence level IV)

# 4.2 Inpatient treatment

Admission to hospital would be appropriate in the following circumstances:<sup>80</sup>

- Surgical emergency cannot be excluded
- Clinically severe disease
- Tubo-ovarian abscess
- PID in pregnancy
- Lack of response to oral therapy
- Intolerance to oral therapy

In more severe cases inpatient antibiotic treatment should be based on intravenous therapy, which should be continued until 24 hours after clinical improvement and followed by oral therapy. (Evidence level 1b)

Recommended regimens are (Evidence level 1b):

• Intravenous cefoxitin 2g three times a day plus intravenous doxycycline 100mg twice a day (oral doxycycline may be used if tolerated), followed by oral doxycycline

100mg twice a day plus or al metronidazole 400mg twice a day for a total of 14  $\rm days^{25,32,35,39,80}$ 

OR

- Intravenous clindamycin 900mg three times a day plus intravenous gentamicin: 2mg/kg loading dose followed by 1.5mg/kg three times a day (a single daily dose of 7 mg/kg may be substituted), followed by either:
  - Oral clindamycin 450mg four times a day to complete 14 days OR
  - Oral doxycycline 100mg twice a day plus oral metronidazole 400mg twice a day to complete 14 days<sup>25,32,39,80</sup>

OR

• Intravenous of loxacin 400mg twice a day plus intravenous metronidazole 500mg three times a day for 14 days<sup>25,35,83</sup>

Intravenous doxycycline is available from IDIS World Medicines. If parenteral gentamicin is used then serum drug levels and renal function should be monitored.

The choice of an appropriate treatment regimen will be influenced by robust evidence on local antimicrobial sensitivity patterns, robust evidence on the local epidemiology of specific infections in this setting, cost, patient preference and compliance and severity of disease.

Evidence of the efficacy of antibiotic therapy in preventing the long-term complications of PID is currently limited.

B. Clinical Effectiveness Group (Association for Genitourinary Medicine and The Medical Society for the Study of Venerial Diseases). National guideline for the management of pelvic infection and perihepatitis and 2001 guidelines for the management of pelvic infection and perihepatitis.<sup>2,20</sup>

# Treatment

The following anti-biotic regimens are evidence based. Intravenous therapy should be continued until 24 hours after clinical improvement and then switch to oral.

Recommended regimens:

- Intravenous cefoxitin 2g three times daily plus intravenous doxycycline 100mg twice daily (oral doxycycline may be used if tolerated) followed by oral doxycycline 100mg twice daily plus oral metronidazole 400mg twice daily for a total of 14 days (III,B).<sup>25,32,35,39,84</sup>
- Intravenous clindamycin 900mg three times daily plus intravenous gentamicin (2mg/kg loading dose followed by 1.5mg/kg three times daily (a single daily dose may be substituted), followed by either oral clindamycin 450mg four times daily to complete 14 days or oral doxycycline 100mg twice daily plus oral metronidazole 400mg twice daily to complete 14 days (III,B)<sup>25,32,39,84</sup>
- Oral ofloxacin 400mg twice daily plus oral metronidazole 400mg twice daily for 14 days (III, B)<sup>25,35,38,83,84</sup>
- Intramuscular ceftriaxone 250mg immediately or intramuscular cefoxitin 2g immediately with oral probenecid 1g followed by oral doxycycline 100mg twice daily plus metronidazole 400mg twice daily for 14 days (III, B)<sup>25,32,35,39,84</sup>

Alternative regimens

- Intravenous of loxacin 400mg twice daily plus intravenous metronidazole 500mg three times daily (III, B)<sup>25,35,38,83,84</sup>
- Intravenous ciprofloxacin 200mg twice daily plus intravenous (or oral) doxycycline 100mg twice daily plus intravenous metronidazole 500mg three times daily (III, B)<sup>25,61,84</sup>

C. Centers for Disease Control and Prevention (CDC) Recommendations. (Taken from Kane et al 2004 <sup>21</sup>)

All outpatients must be treated by regimen A or regimen B.

- Regimen A: Ofloxacin 400mg PO bid for 14 days and metronidazole 500mg PO bid for 14 days
- Regimen B: Ceftriaxone 250mg IM or cefoxitin 2g IM plus probenicid 1 gm PO or a third generation cephalosporin and doxycycline 100mg PO bid for 14 days

### Appendix 3. Cost per day of antibiotics used

| Antibiotic              | iv cost | im cost | Oral cost           |
|-------------------------|---------|---------|---------------------|
| Amikacin                | 40.56   | 40.56   | n/a                 |
| Amoxicillin             | 1.98    | 1.98    | 0.26                |
| Amoxicillin/clavulanate | 8.91    | n/a     | 1.39                |
| Ampicillin              | 2.96    | 2.96    | 0.48                |
| Azithromycin            | n/a     | n/a     | 4.48                |
| Aztreonam               | 26.85   | 26.85   | n/a                 |
| Cefotaxime              | 9.22    | 9.22    | n/a                 |
| Cefoxitin               | 14.76   | 14.76   | n/a                 |
| Ceftazidime             | 28.35   | 28.35   | n/a                 |
| Ceftriaxone             | 10.94   | 10.94   | n/a                 |
| Ciprofloxacin           | 51.40   | n/a     | 2.40                |
| Clindamycin             | 12.40   | 12.40   | 2.28                |
| Doxycycline             | n/a     | n/a     | 0.48                |
| Gentamicin              | 6.16    | 6.16    | n/a                 |
| Imipenem/cilastin       | 24.00   | 24.00   | n/a                 |
| Lymecycline             | n/a     | n/a     | 0.51                |
| Meropenem               | 42.99   | 42.99   | n/a                 |
| Metronidazole           | 10.71   | 10.71   | 0.08                |
| Netelmicin              | 7.84    | 7.84    | n/a                 |
| Ofloxacin               | 42.04   | n/a     | 4.29                |
| Oxytetracycline         | n/a     | n/a     | 0.12                |
| Probenecid              | n/a     | n/a     | Named patient basis |
| Tetracycline            | n/a     | n/a     | 0.15                |
| Tinidazole              | n/a     | n/a     | 1.15                |
| Tobramycin              | 11.31   | 11.31   | n/a                 |
| Aminoglycoside          | n/a     | n/a     | n/a                 |

Prices are taken from BNF 47. Non-proprietary medicine category is used where possible, if not then least expensive option is used. Standard recommended doses used. N/a = not available in BNF. Amikacin, gentamicin, netilmicin and tobramycin doses assume 70 kg person. Named patient basis means no costs are available in BNF.

#### **Appendix 4. Search strategies**

Database: Pre-MEDLINE, MEDLINE January 2003 Search Strategy: 1. pelvic inflammatory disease.mp. [mp=ti, ab, rw, sh] (4274) 2. pelvic inflammatory disease.mp. [mp=ti, ab, rw, sh] (4274) 3. salpingitis.mp. [mp=ti, ab, rw, sh] (1867) 4. oophoritis.mp. [mp=ti, ab, rw, sh] (433) 5. adnexitis.mp. [mp=ti, ab, rw, sh] (303) 6. pid.mp. [mp=ti, ab, rw, sh] (1241) 7. pelvic abscess.mp. [mp=ti, ab, rw, sh] (372) 8. pyosalpinx.mp. [mp=ti, ab, rw, sh] (69) 9. fitz hugh curtis.mp. [mp=ti, ab, rw, sh] (107) 10.adnexitis/ (3514) 11.exp pelvic inflammatory disease/ (7171) 12.exp salpingitis/ (1526) 13.exp oophoritis/ (349) 14.exp adnexitis/ (7171) 15.exp pid/ (510) 16.exp antibiotics/ (359358) 17.antibiotic\$.mp. [mp=ti, ab, rw, sh] (189859) 18.1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 (9741) 19.16 or 17 (398004) 20.18 and 19 (1852) 21. randomized controlled trial.pt. (167185) 22.controlled clinical trial.pt. (61966) 23.randomized controlled trials/ (25457) 24.random allocation/ (46519) 25.double blind method/ (70733) 26.single blind method/ (6814) 27.21 or 22 or 23 or 24 or 25 or 26 (282821) 28.(animal not human).sh. (2613812) 29.27 not 28 (269511) 30.clinical trial.pt. (343892) 31.exp clinical trials/ (137764) 32.(clin\$ adj25 trial\$).ti,ab. (88391) 33. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj25 (blind\$ or mask\$)).ti,ab. (71201) 34.placebos/ (22015) 35.placebo\$.ti,ab. (76435) 36.random\$.ti,ab. (255469) 37.research design/ (35215) 38.30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 (605127) 39.38 not 28 (563623) 40.29 or 39 (572695) 41.20 and 40 (385) 42.from 41 keep 1-385 (385)

Database: EMBASE <1980 to 2002 Week 51> Search Strategy:

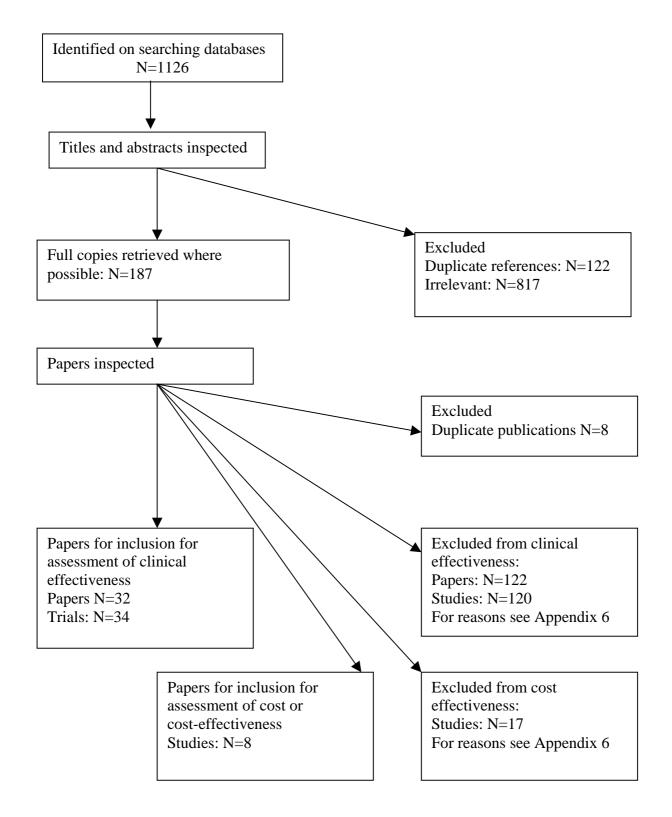
 pelvic inflammatory disease.mp. or exp Pelvic Inflammatory Disease/ (4536)
 pid.mp. (1031)

- 3. salpingitis.mp. or exp SALPINGITIS/ (1236)
- 4. chlamydia trachomatis.mp. or exp Chlamydia Trachomatis/ (7651)

5. exp adnexitis/ or exp metritis/ or exp pelvioperitonitis/ or exp pelvis abscess/ or exp salpingitis/ (2023)

6. pyosalpinx.mp. (65)

```
7. metritis.mp. (241)
   8. pelviperitonitis.mp. (13)
   9. pelvioperitonitis.mp. (148)
   10.pelvic abscess.mp. (310)
   11.chronic pelvic pain.mp. or exp Pelvis Pain Syndrome/ (1999)
   12.oophoritis.mp. or exp Ovary Inflammation/ (178)
   13. Fitz Hugh Curtis.mp. (77)
   14.1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13
      (14001)
   15.randomized controlled trial/ (70193)
   16.exp clinical trial/ (256595)
   17.exp controlled study/ (1490482)
   18.double blind procedure/ (45993)
   19.randomization/ (5186)
   20.placebo/ (60806)
   21. single blind procedure/ (3940)
   22.(control$ adj (tril$ or stud$ or evaluation$ or experiment$)).mp.
      (65338)
   23.(control$ adj (trial$ or stud$ or evaluation$ or experiment$)).mp.
      (89170)
   24.((singl$ or doubl$ or trebl$ or tripl$) adj5 (blind$ or mask$)).mp.
      (65618)
   25. (placebo$ or matched communities or matched schools or matched
      populations).mp. (100313)
   26.(comparison group$ or control group$).mp. (96182)
   27.(clinical trial$ or random$).mp. (431454)
   28. (quasiexperimental or quasi experimental or pseudo experimental).mp.
      (829)
   29.matched pairs.mp. (1368)
   30.15 or 16 or 17 or 18 or 19 or 20 or 21 or 23 or 24 or 25 or 26 or 27
      or 28 or 29 (1806167)
   31.14 and 30 (3407)
   32.antibiotic$.mp. or exp Antibiotic Agent/ (389030)
   33.antimicrobial$.mp. or exp Antiinfective Agent/ (692304)
   34.32 or 33 (715441)
   35.31 and 34 (1066)
   36.limit 35 to (human and female) (559)
   37.from 36 keep 1-559 (559)
Cinahl
Pelvic inflammatory disease (1)
Cochrane Library
```


- 1. adnexal diseasesx1.me (1213)
- 2. (Fitz and (Hugh and Curtis)) (2)
- 3. (Pelvic and abscess) (57)
- 4. (Pelvic and (inflammatory and disease)) (262)
- 5. anti-infective-agentsx.me (10892)
- 6. 1 or 2 or 3 or 4 (1421)
- 7. 5 and 6 (83)

#### (SR - 1, DARE - 3, CCTR - 73, NHSEED - 6)

#### Web of Science

(adnexitis or salpingitis or pelvic inflammatory disease) and antibiotic\* and random\* (31)

### Appendix 5. Flow diagram of identification and inclusion of effectiveness studies



# Appendix 6. Excluded studies

### Table 49. Excluded clinical effectiveness studies and reasons for exclusion

| Reference                                                                                                                                                      | Reason for exclusion   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Acar B, Zissis NP. Piperacillin alone vs triple antibiotic combination in gynecological infections. <i>Journal of Chemotherapy</i> 1989; <b>1</b> (6):403-406. | Penicillin             |
| Andersson, P.O.; Hackl, H.; Jensen, P.; Larsen, K.R. A comparison of two                                                                                       | Antibiotic not in BNF  |
| different dosages of pivampicillin and doxycycline in patients with                                                                                            | (pivampicillin)        |
| gynaecological infections. Current Medical Research and Opinion                                                                                                | (1                     |
| 1980;6(8):513-7                                                                                                                                                |                        |
| Bajares, De Lilue M; Mazzali, De, I; Santiago, A.; Ferrini, A.; Adames, Z.                                                                                     | Antibiotic not in BNF  |
| Comparative study between roxithromycin and doxicycline in Mycoplasma                                                                                          | (roxitromicina)        |
| and Chlamydia infections. Revista de Obstetricia y Ginecologia de                                                                                              |                        |
| Venezuela, Vol 53(4) (pp 211-216), 1993                                                                                                                        |                        |
| Bassil,S.; Le Bouedec,G.; Mage,G.; Pouly,J.L.; Canis,M.; Wattiez,A.;                                                                                           | RCT of anti-           |
| Chapron, C.; Bruhat, M.A. [The role of anti-inflammatory agents in the                                                                                         | inflammatory agent in  |
| treatment of acute salpingitis. A gynaecological study of 40 patients with                                                                                     | PID (piroxicam)        |
| celioscopic control]. [French]. Journal de Gynecologie, Obstetrique et                                                                                         | _                      |
| Biologie de la Reproduction 1991;20:1063-7                                                                                                                     | N ( DID                |
| Batteiger, B.E.; Jones, R.B.; White, A. Efficacy and safety of ofloxacin in the                                                                                | Not PID                |
| treatment of nongonococcal sexually transmitted disease. American Journal                                                                                      |                        |
| of Medicine 1989;87(6C):75S-77S<br>Berkeley,A.S.; Freedman,K.S.; Hirsch,J.C.; Ledger,W.J. Randomized,                                                          | Antibiotic not in DNE  |
| comparative trial of imipenem/cilastatin and moxalactam in the treatment of                                                                                    | Antibiotic not in BNF  |
| serious obstetric and gynaecologic infections. Surgery, Gynecology &                                                                                           | (moxalactam)           |
| Obstetrics 1986;162:204-8                                                                                                                                      |                        |
| Bevan CD, Ridgeway GL, Rothermel CD. Efficacy and safety of azithromycin                                                                                       | Results not given      |
| as monotherapy or combined with metronidazole compared with two                                                                                                | separately for the two |
| tstandard multidrug regimens for the treatment of acute pelvic inflammatory                                                                                    | sets of antibiotics    |
| disease. Journal of International Medical Research 2003;31:45-54                                                                                               |                        |
| *Third arms of trials A and B                                                                                                                                  | used                   |
| Black,J.R.; Long,J.M.; Zwickl,B.E.; Ray,B.S.; Verdon,M.S.; Wetherby,S.;                                                                                        | Not PID                |
| Hook III,E.W.; Handsfield,H.H. Multicenter gynaecological study of single-                                                                                     |                        |
| dose of loxacin versus amoxicillin-probenecid for treatment of uncomplicated                                                                                   |                        |
| gonococcal infection. Antimicrobial Agents & Chemotherapy 1989;33(2):167-                                                                                      |                        |
| 70                                                                                                                                                             |                        |
| Blanco, J.D.; Gibbs, R.S.; Duff, P.; Castaneda, Y.S.; St Clair, P.J. Randomized                                                                                | No PID in one arm of   |
| comparison of ceftazidime versus clindamycin-tobramycin in the treatment of                                                                                    | RCT                    |
| obstetrical and gynaecological infections. Antimicrobial Agents &                                                                                              |                        |
| Chemotherapy 1983;24(4):500-4                                                                                                                                  |                        |
| Bowden, F.J.; Jacups, S.; Huffam, S.; Savage, J.; O'Brien, M. Azithromycin and                                                                                 | Trial abandoned mid    |
| pelvic inflammatory disease in the Northern Territory. Medical Journal of                                                                                      | recruitment            |
| Australia 2001;174:366-7                                                                                                                                       |                        |
| Bowie,W.R.; Willetts,V.; Megran,D.W. Dose-ranging study of fleroxacin for treatment of uncomplicated Chlamydia trachomatis genital infections.                 | Antibiotic not in BNF  |
| Antimicrobial Agents & Chemotherapy 1989;33(10):1774-7                                                                                                         | (Fleroxacin)           |
| Brihmer,C.; Mardh,P.A.; Kallings,I.; Osser,S.; Robech,M.; Sikstrom,B.;                                                                                         | Not PID                |
| Wanger,L. Efficacy and safety of azithromycin versus lymecyline in the                                                                                         | NOUFID                 |
| treatment of genital chlamydial infections in women. Scandinavian Journal of                                                                                   |                        |
| Infectious Diseases 1996;28:451-4                                                                                                                              |                        |
| Brihmer C, Brundin J. Second look laparoscopy after treatment of acute                                                                                         | Penicillin             |
| salpingitis with doxycycline/benzylpenicillin procaine or trimethoprim-                                                                                        |                        |
| sulfamethoxazole. Scandinavian Journal of Infectious Diseases –                                                                                                |                        |
| Supplementum 1988; <b>53</b> :65-69. Brihmer C, Kallings I, Nord CE, Brundin J.                                                                                |                        |
| Second look laparoscopy; evaluation of two different antibiotic regimens after                                                                                 |                        |
| treatment of acute salpingitis. European Journal of Obstetrics, Gynecology,                                                                                    |                        |
| & Reproductive Biology 1989; <b>30</b> (3):263-274.                                                                                                            |                        |

| Reference                                                                                                                                                                                                                                                                                                                             | Reason for exclusion                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Brobson Lutz Jr F. Single-dose efficacy of ofloxacin in uncomplicated gonorrhea. American Journal of Medicine 1989;87(Supp 6C):69S-74S                                                                                                                                                                                                | Not PID                                    |
| Brunham RC, Kuo C, Stevens CE, Holmes KK. Treatment of concomitant<br>Neisseria gonorrhoeae and Chlamydia trachomatis infections in women:<br>comparison of trimethoprim-sulphamethoxazole with ampicillin-probenecid.<br>Reviews of Infectious Diseases 1982;4(2):491-9                                                              | Not PID                                    |
| Brunham RC, Bins B, Guijon F, Danforth D, Kosseim ML, Rand F, McDowell J, Rayner E. Etiology and outcome of acute pelvic inflammatory disease. Journal of Infectious Diseases 1988:158(3):510-7                                                                                                                                       | Not PID                                    |
| Chatwani,A.; Dandalou,V.; Harmanli,O.; Nyirjesy,P. Trospectomycin in acute pelvic inflammatory disease: A preliminary report. Infectious Diseases in Obstetrics & Gynecology 1997;5:215-8                                                                                                                                             | Antibiotic not in BNF<br>(Trospectomycin)  |
| Cirau-Vigneron,N.; Barrier,J.; Becue,J.; Chartier,M.; Giraud,J.R.; Landes,P.;<br>Leng,J.; Raudrant,D.; Reme,J.M. Amoxycillin/clavulanic acid ('Augmentin')<br>compared with a combination of aminopenicillin, aminoglycoside and<br>metronidazole in the treatment of pelvic inflammatory disease.<br>Pharmatherapeutica 1989;5:312-9 | Antibiotic not in BNF<br>(aminopenicillin) |
| Confino,E.; Friberg,J.; Vermesh,M.; Madanes,A.; Suarez,M.; Gleicher,N.<br>Mezlocillin versus doxycycline in the treatment of acute salpingitis. Mount<br>Sinai Journal of Medicine 1988;55(2):154-8                                                                                                                                   | Antibiotic not in BNF<br>(Mezlocillin)     |
| Cramers,M.; Kaspersen,P.; From,E.; Moller,B.R. Pivampicillin compared with erythromycin for treating women with genital Chlamydia trachomatis infection. Genitourinary Medicine 1988;64:247-8                                                                                                                                         | Not PID                                    |
| Crombleholme,W.R.; Ohm-Smith,M.; Robbie,M.O.; DeKay,V.; Sweet,R.L.<br>Ampicillin/sulbactam versus metronidazole-gentamicin in the treatment of<br>soft tissue pelvic infections. American Journal of Obstetrics & Gynecology<br>1987;156:507-12                                                                                       | Antibiotic not in BNF<br>(Sulbactam)       |
| Crombleholme,W.; Landers,D.; Ohm-Smith,M.; Robbie,M.O.; Hadley,W.K.;<br>DeKay,V.; Dahrouge,D.; Sweet,R.L. Sulbactam/ampicillin versus<br>metronidazole/gentamicin in the treatment of severe pelvic infections. Drugs<br>1986;31(Supp 2):11-13                                                                                        | Antibiotic not in BNF<br>(Sulbactam)       |
| Cunningham FG, Hauth JC, Strong JD, Herbert WN, Gilstrap L.C., Wilson RH, <i>et al.</i> Evaluation of tetracycline or penicillin and ampicillin for treatment of acute pelvic inflammatory disease. <i>New England Journal of Medicine</i> 1977; <b>296</b> :1380-1383.                                                               | Penicillin                                 |
| Dittmar,FW.; Weissenbacher,E.R. Therapy of adnexitis – enhancement of the basic antibiotic therapy with hydrolytic enzymes. International Journal of Experimental & Clinical Chemotherapy 1992;5(2):73-81                                                                                                                             | Not RCT of antibiotics                     |
| Dodson MG, Faro S, Gentry L. Treatment of acute pelvic inflammatory disease with aztreonam, a new monocyclic βlactam antibiotic and clindamycin. Obstetrics and Gynaecology 1986;67:657-62                                                                                                                                            | Not RCT                                    |
| Duarte,G.; Quintana,S.M.; Gir,E.; Marana,H.R.; Pereira,Da Cunha.<br>[Evaluation of doxycycline for the complementary treatment of acute<br>inflammatory pelvic disease. A double-blind study.] Revista Brasileira de<br>Medicina. 1995;52(6):651-6                                                                                    | Not RCT                                    |
| Eykyn S, Jenkins C, King A, Phillips I. Antibacterial activity of cefuroxime, a new cephalosporin antibiotic, compared with that of cephaloridine, cephalothin and cephamandole. Antimicrobial Agents and Chemotherapy 1976;9(4):690-5                                                                                                | In vitro study                             |
| Falk,V. Treatment of acute non-tuberculous salpingitis with antibiotics alone<br>and in combination with glucocorticoids. A prospective double blind<br>controlled study of the clinical course and prognosis. Acta Obstetricia et<br>Gynecologica Scandinavica 1965;44(6):5-118                                                      | Not RCT                                    |
| Faro S. Ticarcillin/clavulanate. An alternative to combination antibiotic therapy for treating soft tissue pelvic infections in women. Journal of Reproductive Medicine 1990;35(3(supp):353-8                                                                                                                                         | Not RCT                                    |

| Reference                                                                        | Reason for exclusion  |
|----------------------------------------------------------------------------------|-----------------------|
| Faro,S.; Martens,M.G.; Phillips,L.E.; LaPread,E.; Riddle,G.D.; Turner,R.M.       | Antibiotic not in BNF |
| Ceftizoxime versus cefotaxime in the treatment of gynaecologic patients with     |                       |
| pelvic inflammatory disease. Current Therapeutic Research, Clinical &            | (Ceftizoxime)         |
| Experimental 1988;43(3):349-54                                                   |                       |
| Fischbach,F.; Deckardt,R.; Graeff,H. [Ciprofloxacin/metronidazole vs.            | Results not separate  |
| cefoxitin/doxycycline: comparison of two therapy schedules for treatment of      | for PID               |
| acute pelvic infection]. Geburtshilfe und Frauenheilkunde 1994;54:337-340        |                       |
| and Deckardt, R.; Fischbach, F.; Graeff, H.[ Ciprofloxacin/metronidazole         |                       |
| versus cefoxitin/doxycycline: Comparison of two antibiotic regimes in the        |                       |
| treatment of acute adnexitis]. Archives of Gynecology & Obstetrics               |                       |
| 1991;250(1-4):427-9                                                              |                       |
| Frongillo,R.F.; Custo,G.M.; Gilardi,G.; Martella,L.; Palumbo,M. Imipenem         | Results not separate  |
| versus netilmicin plus chloramphenicol in gynaecological upper tract             | for PID               |
| infections: A comparative study. International Journal of Experimental &         |                       |
| Clinical Chemotherapy 1992;5(1):41-4                                             |                       |
| Garey KW, Amsden GW. Intravenous Azithromycin. Annals of                         | Both trials not RCTs  |
| Pharmacotherapy 1999;33:218-28                                                   |                       |
| Gaudin,G. [Comparative clinical study between Rocephin (Roche) and               | Results not separate  |
| doxycycline, amoxycillin, erythromycin and amoxycillin + metronidazole           | for PID               |
| combination in gynecology]. Gynakologische Rundschau 1985;25:86-95               |                       |
| Gerber, B.; Wilken, H.; Zacharias, K.; Barten, G.; Splitt, G. Treatment of acute | Not RCT of            |
| salpingitis with tetracycline/metronidazole with or without additional           | antibiotics           |
| balneotherapy, augmentan or ciprofloxacin/metronidazole: A second-look-          |                       |
| laparoscopy study. Geburtshilfe und Frauenheilkunde, Vol 52(3) (pp 165-          |                       |
| 170), 1992                                                                       |                       |
| Gibbs RS. A trial of spectinomycin hydrochloride compared with aqueous           | Antibiotic not in BNF |
| penicillin G plus kanamycin for treatment of severe pelvic inflammatory          | (spectinomycin,       |
| disease. Sexually Transmitted Diseases 1980;7(1)21-3                             | kanamycin)            |
| Gilstrap L.C., Maier RC, Gibbs RS, Connor KD, St Clair PJ. Piperacillin          | Anti-pseudomonal      |
| versus clindamycin plus gentamicin for pelvic infections. Obstetrics and         | penicillin            |
| Gynecology 1984; <b>64</b> :762-766.                                             | P                     |
| Giraud, J.R.; Chartier, M.; Ciraru-Vigneron, N.; Becue, J.; Landes, P.; Leng, J  | Results not separate  |
| J.; Raudrant, D.; Reme, J.M. [A comparison of the efficacy of and tolerance to   | for PID               |
| Augmentin used alone and as one of three drugs used to treat acute upper         |                       |
| genital tract infections. Results of a multicentre trial 152 cases.]             |                       |
| Contraception, Fertilite, Sexualite 1989;17(10):941-8                            |                       |
| Goffi PS, Aguiar LF, Vara AS, Moraes FC. [Fentiac in pelvic inflammatory         | Antibiotic not in BNF |
| disease. A double blind, randomised, placebo-controlled study in ambulatory      | (fentiazac)           |
| patients] Farmacologia Clinica 1989;98(4):241-6                                  | · · · ·               |
| Gribble, M.J. Cefotetan: a second-generation cephalosporin active against        | Antibiotic not in BNF |
| anaerobic bacteria. Committee on Antimicrobial Agents, Canadian Infectious       | (cefotetan)           |
| Disease Society. Canadian Medical Association Journal 1994;151(5):537-42         | ``´´                  |
| Gruber, F.; Tomic, D.; Brajac, I. [Comparative trial with azithromycin and       | Not PID               |
| doxycycline in gonococcal and chlamydial infections in females]. Giornale        |                       |
| Italiano di Dermatologia e Venereologia, Vol 131(6) (pp 403-406), 1996           |                       |
| Gunning, J. A comparison of parenteral sulbactam/ampicillin versus               | Antibiotic not in BNF |
| clindamycin/gentamicin in the treatment of pelvic inflammatory disease.          | (Sulbactam)           |
| Drugs 1986; 31 Suppl 2:14-7                                                      |                       |
| Gunning JE. A comparison of piperacillin and clindamycin plus gentamicin in      | Anti-pseudomonal      |
| women with pelvic infections. Surgery, Gynecology & Obstetrics 1986;             | penicillin            |
| <b>163</b> (2):156-162.                                                          |                       |
| Hager,W.D.; Pascuzzi,M.; Vernon,M. Efficacy of oral antibiotics following        | Not PID               |
| parenteral antibiotics for serious infections in obstetrics and gynecology.      |                       |
| Obstetrics & Gynecology 1989;73(3 part 1):326-9                                  |                       |
| Handsfield,H.H.; McCormack,W.M.; Hook III,E.W.; Douglas Jr,J.M.;                 | Not PID               |
| Covino, J.M.; Verdon, M.S. et al. A comparison of single-dose cefixime with      |                       |
| ceftriaxone as treatment for uncomplicated gonorrhea. New England Journal        |                       |
| of Medicine 1991;325(19):1337-41                                                 |                       |

| Reference                                                                      | Reason for exclusion  |
|--------------------------------------------------------------------------------|-----------------------|
| Handsfield,H.H.; Dalu,Z.A.; Martin,D.H.; Douglas Jr,J.M.; McCarty,J.M.;        | Not PID               |
| Schlossberg, D. et al. Multicenter trial of single-dose azithromycin vs.       |                       |
| ceftriaxone in the treatment of uncomplicated gonorrhea. Sexually              |                       |
| Transmitted Diseases 1994;21(2):107-11                                         |                       |
| Hanssen PW, Paavonen J, Kiviat N, Landers D, Sweet RL, Eschenbach DA,          | Not RCT               |
| Holmes KK. Ambulatory treatment of suspected pelvic inflammatory disease       |                       |
| with Augmentin, with or without doxycycline. American Journal of Obstetrics    |                       |
| and Gynaecology 1988;158(3 part 1):577-9                                       |                       |
| Harding G, Vincelette J, Rachlis A, Fong I, Mandell L, Feld R, Bailey D. A     | Antibiotic not in BNF |
| preliminary report on the use of ceftizoxime vs clindamycin/tobramycin for     | (ceftizoxime)         |
| the therapy of intra-abdominal and pelvic infections. Journal of Antimicrobial | (•••••••••)           |
| Chemotherapy 1982;10(supp C):191-2                                             |                       |
| Harding,G.K.; Nicolle,L.E.; Haase,D.A.; Aoki,F.Y.; Stiver,H.G.;                | Antibiotic not in BNF |
| Blanchard, R.J.; Kirkpatrick, J.R. Prospective, gynaecolog, comparative trials | (ceftizoxime)         |
| in the therapy for intraabdominal and female genital tract infections. Reviews | (contriboxime)        |
| of Infectious Diseases 1984;6(supp 1):S283-92                                  |                       |
| Harding GK, Buckwold FJ, Ronald AR, Marrie TJ, Brunton S, Koss JC et al.       | Not PID               |
| Prospective randomised comparative study of clindamycin, chloramphenicol       |                       |
| and ticarcillin, each in combination with gentamicin in therapy for intra-     |                       |
| abdominal and female genital tract sepsis. Journal of Infectious Diseases      |                       |
| 1980;142(3):384-93                                                             |                       |
| Heinonen PK, Teisala K, Punnonen R, Aine R, Lehtinen M, Miettinen A,           | Not RCT               |
| Paavonen J. Treating pelvic inflammatory disease with doxycycline and          | norrei                |
| metronidazole or penicillin and metronidazole. Genitourinary Medicine          |                       |
| 1986;62:235-9                                                                  |                       |
| Hemsell, D.L.; Cunningham, F.G.; Nolan, C.M.; Miller, T.T. Clinical experience | A, not RCT            |
| with cefotaxime in obstetric and gynaecologic infections. Reviews of           | B, not PID            |
| Infectious Diseases 1962;4(Supp):S432-8                                        | B, HOLFID             |
| Hemsell,D.L.; Bawdon,R.E.; Hemsell,P.G.; Nobles,B.J.; Heard,M.C. Single-       | Antibiotic not in BNF |
| agent therapy for acute pelvic inflammatory disease: Sulbactam/ampicillin      | (sulbactam)           |
| versus cefoxitin. Journal of International Medical Research                    | (suidactaili)         |
| 1980;18(Supp4):85D-89D                                                         |                       |
| Hemsell DL, Hemsell PG, Heard MC, Nobles BJ. Piperacillin and a                | Anti-pseudomonal      |
| combination of clindamycin and gentamicin for the treatment of hospital and    | penicillin            |
| community acquired acute pelvic infections including pelvic abscess.           | pemennin              |
| Surgery, Gynecology & Obstetrics 1987; <b>165</b> (3):223-229.                 |                       |
| Hemsell,D.L.; Nobles,B.J.; Heard,M.C.; Hemsell,P.G. Upper and lower            | Antibiotic not in BNF |
| reproductive tract bacteria in 126 women with acute pelvic inflammatory        | (ceftizoxime)         |
| disease. Microbial susceptibility and clinical response to four therapeutic    | (centizoxime)         |
| regimens. Journal of Reproductive Medicine 1988;35(10):799-805                 |                       |
| Hemsell,D.L.; Heard,M.C.; Nobles,B.J. Comparative bacteriology of              | Antibiotic not in BNF |
| parenteral single-agent vs. combination therapy in salpingitis. Advances in    | (ceftizoxime)         |
| Therapy 1991;8(1):27-35                                                        | (centizoxime)         |
| Hemsell,D.L.; Wendel,G.D.; Gall,S.A.; Newton,E.R.; Gibbs,R.S.;                 | Antibiotic not in BNF |
| Knuppel,R.A.; Lane,T.W. Multicenter comparison of cefotetan and cefoxitin      |                       |
| in the treatment of acute obstetric and gynaecologic infections. American      | (cefotetan)           |
| Journal of Obstetrics & Gynecology 1988;158:722-7                              |                       |
| Hillis,S.D.; Joesoef,R.; Marchbanks,P.A.; Wasserheit,J.N.; Cates,Jr W.;        | Not RCT               |
| Westrom,L. Delayed care of pelvic inflammatory disease as a risk factor for    | NULICI                |
| impaired fertility. American Journal of Obstetrics & Gynecology                |                       |
| 1993;168:1503-9                                                                |                       |
| Holloway, W.J. Infection in women: Clinical experience with beta-lactamase     | Results not concrete  |
| inhibitors. Journal of Reproductive Medicine for the Obstetrician and          | Results not separate  |
| Gynecologist 1988;33(SUPP):595-7                                               | for PID               |
| Hook III,E.W.; Jones,R.B.; Martin,D.H.; Bolan,G.A.; Mroczkowski,T.F.;          | Not PID               |
| Neumann, T.M.; Haag, J.J.; Echols, R. Comparison of ciprofloxacin and          |                       |
| ceftriaxone as single-dose therapy for uncomplicated gonorrhea in women.       |                       |
| Antimicrobial Agents & Chemotherapy 1993;37(8):1670-3                          |                       |
|                                                                                | 1                     |

| Reference                                                                            | Reason for exclusion                   |
|--------------------------------------------------------------------------------------|----------------------------------------|
| Horner,M.; Heller-Vitouch,C.; Ziegler,C.; Soltz-Szots,J. Azithromycin in the         | Not PID                                |
| treatment of chlamydial cervicitis and urethritis. Acta Dermatovenerologica          | Not I ID                               |
| Alpina, Panonica et Adriatica, Vol 4(3) (pp 121-125), 1995                           |                                        |
| Jaworska-Karwowska,J. [Evaluation of the results of treatment of acute               | Not RCT                                |
| adnexitis with sulfonamides and antibiotics in the course of balneotherapy].         | normen                                 |
| Ginekologia Polska 1980;51(6):539-43                                                 |                                        |
| Jemsek, J.G.; Harrison, F. Ampicillin/sulbactam vs. cefoxitin for the treatment      | Antibiotic not in BNF                  |
| of pelvic inflammatory disease. Infectious Diseases in Obstetrics &                  | (sulbactam)                            |
| Gynecology 1997;5:319-25                                                             | (subactail)                            |
| Jeskanen,L.; Karppinen,L.; Ingervo,L.; Reitamo,S.; Happonen,HP.;                     | Not PID                                |
| Lassus, A. Ciprofloxacin versus doxycycline in the treatment of                      | Not I ID                               |
| uncomplicated urogenital Chlamydia trachomatis infections. A double-blind            |                                        |
| comparative study. Scandinavian Journal of Infectious Diseases –                     |                                        |
| Supplement 1989;60:62-5                                                              |                                        |
| Johnson, R.B. The role of azalide antibiotics in the treatment of chlamydia.         | Not PID                                |
| American Journal of Obstetrics & Gynecology 1991;164:1794-6                          |                                        |
| Katz,B.P.; Caine,V.A.; Batteiger,B.E.; Jones,R.B. A gynaecological trial to          | Results not separate                   |
| compare 7- and 21-day tetracycline regimens in the prevention of recurrence          | for PID                                |
| of infection with Chlamydia trachomatis. Sexually Transmitted Diseases               |                                        |
| 1991;18(1)36-40                                                                      |                                        |
| Knuppel,R.A.; O'Bryan,D.; Lake,M. Cefotetan: comparative and                         | Antibiotic not in BNF                  |
| noncomparative studies in obstetric and ynaecologic infections. Southern             | (cefotetan)                            |
| Medical Association Journal 1988;81(2):185-8                                         | (cerotetail)                           |
| Kosseim,M.; Ronald,A.; Plummer,F.A.; D'Costa,L.; Brunham,R.C. Treatment              | Antibiotic not in BNF                  |
| of acute pelvic inflammatory disease in the ambulatory setting: Trial of             | (sulbactam)                            |
| cefoxitin and doxycycline versus ampicillin-sulbactam. Antimicrobial Agents          | (subactain)                            |
| & Chemotherapy 1991;35(8):1651-6                                                     |                                        |
| Kotoulas,IG.; Cardamakis,E.; Michopoulos,J.; Chronis,G.; Antoniou,S.                 | Antibiotic not in BNF                  |
| Comparison of ceftriaxone plus ornidazole, ceftazidime plus ornidazole, and          | (ornidazole)                           |
| ornidazole in the treatment of pelvic inflammatory disease (PID).                    | (ormdazoie)                            |
| International Journal of Experimental & Clinical Chemotherapy                        |                                        |
| 1992;5(3):159-64                                                                     |                                        |
| Kovacs,G.T.; Westcott,M.; Rusden,J.; Asche,V.; King,H.; Haynes,S.E.;                 | Not PID                                |
| Moore, E.K.; Hall, B.E. A prospective single-blind trial of minocycline and          | 1.001122                               |
| doxycycline in the treatment of genital Chlamydia trachomatis infection in           |                                        |
| women. Medical Journal of Australia 1989;150:483-5                                   |                                        |
| Kumamoto,Y.; Sakai,S.; Hirose,T.; Tsunekawa,T.; Machida,T.; Kiyota,H.;               | Not RCT                                |
| Okazaki,T.; Kishi,H.; Higashihara,E.; Aso,Y.; Niijima,T.; Saitoh,I.;                 |                                        |
| Yoshida, M.; Kataniwa, Y.; Taguchi, S.; Yamazaki, M.; Kojima, H.; Noguchi, Y.;       |                                        |
| Hashimoto, S. Efficacy of ofloxacin in sexually transmitted male urethritis and      |                                        |
| cervicitis. Japanese Journal of Antibiotics 1988;41(10):1445-79                      |                                        |
| Larsen, J.W., Jr.; Voise, C.T.; Grossman, J.H., III. Comparison of cefoxitin and     | Results not separate                   |
| clindamycin-gentamicin for pelvic infections. Clinical Therapeutics                  | for PID                                |
| 1986;9(1):77-83                                                                      | 101112                                 |
| Lebceuf, D.; Rousset, D.; Cacault, J.A.; Engelman, P. [Prospective                   | No PID in                              |
| gynaecological study comparing the efficacy and tolerance of clindamycin-            | intervention group                     |
| gentamicin versus metronidazole-gentamicin in acute utero-adnexal                    | Broup                                  |
| infections in gynaecologic patients]. Revue Francaise de Gynecologie et d            |                                        |
| Obstetrique 1987;82(1):9-15                                                          |                                        |
| Le Bouedec G, Pouly JL, Mage G, Canis M, Wattiez A, Abbas Muhktar B,                 | Antibiotic not in BNF                  |
| Bruhat MA. Salpingites aigues bacteriennes. Importance de l'inflammation             | (sulbactam)                            |
| residuelle. Journal de Gynecologie, Obstetrique et Biologie de la                    | ( ···································· |
| Reproduction 1990;19:765-722                                                         |                                        |
|                                                                                      |                                        |
| LeFrock, J.L.; Molavi, A.; Carr, B.; Schell, R.; Smith, B.; Rolston, K.; Lentnek, A. | Antibiotic not in BNF                  |
|                                                                                      | Antibiotic not in BNF<br>(mezlocillin) |

| Reference                                                                      | Reason for exclusion  |
|--------------------------------------------------------------------------------|-----------------------|
| Linneman CC, Heaton CL, Ritchey M. Treatment of chlamydia Trachomatis          | Not PID               |
| infections: comparison of 1g and 2g doses of erythromycin daily for seven      | Not PID               |
| days. Sexually Transmitted Diseases 1987;14(2):102-6                           |                       |
| Livengood III CH, Hill GB, Addison WA. Pelvic inflammatory disease:            | Antibiotic not in BNF |
| Findings during inpatient treatment of clinically severe, laparoscopy-         |                       |
| documented disease. American Journal of Obstetrics & Gynecology 1992;          | (cefamandole)         |
| <b>166</b> (2):519-524.                                                        |                       |
| Longhi,S. [Prevalence of Chlamydia trachomatis in chronic inflammatory         | Not PID               |
| disease of the urogenital tract and comparison among the clinical              | NOUFID                |
| effectiveness of minocyclin, miocamycin and norfloxacin]. Giornale Italiano di |                       |
| Ricerche Cliniche e Terapeutiche, Vol 12(6) (pp 167-170), 1991                 |                       |
| Martin DH, Mroczkowski TF, Dalu ZA, McCarty J, Johnes RB, Hopkins SJ,          | Not PID               |
| Johnson RB. [Randomised multicentre study of the use of azithromycin vs        | Not PID               |
| doxycycline against Chlamydia Trachomatis]. Zeitschr. Antimikr.                |                       |
| Antincoplast. Chemother. 1991;9(1/2):16-7                                      |                       |
| Matsuda,S.; Shimizu,T.; Maki,M.; Chimura,T.; Yajima,A.; Takahashi,K.;          | Antibiotic not in DNE |
| Cho,N.; Terashima,Y.; Ohya,A.; Kohara,T.; Hogaki Yagami,M.Y.; Tateno,M.;       | Antibiotic not in BNF |
| Noda,K.; Ninomiya,K.; Okada,H.; Ichijo,M.; Hirabayashi,K.; Fujiwara,A.         | (ceftibuten)          |
| Comparative double-blind clinical trial of ceftibuten (7432-S) and             |                       |
| bacampicillin (BAPC) against gynaecological infections. Chemotherapy           |                       |
| 1989;37(S-1):667-700                                                           |                       |
| Matsuda,S.; Shimizu,T.; Chimura,T.; Yajima,A.; Takahashi,K.; Cho,N.;           | Antibiotic not in BNF |
| Terashima,Y.; Hogaki,M.; Kohara,T.; Hayashi,S.; Tateno,M.; Kuwabara,S.;        |                       |
| Noda,K.; Ninomiya,K.; Yagami,Y.; Okada,H.; Sugimoto,O.; Noda,K.; Ichijo,M.     | (bacampicillin)       |
| Comparative double-blind study of lomefloxacin (NY-198) and bacampicillin      |                       |
| (BAPC) on the infections in obstetrics and gynecology. Chemotherapy            |                       |
| 1989;37(7):969:1005                                                            |                       |
| Matsuda,S.; Ando,S.; Oh,K.; Kawamata,C.; Takahashi,K.; Endo,H.; Goto,J.;       | Not RCT               |
| Asano,K.; Akagi,K.; Yamamoto,H.; Takeda,Y.; Iguchi,T.; Harada,M.;              | NOUKCI                |
| Hashiguchi,K.; Cho,N.; Notake,Y.; Miyakawa,Z.; Shimizu,A.; Kunii,K. Basic      |                       |
| and clinical studies on azithromycin in obstetrics and gynecology. Japanese    |                       |
| Journal of Chemotherapy 1995;43(S-6):299-312                                   |                       |
| McCormack WM, Nowroozi K, Alpert S, Sackel SG, Lee Y-H, Lowe EW,               | Antibiotic not in BNF |
| Rankin JS. Acute Pelvic Inflammatory Diseasr, characteristics of patients      | (spectinomycin)       |
| with gonococcal and nongonococcal infection and evaluation of their            | (spectilioniyeiii)    |
| response to treatment with aqueous procaine penicillin G and spectinomycin     |                       |
| hydrochloride. Sexually Transmitted Diseases 1977;4(4):125-31                  |                       |
| McCormack,W.M.; Martin,D.H.; Hook III,E.W.; Jones,R.B. Daily oral              | Antibiotic not in BNF |
| grepafloxacin vs. twice daily oral doxycycline in the treatment of Chlamydia   | (grepafloxacin)       |
| trachomatis endocervical infection. Infectious Diseases in Obstetrics &        | (greparioxaeiii)      |
| Gynecology 1998;6:109-15                                                       |                       |
| McGregor, J.A.; Crombleholme, W.R.; Newton, E.; Sweet, R.L.; Tuomala, R.;      | Antibiotic not in BNF |
| Gibbs,R.S. Randomized comparison of ampicillin-sulbactam to cefoxitin and      | (sulbactam)           |
| doxycycline or clindamycin and gentamicin in the treatment of pelvic           | (subactani)           |
| inflammatory disease or endometritis. Obstetrics & Gynecology                  |                       |
| 1994;83(6):998-1004                                                            |                       |
| Okada,H.; Yamamoto,T.; Yasuda,J.; Kanao,M.; Shimizu,T.; Yorozu,Y.;             | Antibiotic not in BNF |
| Torii,Y.; Haga,H.; Mizoguchi,H.; Mure,K.; Hasegawa,T.; Saito,S.; Nishino,T.;   | (cefroxadine)         |
| Saito,T.; Kimura,H.; Hayakawa,K.; Takaoka,Y.; Fujimoto,S.; Makinoda,S.         |                       |
| Comparative clinical study on ciprofloxacin and cefroxadine in the treatment   |                       |
| of infections in obstetrics and gynecology. Chemotherapy 1988;36(11):821-      |                       |
| 57                                                                             |                       |
| Paavonen J, Vesterinen E, Aantaa K, Rasanen J. Factors predicting              | Penicillin            |
| abnormal hysterosalpingography findings in patients treated for acute pelvic   |                       |
| inflammatory disease. International Journal of Gynaecology and Obstetrics      |                       |
| 1985;23:171-5                                                                  |                       |
| · -                                                                            | 1                     |

| Reference                                                                                                                                                                                                                                                                                                                                                                    | Reason for exclusion                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Pastorek,J.G.,Jr.; Aldridge,K.E.; Cunningham,G.L.; Faro,S.; Graffeo,S.;<br>McNeeley,G.S.; Tan,J.S. Comparison of ticarcillin plus clavulanic acid with<br>cefoxitin in the treatment of female pelvic infection. American Journal of<br>Medicine 1985;79(Supp5B):161-3                                                                                                       | Results not separate for PID                             |
| Poindexter AN. Comparative studies of mezlocillin, carbenicillin and ampicillin in the treatment of acute pelvic infection. Journal of antimicrobial chemotherapy 1982;9(suppA):159-61                                                                                                                                                                                       | Antibiotic not in BNF<br>(mezlocillin,<br>carbenicillin) |
| Reed,S.D.; Landers,D.V.; Sweet,R.L. Antibiotic treatment of tuboovarian<br>abscess: Comparison of broad-spectrum beta-lactam agents versus<br>clindamycin-containing regimens. American Journal of Obstetrics &<br>Gynecology 1991;164:1556-62                                                                                                                               | Not RCT                                                  |
| Reedy,M.B.; Sulak,P.J.; Miller,S.L.; Ortiz,M.; Kasberg-Preece,C.; Kuehl,T.J.<br>Evaluation of 3-day course of doxycycline for the treatment of uncomplicated<br>chlamydia trachomatis cervicitis. Infectious Diseases in Obstetrics &<br>Gynecology 1997;5:18-22                                                                                                             | Not PID                                                  |
| Roy S, Wilkins J. Cefotaxime in the treatment of female pelvic soft tissue infections. <i>Infection</i> 1985; <b>13 Suppl 1</b> :S56-S61.                                                                                                                                                                                                                                    | Penicillin                                               |
| Roy,S.; Koltun,W.; Chatwani,A.; Martens,M.G.; Dittrich,R.; Luke,D.R.<br>Treatment of acute gynaecologic infections with trovafloxacin. Trovafloxacin<br>Surgical Group. American Journal of Surgery 1998;176(Supp 6A):67S-73S                                                                                                                                                | Antibiotic not in BNF<br>(trovafloxacin)                 |
| Ruiz Conde,M.A.; Lanzon,R.; Catalan,T.; Horno,M.; Perez,Medina T.; Bajo<br>Arenas,J.M. et al. A multi-centre comparative study between meropenem<br>and clindamycin-gentamicin combination in the treatment of obstetric and/or<br>gynaecological infections in gynaecologic patients. Clinica e Investigacion en<br>Ginecologia y Obstetricia, Vol 26(5) (pp 202-207), 1999 | Results not separate<br>for PID                          |
| Rustomjee,R.; Kharsany,A.B.M.; Connolly,C.A.; Abdool Karim,S.S. A<br>gynaecological controlled trial of azithromycin versus<br>doxycycline/ciprofloxacin for the syndromic management of sexually<br>transmitted infections in a resource-poor setting. Journal of Antimicrobial<br>Chemotherapy 2002;49:875-8                                                               | Not PID                                                  |
| Sanders,H.J. Therapy of chlamydia infections with tetracyclines. International Journal of Experimental & Clinical Chemotherapy 1990;3(2):101-6                                                                                                                                                                                                                               | Not PID                                                  |
| Sanfilippo,J.S.; Schikler,K.N. Mezlocillin versus penicillin and tobramycin in adolescent pelvic inflammatory disease: A prospective study. International Pediatrics 1989;4(1):53-6                                                                                                                                                                                          | Antibiotic not in BNF<br>(mezlocillin)                   |
| Schnider G, Birken RA, Poindexter AN. A comparison of netilmicin and gentamicin in the treatment of pelvic infections. <i>Obstetrics &amp; Gynecology</i> 1979; <b>54</b> (5):554-557.                                                                                                                                                                                       | Penicillin                                               |
| Sendag,F.; Terek,C.; Tuncay,G.; Ozkinay,E.; Guven,M. Single dose oral azithromycin versus seven day doxycycline in the treatment of non-<br>gonococcal mucopurulent endocervicitis. Australian and New Zealand Journal of Obstetrics and Gynaecology, Vol 40(1) (pp 44-47), 2000                                                                                             | Not PID                                                  |
| Senft,H.H.; Stiglmayer,R.; Eibach,H.W.; Koerner,H. Sulbactam/ampicillin versus cefoxitin in the treatment of obstetric and gynaecological infections. Drugs 1986;31(supp2):18-21                                                                                                                                                                                             | Antibiotic not in BNF<br>(sulbactam)                     |
| Stamm,W.E.; Guinan,M.E.; Johnson,C. Effect of treatment regimens for<br>Neisseria gonorrhoeae on simultaneous infection with Chlamydia<br>trachomatis. New England Journal of Medicine, Vol 310(9) (pp 545-549),<br>1984                                                                                                                                                     | Not PID                                                  |
| Steingrimsson,O.; Olafsson,J.H.; Thorarinsson,H.; Ryan,R.W.;<br>Johnson,R.B.; Tilton,R.C. Azithromycin in the treatment of sexually<br>transmitted disease. Journal of Antimicrobial Chemotherapy<br>1990;25(suppA):109-14                                                                                                                                                   | Not PID                                                  |
| Stiglmayer,R.; Senft,H.H.; Eibach,H.W.; Korner,J. Sulbactam ampicillin<br>versus cefoxitin in the treatment of gynaecological infections: An antibiotic<br>therapeutic study (Reprinted from ZAC, vol 4, pg 123, 1986). INT J<br>ANTIMICROBIAL AGENTS 1996;6:S61-S65                                                                                                         | Antibiotic not in BNF<br>(sulbactam)                     |

| Reference                                                                                                                                                       | Reason for exclusion                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Stoykov S, Popov J. [Application of the antibiotic cefoxitin (mefoxin) in                                                                                       | Not PID                                |
| gynaecologic practice]. Akusherstvo Ginekologiia 1997;36(3):57-9                                                                                                |                                        |
| Sweet,R.L.; Roy,S.; Faro,S.; O'Brien,W.F.; Sanilippo,J.S.; Seidlin,M.                                                                                           | Results not separate                   |
| Piperacillin and tazobactam versus clindamycin and gentamicin in the                                                                                            | for PID                                |
| treatment of gynaecologic women with pelvic infection. Obstetrics &                                                                                             |                                        |
| Gynecology 1994;83:280-6<br>Sweet RL, Landers DV, Schachter J, Crombleholme WR.                                                                                 | A with a dia wat in DNE                |
| Subactam/ampicillin in the treatment of acute pelvic inflammatory disease.                                                                                      | Antibiotic not in BNF                  |
| International Journal of Gynaecology and Obstetrics 1989;supp2:13-9                                                                                             | (sulbactam)                            |
| Sweet, R.L.; Schachter, J.; Landers, D.V.; Ohm-Smith, M.; Robbie, M.O.                                                                                          | Antibiotic not in BNF                  |
| Treatment of hopitalized patients with acute pelvic inflammatory disease:                                                                                       | (cefotetan)                            |
| Comparison of cefotetan plus doxycycline and cefoxitin plus doxycycline.                                                                                        | (cerotetair)                           |
| American Journal of Obstetrics & Gynecology 1988;158:736-43                                                                                                     |                                        |
| Sweet,R.L.; Ohm-Smith,M.; Landers,D.V.; Robbie,M.O. Moxalactam versus                                                                                           | Antibiotic not in BNF                  |
| clindamycin plus tobramycin in the treatment of obstetric and gynaecologic                                                                                      | (moxalactam)                           |
| infections. American Journal of Obstetrics & Gynecology 1985;152:808-17                                                                                         | `````````````````````````````````````` |
| Sweet RL, Robbie MO, Ohm-Smith M, Hadley WK. Comparative study of                                                                                               | Anti-pseudomonal                       |
| piperacillin versus cefoxitin in the treatment of obstetric and gynecologic                                                                                     | penicillin                             |
| infections. American Journal of Obstetrics & Gynecology 1983; <b>145</b> (3):342-                                                                               |                                        |
| 349.                                                                                                                                                            |                                        |
| Swenson RM, Lorber B. Clindamycin and carbenicillin in treatment of patients with intraabdominal and female genital tract infections. Journal of                | Antibiotic not in BNF                  |
| Infectious Diseases 1977;135(supp):S40-4                                                                                                                        | (carbenicillin)                        |
| Thompson SE, III, Hager WD, Wong KH, Lopez B, Ramsey C, Allen SD, et                                                                                            | Penicillin                             |
| <i>al.</i> The microbiology and therapy of acute pelvic inflammatory disease in                                                                                 | remennin                               |
| hospitalized patients. American Journal of Obstetrics & Gynecology 1980;                                                                                        |                                        |
| <b>136</b> (2):179-186.                                                                                                                                         |                                        |
| Thompson SE, Brooks C, Eschenbach DA, Spence MR, Cheng S, Sweet R,                                                                                              | Penicillin                             |
| et al. High failure rates in outpatient treatment of salpingitis with either                                                                                    |                                        |
| tetracycline alone or penicillin/ampicillin combination. American Journal of                                                                                    |                                        |
| Obstetrics & Gynecology 1985; 152(6 Pt 1):635-641.                                                                                                              |                                        |
| Thorpe Jr,E.M.; Stamm,W.E.; Hook III,E.W.; Gall,S.A.; Jones,R.B.; Henry,K.;                                                                                     | Not PID                                |
| Whitworth,G.; Johnson,R.B. Chlamydial cervicitis and urethritis: Single dose                                                                                    |                                        |
| treatment compared with doxycycline for seven days in community based                                                                                           |                                        |
| practises. Genitourinary Medicine 1996;72:93-7                                                                                                                  | D ' '11'                               |
| Tison E, Marpeau L, Pigne A, Tessier F, Barrat J. [Treatment of acute non-                                                                                      | Penicillin                             |
| chlamydial salpingitis. Study of the efficacy and tolerance of a single-therapy antibiotic: Augmentin]. [French]. <i>Journal de Gynecologie, Obstetrique et</i> |                                        |
| Biologie de la Reproduction 1988; <b>17</b> (4):513-519.                                                                                                        |                                        |
| Van Gelderen CJ. A comparative trial of ceftriaxone and a                                                                                                       | Penicillin                             |
| penicillin/chloramphenicol combination in gynaecological infections                                                                                             | 1 ememm                                |
| complicated by peritonitis. South African Medical Journal 1987; Suppl 2:13-                                                                                     |                                        |
| 15.                                                                                                                                                             |                                        |
| Walker,C.K.; Landers,D.V.; Ohm-Smith,M.J.; Robbie,M.O.; Luft,J.;                                                                                                | Antibiotic not in BNF                  |
| Schachter, J.; Sweet, R.L. Comparison of cefotetan plus doxycycline with                                                                                        | (cefotetan)                            |
| cefoxitin plus doxycycline in the inpatient treatment of acute salpingitis.                                                                                     |                                        |
| Sexually Transmitted Diseases 1991;18(2):119-23                                                                                                                 |                                        |
| Wasserheit JN, Bell TA, Kiviat NB, Wolner-Hanssen P, Zabriskie V, Kirby BD                                                                                      | Not RCT                                |
| et al. Microbial causes of proven pelvic inflammatory diseas and efficacy of                                                                                    |                                        |
| clindamycin and tobramycin. Annals of Internal Medicine 1986;104:187-93                                                                                         |                                        |
| Witte EH, Peters AA, Smit IB, Linden MC, Mouton RP, Meer JW, Erp EJ. A                                                                                          | Antibiotic not in BNF                  |
| comparison of perfloxacin/metronidazole and doxycycline/metronidazole in the treatment of lanaroscopically confirmed acute polyic inflammatory                  | (perfloxacin)                          |
| the treatment of laparoscopically confirmed acute pelvic inflammatory disease. Earopean Journal of Obstetrics and Gynaecology and Reproductive                  |                                        |
| Biology 1993;50:153-8                                                                                                                                           |                                        |
| Yamamoto, T.; Yasuda, J.; Tomioka, M.; Kanao, M.; Okada, H. [Fundamental                                                                                        | Not RCT                                |
|                                                                                                                                                                 |                                        |
| and clinical studies on aztreonam in the field of obstetrics and gynecology.]                                                                                   |                                        |

| Reference                                                            | Reason for exclusion |
|----------------------------------------------------------------------|----------------------|
| Ziegler,C.; Stary,A.; Mailer,H.; Kopp,W.; Gebhart,W.; Soltz-Szots,J. | Not PID              |
| Quinolones as an alternative treatment of chlamydial, mycoplasma and |                      |
| gonococcal urogenital infections. Dermatology 1992;185:128-31        |                      |

| Reference                                                                                                                                                                                                                | I                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                                                                                                                                                          | Reason for exclusion                                            |
| Foran RM, Brett JL, Wulf PH. Evaluating the cost impact of intravenous<br>antibiotic dosing frequencies. Pharmacoeconomics 1991;25:546-52                                                                                | No mention of PID                                               |
| Friedland LR, Kulick RM, Biro FM, Patterson AL. Cost-effectiveness decision                                                                                                                                              | About prevention of                                             |
| analysis of intramuscular ceftriaxone versus oral cefixime in adolescents with gonococcal cervicitis. Annals of Emergency Medicine 1996;27(3):299-304                                                                    | PID not treatment                                               |
| Genc M, Mardh PA. Cost effective treatment of uncompliated gonorrhoea                                                                                                                                                    | About prevention of                                             |
| including co-infection with chlamydia trachomatis. Pharmacoeconomics 1997;12(3):374-83                                                                                                                                   | PID not treatment                                               |
| Haddix AC, Hillis SD, Kassler WJ. The cost-effectiveness of azithromycin for                                                                                                                                             | About prevention of                                             |
| chlamydia trachomatis infections in women. Sexually transmitted diseases 1995;22(5):274-80                                                                                                                               | PID not treatment                                               |
| Handsfield HH, Stamm WE. Treating chlamydial infection: compliance versus cost. Sexually transmitted diseases 1997;25(1):12-3                                                                                            | No mention of PID                                               |
| Henry-Suchet J, Tannous W. Prise en charge medicale des salpingites chroniques a chlamydia trachomatis resistant aux antibiotiques habituels                                                                             | Not a cost study                                                |
| interets de ofloxacine seule ou associee a d'autres antichlamydiens.<br>Contraception, fertilite et sex 199321(9):627-9                                                                                                  |                                                                 |
| Howell MR, Gaydos JC, McKee KT, Quinn TC, Gaydos CA. Control of                                                                                                                                                          | About prevention of                                             |
| chlamydia trachomatis infections in female army recruits: cost effective screening to prevent pelvic inflammatory disease. Sexually transmitted diseases 1999;26(9):519-26                                               | PID not treatment                                               |
| Howell MR, Kassler WJ, Haddix A. Partner notification to prevent pelvic                                                                                                                                                  | About prevention not                                            |
| inflammatory disease in women: cost effectiveness of two strategies. Sexually transmitted diseases 1997;24(5):287-92                                                                                                     | treatment                                                       |
| Jones GL, Kennedy SH, Jenkinson C. Health-related quality of life                                                                                                                                                        | No mention of PID                                               |
| measurement in women with common benign gynaecologic conditions: a                                                                                                                                                       |                                                                 |
| systematic review. American journal of obstetrics and gynaecology 2002;187(2):501-11                                                                                                                                     |                                                                 |
| Kerr JR, Barr JG, Smyth ET, O'Hare J. Technique for calculation of the true costs of antibiotic therapy. European Journal of clinical microbiology and infectious diseases 1992;11(9):823-7                              | No mention of PID                                               |
| Kuhn GJ, Campbell A, Merline J, O'Neil BJ. Diagnosis and follow-up of                                                                                                                                                    | Costs for PID                                                   |
| chlamydia trachomatis infections in the ED. American Journal of Emergency Medicine 1998;16(2):157-9                                                                                                                      | patients not separate                                           |
| Lea AP, Lamb HM. Azithromycin A pharmacoeconomic review of its use as a single dose regimen in the treatment of uncomplicated urogenital chlamydia trachomatis infections in women. Pharmacoeconomics 1997;12(5):596-611 | About prevention of<br>PID not treatment                        |
| Majid D, Douglas JM, Schwartz JS. Doxycycline compared with azithromycin                                                                                                                                                 | About prevention of                                             |
| for treating women with genital chlamydia trachomatis infections: an incremental cost-effectiveness analysis. Annals of internal medicine                                                                                | PID not treatment                                               |
| 1996;124:389-99<br>McGregor JA, Christensen FB, French JI. Intramuscular imipenem/cilastatin                                                                                                                             | Only 1/20 notion to                                             |
| treatment of upper reproductive tract infection in women: efficacy and use characteristics. Chemotherapy 1991;37(supp 2):31-6                                                                                            | Only 4/29 patients<br>had salpingitis,<br>results not separate. |
| Petitta A, Hart SM, Bailey EM. Economic evaluation of three methods of                                                                                                                                                   | •                                                               |
| treating urogenital chlamydial infections in the emergency department.<br>Pharmacotherapy 1999;19(5):648-54                                                                                                              | About prevention of PID not treatment                           |
| Stones R, Selfe SA, Fransman S, Horn SA. Psychosocial and economic impact of chronic pelvic pain. Bailliere's clinical obstetrics and gynaecology                                                                        | Not PID                                                         |
| 2000;14(3):415-31<br>Wynd MA, Hemsell BL, Paladino JA. Cost-effectiveness of                                                                                                                                             | Antibiotic not in                                               |
| ampicillin/sulbactam versus cefoxitin in the treatment of pelvic inflammatory disease. Journal of infectious disease pharmacotherapy 1999;4(1):35-48                                                                     | BNF (sulbactam)                                                 |

# Table 50. Excluded cost, cost effectiveness and quality of life studies and reasons for exclusion

# Appendix 7. Included trial details

| Table 31. Antibiotic comparisons | Table 51. | Antibiotic | comparisons |
|----------------------------------|-----------|------------|-------------|
|----------------------------------|-----------|------------|-------------|

| Trial                              | Intervention                                                                                                                                                                                                                                       | Control                                                                                                                                                                                                                                                                                 |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apuzzio 1989 <sup>46</sup>         | Ciprofloxacin iv 600mg/day for 3-5<br>days then oral 1.5g/day to complete<br>10-14 days treatment<br>(some changed to clindamycin and<br>gentamicin, ampicillin and gentamicin<br>or metronidazole)                                                | Clindamycin iv 2.7g/day for 3-5 days<br>then oral 1.8g/day to complete 10-14<br>days treatment<br>Gentamicin iv initially 4.5mg/kg/day<br>then peak and trough levels obtained for<br>further dosing for 3-5 days<br>(some also given ampicillin)                                       |
| Arredondo 1997 <sup>28</sup>       | Ciprofloxacin 500g/day for 14 days<br>Clindamycin oral 1.8g/day for 14 days<br>Plus one placebo im injection                                                                                                                                       | Ceftriaxone im 250mg one dose<br>Doxycycline oral 200mg/day for 14 days<br>Plus oral placebo for 14 days                                                                                                                                                                                |
| Balbi 1996 <sup>47</sup>           | Gentamicin iv 2mg/kg one dose then<br>4.5mg/kg/day for 4 days<br>Clindamycin iv 2.7mg/day for 4 days<br>then oral 1.8g/day for 10 days<br>(Two also given ampicillin)                                                                              | Ceftazidime iv 3g/day for 4 days<br>Doxycycline oral 200mg/day for 14 days<br>(Three also given gentamicin)                                                                                                                                                                             |
| Bevan 2003 <sup>29</sup>           | Azithromycin iv 500mg once then oral 250mg for 7 days                                                                                                                                                                                              | Azithromycin iv 500mg once then oral<br>250mg for 7 days<br>Metronidazole iv 1.5g/day for one day<br>then oral 1.2g/day for 12 days (trial A)<br>or oral 1.5g/day for 12 days (trial B)                                                                                                 |
| Buisson 1989 <sup>50</sup>         | Amoxycillin/clavulanate iv 3g/day for<br>at least 2 days (mean 4.12 days) then<br>oral 3-4g to complete 19 days<br>treatment. Tetracycline 200mg/day if<br>chlamydia found.<br>(One crossover to amoxycillin,<br>aminoglycoside and metronidazole) | Amoxycillin iv 3-4g/day for 4 days then<br>oral 1.5-2g/day to complete 17 days<br>treatment<br>An Aminoglycoside im 3-5mg/kg/day<br>for 7 days<br>Metronidazole iv or suppository<br>1.5g/day then continued at same dose on<br>discharge Tetracycline 200mg/day if<br>chlamydia found. |
| Burchell 1987 <sup>51</sup>        | Doxycycline iv 200mg then<br>100mg/day for 1 day then<br>Oxytetracycline oral 1g/day for 14<br>days                                                                                                                                                | Ampicillin iv<br>4g/day for 1 day<br>thenTetracycline<br>suppository 3g/day<br>for 1 day thenMetronidazole oral<br>2g/day for 14 daysMetronidazole oral<br>1.2g/day for 14<br>days                                                                                                      |
| Ciraru-Vigneron 1986 <sup>52</sup> | Amoxicillin/clavulanate iv then oral<br>4g/day<br>(If Chlamydia positive doxycycline<br>for 3 weeks)                                                                                                                                               | Ampicillin iv 6g/day then amoxycillin<br>oral 3g/day<br>Gentamicin im 160mg/day for 7 days<br>Metronidazole iv then oral 1.5g/day<br>(If Chlamydia positive doxycycline for 3<br>weeks)                                                                                                 |
| Crombleholme 1989 <sup>48</sup>    | Ciprofloxacin iv 600mg/day for 2-5<br>days then oral 1.5g/day to complete 14<br>days treatment<br>(clindamycin could be added if<br>significant anaerobic infection)<br>(One crossover to clindamycin and<br>gentamicin)                           | Clindamycin iv 2.4g/day for 4 days then<br>oral 1.2g/day to complete 14 days<br>treatment<br>Gentamicin iv 3mg/kg/day for 4 days                                                                                                                                                        |
| de Beer 1983 <sup>53</sup>         | Ampicillin iv 2g then 6g/day for 2<br>days then oral 6g/day ?duration<br>(1 also given gentamicin, 1 given<br>gentamicin and metronidazole)                                                                                                        | Cefoxitin iv 2g then 3g/day for 3 days<br>(Two also given gentamicin)                                                                                                                                                                                                                   |
| European 1992 <sup>39</sup>        | Clindamycin iv 2.7g/day for at least 4<br>days then oral 1.8g/day to complete 14<br>days treatment                                                                                                                                                 | Cefoxitin iv 8g/day for at least 4 days<br>Doxycycline iv 200mg/day for at least 4<br>days then oral 200mg/day to complete 14                                                                                                                                                           |

| Trial                              | Intervention                          | Control                                 |
|------------------------------------|---------------------------------------|-----------------------------------------|
|                                    | Gentamicin iv 2mg/kg then             | days treatment                          |
|                                    | 4.5mg/kg/day for at least 4 days,     | (Two also given ofloxacin)              |
|                                    | adjusted by serum levels              |                                         |
|                                    | (One also given cephalexin)           |                                         |
| Gall 1981 <sup>62</sup>            | Metronidazole iv 15mg/kg then iv      | Clindamycin iv 1.2-2.4mg/day for 5 days |
|                                    | 30mg/kg/day for 5 days then oral      | then oral 1.2g/day for 5 or more days   |
|                                    | 1g/day for 5 or more days             | Tobramycin iv 3mg/kg/day for 5 days     |
|                                    | Tobramycin iv 3mg/kg/day for 5 days   | (if gonorrhoea spectinomycin im 4g/day  |
|                                    | (if gonorrhoea spectinomycin im       | for 5 days)                             |
|                                    | 4g/day for 5 days)                    | 101 5 duys)                             |
|                                    | (One also given doxycycline)          |                                         |
| Gerstner 1990 <sup>56-58</sup>     | Ceftriaxone iv 1g/day for 4-5 days    | Cefotaxime iv 3g (?9g)/day for 4-5 days |
| Gersuler 1770                      | (some also given doxycycline,         | (some also given doxycycline,           |
|                                    | erythromycin, metronidazole)          | erythromycin, metronidazole)            |
| Gjonnaess 1981 <sup>59</sup>       | Clindamycin (?route) 600mg/day for    | Lymecycline (?route) 600mg/day for 14   |
| Gjolillaess 1981                   | 14 days                               |                                         |
|                                    |                                       | days                                    |
| IL: 10006061                       | (Nine crossover to lymecycline)       |                                         |
| Heinonen 1989 <sup>60,61</sup>     | Ciprofloxacin iv 400mg/day for 2      | Doxycycline iv 200mg/day for 2 days     |
|                                    | days then oral 1.5g for 12 days       | then oral 150mg for 12 days             |
|                                    |                                       | Metronidazole iv 1.5g/day for 2 days    |
|                                    |                                       | then oral 1.2g for 12 days              |
|                                    |                                       | (One also given spectinomycin)          |
| Hemsell 1 1994 <sup>32</sup>       | Cefoxitin iv 8g/day for ?2 days       | Clindamycin iv 2.7g/day for ?2 days     |
|                                    | Doxycycline iv 200mg/day for ?2days   | then oral 1.8g/day to complete 10-14    |
|                                    | then oral 200mg/day to complete 10-   | days treatment                          |
|                                    | 14 days treatment                     | Gentamicin 2mg/kg then 4.5mg/kg/day     |
|                                    |                                       | for ?2 days                             |
| Hemsell 2 1997 <sup>33</sup>       | Meropenem iv 1.5g/day for 2 days      | Clindamycin iv 2.7g/day for 2 days      |
|                                    | (some also given other antibiotics)   | Gentamicin 2mg/kg then 4.5mg/kg/day     |
|                                    |                                       | for at least 2 days                     |
|                                    |                                       | (some also given other antibiotics)     |
| Henry 1985 <sup>30</sup>           | Aztreonam iv or im 2-6g ?duration     | Clindamycin iv or oral 1.8g/day         |
|                                    | Clindamycin iv or oral 1.8g/day       | ?duration                               |
|                                    | ?duration                             | Gentamicin iv 3-5mg/kg/day ?duration    |
| Hoyme 1993 <sup>43</sup>           | Ofloxacin ?IV then oral 400mg/day     | Clindamycin iv 1.2 g then 24g for ?10   |
| ·                                  | for ?10 days                          | days                                    |
|                                    | Metronidazole iv then oral 1g for 10  | Gentamicin iv 240mg/day for 10 days     |
|                                    | days                                  |                                         |
| Ibrahim a 1990 <sup>63 64,65</sup> | Netilmicin 6.6mg/kg/day for 7 days    | Netilmicin 6.6mg/kg/day for 7 days      |
|                                    | Ampicillin 4g/day ?duration           | Ampicillin 4g/day ?duration             |
|                                    | Tinidazole 0.8g/day ?duration         | Tinidazole 0.8g/day ?duration           |
| Ibrahim b 1990 <sup>63</sup>       | Amikacin 14mg/kg/day for 7 days       | Amikacin 14mg/kg/day for 7 days         |
| 101minin 0 1770                    | Ampicillin 4g/day ?duration           | Ampicillin 4g/day ?duration             |
|                                    | Tinidazole 0.8g/day ?duration         | Tinidazole 0.8g/day ?duration           |
| Judlin 1995 <sup>54</sup>          | Ofloxacin ?route 400mg/day for 3      | Doxycycline ?route 200mg/day for 6      |
| Juuilli 1 <i>77J</i>               | weeks                                 | weeks                                   |
|                                    |                                       |                                         |
|                                    | Amoxicillin/clavulanate ?route 2g/day | Amoxicillin/clavulanate ?route 2g/day   |
| L an dana 1001 <sup>44</sup>       | for 3 weeks                           | for 6 weeks                             |
| Landers 1991 <sup>44</sup>         | Cefoxitin iv 8g/day for 4 days        | Clindamycin iv 2.4g/day for 4 days then |
|                                    | Doxycycline iv 200mg/day for 4 days   | oral 1.8g/day to complete 14 days       |
|                                    | then oral 200mg/day to complete 14    | treatment                               |
|                                    | days treatment.                       | Tobramycin iv 2mg/kg then               |
| 21                                 |                                       | 4.5mg/kg/day for 4 days                 |
| Larsen 1992 <sup>31</sup>          | Imipenem/cilastin iv 1.5-2g/day for 3 | Clindamycin iv 2.7g/day for 3 days min. |
|                                    | days minimum                          | Gentamicin iv or im 1.5mg/kg then       |
|                                    | (Doxycycline 200 mg/day if            | 3mg/kg/day for 3 days min.              |
|                                    |                                       |                                         |
|                                    | chlamydia)                            | (Doxycycline 200 mg/day if chlamydia)   |

| Trial                         | Intervention                                                                                                                                                                                                 | Control                                                                                                                                                                               |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maggioni 1998 <sup>34</sup>   | Meropenem iv 1.5g/day for 5 days                                                                                                                                                                             | Imipenem/Cilastatin iv 1.5g/day for 5<br>days                                                                                                                                         |
| Martens 1a 1990 <sup>49</sup> | Cefotaxime ?route 6g/day for 4 days                                                                                                                                                                          | Cefoxitin?route 6g/day                                                                                                                                                                |
| Martens 1b 1990 <sup>49</sup> | Cefotaxime ?route 6g/day for 4 days                                                                                                                                                                          | Clindamycin ?route 2.7g/day for 4 days<br>Gentamicin ?route 120mg then<br>240mg/day for 4 days                                                                                        |
| Martens 2 1993 <sup>35</sup>  | Ofloxacin oral 800mg/day for 10 days<br>(some also given oral metronidazole)                                                                                                                                 | Cefoxitin im 2g once<br>Probenecid oral 1g once<br>Doxycycline oral 200mg/day for 10 days<br>(some also given oral metronidazole)                                                     |
| PEACH 2002 <sup>40,41</sup>   | Cefoxitin im 2g once<br>Probenecid oral 1g once<br>Doxycycline oral 200mg/day for 14<br>days<br>(3.3% changed drug treatment)                                                                                | Cefoxitin iv 8g/day<br>Doxycycline iv or im 200mg then oral<br>200mg/day for 14 days<br>(2.9% changed drug treatment)                                                                 |
| Soper 1988 <sup>42</sup>      | Cefoxitin iv 8g/day<br>Doxycycline iv 200mg/day then oral<br>200mg/day to complete 10 day course<br>(One changed to clindamycin,<br>gentamicin and ampicillin, one also<br>given metronidazole at follow up) | Clindamycin iv 2.4g/day then oral 1.2g<br>to complete 10 day course<br>Amikacin iv 15mg/kg/day<br>(Two also given ampicillin)                                                         |
| Spence 1981 <sup>55</sup>     | Ampicillin iv 12g/day for 4 days then<br>oral 2g to complete 10 day course<br>(One given other antibiotics)                                                                                                  | Doxycycline iv 200mg then 200mg/day<br>for 4 days then oral 200mg /day to<br>complete 10 day course (Six given other<br>antibiotics)                                                  |
| Sweet 1985 <sup>45</sup>      | Cefoxitin (no dose/duration given)<br>Doxycycline (no dose/duration given)                                                                                                                                   | Clindamycin (no dose/duration given)<br>Tobramycin (no dose/duration given)                                                                                                           |
| Thadepalli 1991 <sup>36</sup> | Ciprofloxacin iv 600mg/day for 3<br>days then oral 1g/day for 1 week                                                                                                                                         | Clindamycin iv 2.4g/day for 3 days then<br>oral ?2.4g/day for 1 week<br>Gentamicin iv 240g/day, adjusted on<br>serum levels ?duration                                                 |
| Walters 1990 <sup>37</sup>    | Clindamycin iv 2.7g/day for 4 days<br>then oral 1.8g/day to complete 14 day<br>course<br>Gentamicin 2mg/kg then<br>4.5mg/kg/day for 4 days (Three also<br>given iv penicillin or ampicillin)                 | Cefoxitin iv 8g/day for 4 days<br>Doxycycline iv 200mg/day for 4 days<br>then oral 200mg/day to complete 14 day<br>course<br>(Two given iv ampicillin, gentamicin<br>and clindamycin) |
| Wendel 1991 <sup>38</sup>     | Cefoxitin im 2g once<br>Probenecid oral 1g once<br>Doxycycline oral 200mg/day for 10<br>days                                                                                                                 | Ofloxacin oral 800mg/ day for 10 days                                                                                                                                                 |

## Table 52. Trial details

| Trial                                                                    | Multi-centre/  | Date of    | Inpatient/ | Laparoscopic | IUD use                                             |
|--------------------------------------------------------------------------|----------------|------------|------------|--------------|-----------------------------------------------------|
|                                                                          | country        | enrollment | outpatient | diagnosis    |                                                     |
| Apuzzio 1989 <sup>46</sup>                                               | USA            | 1987-8     | IP         | No           | NR                                                  |
| Arredondo                                                                | Chile, Mexico, | -          | OP         | Yes          | 41% (All                                            |
| 1997 <sup>28</sup>                                                       | Peru,          |            |            |              | removed                                             |
|                                                                          | Colombia,      |            |            |              | before                                              |
|                                                                          |                |            |            |              | treatment)                                          |
| Balbi 1996 <sup>47</sup>                                                 | Italy          | 1989-92    | NG         | No           | Excluded                                            |
| Bevan 2003 <sup>29</sup>                                                 | European       | -          | IP         | Yes          | NR                                                  |
| Buisson 1989 <sup>50</sup>                                               | France         | 1986-7     | IP         | Yes          | 34%                                                 |
| Burchell 1987 <sup>51</sup>                                              | South Africa   | -          | IP         | Yes          | NR                                                  |
| Ciraru-Vigneron 1986 <sup>52</sup>                                       | France         | -          | IP         | Yes          | NR                                                  |
| Crombleholme<br>1989 <sup>48</sup>                                       | USA            | -          | IP         | No           | NR                                                  |
| de Beer 1983 <sup>53</sup>                                               | South Africa   | -          | IP         | No           | NR                                                  |
| European<br>1992 <sup>39</sup>                                           | 10 centres in  | 1987-9     | IP         | Optional     | NR                                                  |
| 1992 <sup>39</sup>                                                       | Europe, Africa |            |            | _            |                                                     |
| Gall 1981 <sup>62</sup>                                                  | USA            | -          | IP         | No           | NR                                                  |
| Gerstner 1990 <sup>56-</sup><br>58                                       | Austria        | -          | IP         | No           | NR                                                  |
| Gjonnaess<br>1981 <sup>59</sup>                                          | Norway         | -          | IP         | Yes          | 49%                                                 |
| Heinonen<br>1989 <sup>60,61</sup>                                        | Finland        | 1987-8     | IP         | Yes          | 39%                                                 |
| Hemsell 1<br>1994 <sup>32</sup>                                          | USA            | 1988-91    | IP         | Optional     | Included<br>only if<br>removed<br>wihin 48<br>hours |
| Hemsell 2<br>1997 <sup>33</sup>                                          | USA            | -          | IP         | No           | NR                                                  |
| Henry 1985 <sup>30</sup>                                                 | USA            | -          | IP         | No           | NR                                                  |
| Hoyme 1993 <sup>43</sup>                                                 | Germany        | -          | IP         | Yes          | NR                                                  |
| Ibrahim a and b<br>1990 <sup>63-65</sup>                                 | Belgium        | 1986-8     | IP         | Yes          | NR                                                  |
| Judlin 1995 <sup>54</sup>                                                | France         | 1988       | IP         | Yes          | NR                                                  |
| Landers 1991 <sup>44</sup>                                               | USA            | -          | IP         | Optional     | 4%                                                  |
| Larsen 1992 <sup>31</sup>                                                | USA            | 1988-9     | IP         | No           | NR                                                  |
| Maggioni<br>1998 <sup>34</sup>                                           | Italy          | -          | IP         | Optional     | NR                                                  |
| Martens 1a<br>1990 <sup>49</sup> and<br>Martens 1b<br>1990 <sup>49</sup> | USA            | -          | IP         | No           | NR                                                  |
| Martens 2<br>1993 <sup>35</sup>                                          | USA            | 1986-8     | OP         | No           | Excluded                                            |

| Trial                      | Multi-centre/ | Date of    | Inpatient/ | Laparoscopic | IUD use |
|----------------------------|---------------|------------|------------|--------------|---------|
|                            | country       | enrollment | outpatient | diagnosis    |         |
| PEACH                      | USA           | 1996-9     | Both       | Optional     | 2%      |
| $2002^{40,41}$             |               |            |            | _            |         |
| Soper 1988 <sup>42</sup>   | USA           | -          | IP         | No           | 3%      |
| Spence 1981 <sup>55</sup>  | USA           | -          | IP         | Optional     | NR      |
| Sweet 1985 <sup>45</sup>   | USA           | -          | ?          | ?            | NR      |
| Thadepalli                 | USA           | -          | IP         | No           | ~5%     |
| 1991 <sup>36</sup>         |               |            |            |              |         |
| Walters 1990 <sup>37</sup> | USA           | 1986-8     | IP         | No           | 7%      |
| Wendel 1991 <sup>38</sup>  | USA           | 1987       | OP         | No           | NR      |

 Table 53. Trial diagnostic criteria

| Trial                          | Diagnostic criteria                                                              |
|--------------------------------|----------------------------------------------------------------------------------|
| Apuzzio 1989 <sup>46</sup>     | Hager criteria used for diagnosis                                                |
| Arredondo 1997 <sup>28</sup>   | Clinicaldiagnosis confirmed by laparoscopy.                                      |
| Alledolido 1997                | Grading of mild/moderate only using Hager's and Soper's criteria                 |
| Balbi 1996 <sup>47</sup>       | All 3 present at the same time:                                                  |
| Dal01 1990                     | 1. Spontaneous pain and pain when the lower abdominal area was                   |
|                                | pressed                                                                          |
|                                | 2. Pain caused by movements exerted on the cervix                                |
|                                | 3. Adnexal ache                                                                  |
| Bevan 2003 <sup>29</sup>       | Hager's criteria for diagnosis                                                   |
| Buisson 1989 <sup>50</sup>     |                                                                                  |
|                                | Diagnosis of PID confirmed by laparoscopy                                        |
| Burchell 1987 <sup>51</sup>    | Diagnosis "according to established criteria"                                    |
| <u> </u>                       | Severity by Thompson's criteria                                                  |
| Ciraru-Vigneron                | Fever, pain, local signs (guarding, lateral uterine mass), isolation of          |
| 1986 <sup>52</sup>             | pathological bacteria, leucocytosis, high ethrocyte sedimentation rate,          |
| ~                              | echography and eventually laparoscopy                                            |
| Crombleholme                   | History of lower abdominal pain and direct lower abdominal                       |
| 1989 <sup>48</sup>             | tenderness with or without rebound, tenderness with motion of the                |
|                                | cervix and uterus and adnexal tenderness. Also must have at least one            |
|                                | of Gram stain of the endocervix positive for gram negative                       |
|                                | intracellular bacteria, direct fluorescent antibody test revealing               |
|                                | chlamydia, elevated erythrocyte sedimentation rate, temperature                  |
|                                | greater than 38C, leucocytosis greater than 10,500 white blood                   |
|                                | cell/mm <sup>3</sup> purulent material (white blood cells and bacteria) from the |
|                                | peritoneal cavity by culdocentesis or a pelvic abscess or                        |
| 52                             | inflammatory ciomplex on bimanual examination or by sonography                   |
| de Beer 1983 <sup>53</sup>     | Temperature above 38C and abdominal or pelvic pain with clinical                 |
|                                | signs consistent with pelvic infection. These were guarding, lower               |
|                                | abdominal rebound tenderness, adnexal tenderness and tenderness                  |
| 20                             | with displacement of the uterine cervix.                                         |
| European 1992 <sup>39</sup>    | Abdominal, parametrial and cervical motion tenderness plus either                |
|                                | fever, leukocytosis, pelvic mass or purulent material in the peritoneal          |
|                                | cavity.                                                                          |
|                                | Grading of severity by Hager criteria                                            |
| Gall 1981 <sup>62</sup>        | NR                                                                               |
| Gerstner 1990 <sup>56-58</sup> | NR                                                                               |
| Gjonnaess 1981 <sup>59</sup>   | Laparoscopic diagnosis of PID                                                    |
| Heinonen 1989 <sup>60,61</sup> | History of lower abdominal pain of less than 3 weeks duration and                |
|                                | the presence of cervical motion tenderness, uterine and adnexal                  |
|                                | tenderness in bimanual examination, raised erythrocyte sedimentation             |
|                                | rate, C-reactive protein, white cell count and/or body temperature.              |
|                                | Pelvic sonography used to strengthen diagnosis where necessary                   |

| Trial                         | Diagnostic criteria                                                              |
|-------------------------------|----------------------------------------------------------------------------------|
| Hemsell 1 1994 <sup>32</sup>  | Women with lower abdominal and pelvic pain who had lower                         |
|                               | abdominal and cervical motion and adnexal tenderness plus at least               |
|                               | one of temperature at least 38C, leucocytosis at least 10,500, raise             |
|                               | erythrocyte sedimentation rate, endocervical specimen positive for               |
|                               | gram-negative intracellular diplococci, an endocervical or                       |
|                               | endometrial culture positive for gonorrhoea or culture positive for              |
|                               | chlamydia, ultrasound findings consistent with an adnexal                        |
|                               | inflammatory mass or purulence in or a positive culture of                       |
|                               | intraperitoneal material obtained by culdocentesis or laparoscopy                |
| Hemsell 2 1997 <sup>33</sup>  | NR                                                                               |
| Henry 1985 <sup>30</sup>      | Presence of at least three of lower abdominal, pelvic and uterine                |
| field y 1905                  | tenderness or pain, fever greater than 38C, objective evidence of an             |
|                               | abscess documented by sonography, radiography, nuclear scanning or               |
|                               | computerised tomography                                                          |
| Hoyme 1993 <sup>43</sup>      | Clinical diagnosis confirmed by laparoscopy                                      |
| Ibrahim a and b               | Diagnosis confirmed by laparoscopy.                                              |
| 1990 <sup>63-65</sup>         |                                                                                  |
| Judlin 1995 <sup>54</sup>     | Graded moderate or severe only by Hager's criteria                               |
| Judiin 1995                   | Pelvic pain, lymphocytosis, uterine haemorrhage, digestive problems,             |
|                               | temperature at least 37.8C, rebound tenderness, guarding, cervical               |
| <b>I I</b> 1001 <sup>44</sup> | motional tenderness. Diagnosis confirmed by laparoscope                          |
| Landers 1991 <sup>44</sup>    | Laparoscopically confirmed diagnosis or clinical criteria of direct              |
|                               | abdominal tenderness, cervical motion tenderness, adnexal                        |
|                               | tenderness, plus one or more of temperature at least 38C,                        |
|                               | leucocytosis at least 10,500/mm <sup>3</sup> purulent material on culdocentesis, |
|                               | evidence of pelvic abscess on ultrasonography or pelvic examination,             |
|                               | evidence of gonococcal or chlamydial cervicitis (by positive                     |
|                               | monoclonal antibody test or by Gram stain showing gram negative                  |
| 21                            | intracellular diplococci) or by mucopurulent cervicitis                          |
| Larsen 1992 <sup>31</sup>     | NR                                                                               |
| Maggioni 1998 <sup>34</sup>   | NR                                                                               |
| Martens 1a 1990 <sup>49</sup> | Temperature at least 38C, lower abdominal tenderness, cervical or                |
| and Martens 1b                | uterine tenderness on palpation and motion, adnexal tenderness on                |
| 1990 <sup>49</sup>            | palpation. Also may be present were purulent endocervical discharge,             |
|                               | white blood cells at least 14,00/mm <sup>3</sup> adnexal mass or abscess, nausea |
|                               | and vomiting                                                                     |
| Martens 2 1993 <sup>35</sup>  | All three of direct lower abdominal tenderness with or without                   |
|                               | rebound tenderness, cervical motion tenderness, adnexal tenderness,              |
|                               | plus one or more of recent positive endocervical culture for                     |
|                               | gonorrhoea or chlamydia, temperature more than 38C, white cell                   |
|                               | count greater than 10,000 /mm <sup>3</sup> leucocytic cervical discharge.        |
|                               | Graded into mild moderate and severe based on amount of abdominal                |
|                               | or pelvic discomfort                                                             |
| PEACH 2002 <sup>40,41</sup>   | History of pelvic discomfort for 30 days or less, uterine or adnexal             |
|                               | tenderness on bimanual examination, leucorrhoea and/or                           |
|                               | mucopurulent cervicitis and/or untreated known positive gonococcal               |
|                               | or chlamydial cervicitis                                                         |
|                               |                                                                                  |

| Trial                         | Diagnostic criteria                                                           |
|-------------------------------|-------------------------------------------------------------------------------|
| Soper 1988 <sup>42</sup>      | Lower abdominal pain and bilateral adnexal tenderness on bimanual             |
|                               | pelvic examination, leucocytes predominant in vaginal smear plus at           |
|                               | least two of temperature over 38C, leukocytosis more than                     |
|                               | 11,000//mm <sup>3</sup> purulent material from the peritoneal cavity by       |
|                               | culdocentesis, inflammatory compley on bimanual examination or                |
|                               | sonography and/or erythrocyte sedimentation rate over 20mm/hour.              |
|                               | Graded using Soper criteria and only Ib, IIa and IIb included                 |
| Spence 1981 <sup>55</sup>     | Lower abdominal pain and tenderness, abdominal rebound                        |
|                               | tenderness, tenderness on manipulation of the uterus, adnexal                 |
|                               | tenderness with or without adnexal masses, white cell count over              |
|                               | 10,000//mm <sup>3</sup> plus for inclusion – nausea and vomiting or unable to |
|                               | tolerate oral medication                                                      |
| Sweet 1985 <sup>45</sup>      | NR                                                                            |
| Thadepalli 1991 <sup>36</sup> | Lower abdominal pain associated with fever and chills, cervical               |
|                               | motion tenderness with or without signs of adnexal masses. (CDC               |
|                               | criteria)                                                                     |
| Walters 1990 <sup>37</sup>    | Hager criteria for diagnosis                                                  |
| Wendel 1991 <sup>38</sup>     | All three of direct lower abdominal tenderness with or without                |
|                               | rebound tenderness, cervical motion tenderness, adnexal tenderness,           |
|                               | plus one or more of recent positive endocervical culture for                  |
|                               | gonorrhoea or chlamydia, temperature more than 38C, white cell                |
|                               | count greater than 10,000 /mm <sup>3</sup>                                    |

| Trial                                 | No patients randomised | No patients followed up                | Reasons for not reporting results from all those randomised (ie not ITT analysis)                                                                                                                                                                 | Subgroup<br>of larger<br>trial?                                                    |
|---------------------------------------|------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Apuzzio 1989 <sup>46</sup>            | ?                      | 25                                     | One patient was not evaluated because she was given additional antibiotic.                                                                                                                                                                        | Yes<br>(pelvic<br>infections)                                                      |
| Arredondo 1997 <sup>28</sup>          | 138                    | 131                                    | Less than 48 hours treatment for reasons other<br>than side effects or less than 4 days therapy,<br>required additional antibiotics for non-protocol<br>related infections or was infected with pathogens<br>resistant to all of the study drugs. | No                                                                                 |
| Balbi 1996 <sup>47</sup>              | 78                     | 76                                     | Two excluded because of previous intolerance to penicillin (not study drug)                                                                                                                                                                       | No                                                                                 |
| Bevan 2003 <sup>29</sup>              | 213                    | 79                                     | ITT given for patients assessed at day 2. Follow<br>up results given for patients' nearest assessment<br>to day 15 (between days 9 and 26 inclusive)<br>Microbiological follow up at day 35-44.                                                   | No                                                                                 |
| Buisson 1989 <sup>50</sup>            | 82                     | 81                                     | One not evaluated because developed<br>angioedema (on amoxicillin, aminoside,<br>metronidazole)                                                                                                                                                   | No                                                                                 |
| Burchell 1987 <sup>51</sup>           | 40                     | 30                                     | Ten excluded because laparoscopic examination<br>and cultures did not confirm PID diagnosis                                                                                                                                                       | No                                                                                 |
| Ciraru-Vigneron<br>1986 <sup>52</sup> | 44                     | ? (results<br>given as<br>percentages) | -                                                                                                                                                                                                                                                 | No                                                                                 |
| Crombleholme<br>1989 <sup>48</sup>    | 80                     | 70                                     | Incorrect diagnosis, left hospital after one dose<br>of antibiotics, already had antibiotics, entered<br>into trial twice, no cultures taken before<br>discharge                                                                                  | No                                                                                 |
| de Beer 1983 <sup>53</sup>            | 60                     | 60                                     | -                                                                                                                                                                                                                                                 | No                                                                                 |
| European 1992 <sup>39</sup>           | 170                    | 115                                    | Failure to follow randomisation scheme,<br>protocol deviation, incorrect diagnosis                                                                                                                                                                | No                                                                                 |
| Gall 1981 <sup>62</sup>               | 9                      | 9                                      | -                                                                                                                                                                                                                                                 | Yes<br>(pelvic<br>infections)                                                      |
| Gerstner 1990 <sup>56-58</sup>        | 18                     | 18                                     | -                                                                                                                                                                                                                                                 | Yes<br>(pelvic<br>infections)                                                      |
| Gjonnaess 1981 <sup>59</sup>          | 64                     | 64                                     | -                                                                                                                                                                                                                                                 | No                                                                                 |
| Heinonen<br>1989 <sup>60,61</sup>     | 40                     | 36                                     | Incorrect diagnosis (diagnosis changed after laparoscopy and cultures)                                                                                                                                                                            | No                                                                                 |
| Hemsell 1 1994 <sup>32</sup>          | 230                    | 198                                    | Violation of inclusion/exclusion criteria,<br>incorrect dose of study drugs, left hospital<br>against medical advice, treated for less than 48<br>hours, withdrew from study, reactions from<br>study drugs, given penicillin for syphilis        | Yes (3 <sup>rd</sup><br>trial arm<br>excluded<br>–<br>antibiotic<br>not in<br>BNF) |
| Hemsell 2 1997 <sup>33</sup>          | 105                    | 84                                     | Failure to isolate a pre-treatment pathogen,<br>resistance of pathogen to study drugs, given<br>another antibiotic, treatment for less than 48<br>hours, unacceptable clinical diagnosis                                                          | Yes<br>(pelvic<br>infections)                                                      |
| Henry 1985 <sup>30</sup>              | 13                     | 13                                     | -                                                                                                                                                                                                                                                 | Yes<br>(pelvic<br>infections)                                                      |
| Hoyme 1993 <sup>43</sup>              | 33                     | 33                                     | -                                                                                                                                                                                                                                                 | No                                                                                 |
| Ibrahim a and b                       | 78                     | 78                                     | -                                                                                                                                                                                                                                                 | No                                                                                 |

| Trial                                                                 | No patients randomised | No patients followed up | Reasons for not reporting results from all those randomised (ie not ITT analysis)                                                              | Subgroup<br>of larger         |
|-----------------------------------------------------------------------|------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1990 <sup>63 64,65</sup>                                              |                        |                         |                                                                                                                                                | trial?                        |
| Judlin 1995 <sup>54</sup>                                             | 33                     | 33                      | -                                                                                                                                              | Yes<br>(pelvic<br>infections) |
| Landers 1991 <sup>44</sup>                                            | 162                    | 148                     | Incorrect diagnosis or refusal of the patient to<br>remain in hospital long enough to complete<br>treatment                                    | No                            |
| Larsen 1992 <sup>31</sup>                                             | ?77                    | 77                      | Results for evaluable patients presented only                                                                                                  | Yes<br>(pelvic<br>infections) |
| Maggioni 1998 <sup>34</sup>                                           | ?                      | 34                      | Treatment for less than 48 hours, misdiagnosis,<br>pathogens resistant to study drug, concomitany<br>antibiotics, incorrect dose of study drug | Yes<br>(pelvic<br>infections) |
| Martens 1a 1990 <sup>49</sup><br>and Martens 1b<br>1990 <sup>49</sup> | 99                     | 94                      | Protocol violations such as incorrect antibiotic administration                                                                                | No                            |
| Martens 2 1993 <sup>35</sup>                                          | 295                    | 249                     | Noncompliance, no attendance at any of the<br>three follow ups, protocol violations at<br>admission                                            | No                            |
| PEACH 2002 <sup>40,41</sup>                                           | 864                    | 798                     | Ineligible, refused after initial consent, no follow up                                                                                        | No                            |
| Soper 1988 <sup>42</sup><br>Spence 1981 <sup>55</sup>                 | 62                     | 62                      | -                                                                                                                                              | No                            |
| Spence 1981 <sup>55</sup>                                             | 47                     | 47                      | -                                                                                                                                              | No                            |
| Sweet 1985 <sup>45</sup>                                              | 79                     | 79                      | -                                                                                                                                              | No                            |
| Thadepalli 1991 <sup>36</sup>                                         | 33                     | 30                      | Protocol violations, incorrect diagnosis                                                                                                       | Yes<br>(pelvic<br>infections) |
| Walters 1990 <sup>37</sup>                                            | 147                    | 130                     | Less than 48hrs treatment, wrong diagnosis,<br>needing emergency surgery, left hospital against<br>medical advice                              | No                            |
| Wendel 1991 <sup>38</sup>                                             | 96                     | 72                      | Noncompliance with regimen, no follow ups attended                                                                                             | No                            |
| * considered eligible                                                 | e for randomisa        | ation                   |                                                                                                                                                |                               |

| Trial                                    | Randomisation method                                                                                         | Allocation concealment                             | Blinding methods     | Jadad<br>score |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------|
| Apuzzio 1989 <sup>46</sup>               | -                                                                                                            | -                                                  | -                    | 0              |
| Arredondo<br>1997 <sup>28</sup>          | -                                                                                                            | -                                                  | Encapsulated tablets | 1              |
| Balbi 1996 <sup>47</sup>                 | -                                                                                                            | -                                                  | -                    | 1              |
| Bevan 2003 <sup>29</sup>                 | -                                                                                                            | -                                                  | Open label           | 1              |
| Buisson 1989 <sup>50</sup>               | -                                                                                                            | -                                                  | -                    | 1              |
| Burchell 1987 <sup>51</sup>              | -                                                                                                            | -                                                  | -                    | 0              |
| Ciraru-Vigneron<br>1986 <sup>52</sup>    | -                                                                                                            | -                                                  | -                    | 1              |
| Crombleholme<br>1989 <sup>48</sup>       | -                                                                                                            | -                                                  | Non-blind            | 1              |
| de Beer 1983 <sup>53</sup>               | -                                                                                                            | -                                                  | -                    | 0              |
| European 1992 <sup>39</sup>              | -                                                                                                            | -                                                  | Open label           | 1              |
| Gall 1981 <sup>62</sup>                  | First 6 patients assigned<br>to intervention (? No PID<br>in this group), remaining<br>41 randomly allocated | -                                                  | -                    | 0              |
| Gerstner 1990 <sup>56-</sup><br>58       | -                                                                                                            | -                                                  | Open                 | 0              |
| Gjonnaess<br>1981 <sup>59</sup>          | Initially randomised, then<br>closed one group when<br>20 patients allocated<br>(other group has 44 in)      | -                                                  | -                    | 0              |
| Heinonen<br>1989 <sup>60,61</sup>        | -                                                                                                            | -                                                  | -                    | 0              |
| Hemsell 1 1994 <sup>32</sup>             | Randomisation codes<br>used                                                                                  | -                                                  | Open label           | 0              |
| Hemsell 2 1997 <sup>33</sup>             | Pre-determined<br>randomisation schedule<br>for each centre                                                  | -                                                  | Open label           | 1              |
| Henry 1985 <sup>30</sup>                 | -                                                                                                            | -                                                  | -                    | 0              |
| Hoyme 1993 <sup>43</sup>                 | -                                                                                                            | -                                                  | -                    | 0              |
| Ibrahim a and b<br>1990 <sup>63-65</sup> | -                                                                                                            | -                                                  | -                    | 0              |
| Judlin 1995 <sup>54</sup>                | -                                                                                                            | -                                                  | Open label           | 0              |
| Landers 1991 <sup>44</sup>               | -                                                                                                            | -                                                  | Unblinded            | 0              |
| Larsen 1992 <sup>31</sup>                | -                                                                                                            | Done by<br>hospital<br>pharmacy                    | Open label           | 0              |
| Maggioni 1998 <sup>34</sup>              | -                                                                                                            | Sequential<br>opening of<br>codebreak<br>envelopes | Open                 | 0              |
| Martens 1a 1990 <sup>49</sup> and        | Randomisation codes, stratified by                                                                           | -                                                  | -                    | 0              |

## Table 55. Trial quality

| Trial                        | Randomisation method    | Allocation   | Blinding methods     | Jadad |
|------------------------------|-------------------------|--------------|----------------------|-------|
|                              |                         | concealment  |                      | score |
| Martens 1b                   | uncomplicated/          |              |                      |       |
| 1990 <sup>49</sup>           | complicated PID         |              |                      |       |
| Martens 2 1993 <sup>35</sup> | Computer generated code | -            | -                    | 0     |
| PEACH 2002 <sup>40,41</sup>  | Computer generated,     | Opaque       | Blinding of patients | 3     |
|                              | random block lengths    | envelopes    | not possible (IP vs  |       |
|                              | stratified by site      | sequentially | OP) No statement on  |       |
|                              |                         | opened       | whether follow up    |       |
|                              |                         |              | assessment was blind |       |
|                              |                         |              | to treatment group   |       |
| Soper 1988 <sup>42</sup>     | Random number table     | Sealed       | -                    | 2     |
|                              |                         | envelope     |                      |       |
| Spence 1981 <sup>55</sup>    | -                       | By pharmacy  | Not blinded          | 0     |
| Sweet 1985 <sup>45</sup>     | -                       | -            | -                    | 0     |
| Thadepalli                   | Computer generated      | -            | -                    | 1     |
| 1991 <sup>36</sup>           | randomisation scheme    |              |                      |       |
| Walters 1990 <sup>37</sup>   | Computer generated      | -            | Open label           | 0     |
| Wendel 1991 <sup>38</sup>    | Random code numbers     | None         | Open label           | 0     |

## 8. **REFERENCES**

- 1 Bevan CD, Johal BJ, Mumtaz G, Ridgway GL, Siddle NC. Clinical, laparoscopic and microbiological findings in acute salpingitis: report on a United Kingdom cohort. *British Journal of Obstetrics and Gynaecology* 1995; **102**:407-414.
- 2 The Clinical Effectiveness Group. National guideline for the management of pelvic infection and perihepatitis. http://www.mssrd.org.uk/PDF/CEG2001/Pid%2006%2001.PDF Accessed 5-8-2002
- 3 Buchan H, Vessey M, Goldacre M, Fairweather J. Morbidity following pelvic inflammatory disease. *British Journal of Obstetrics and Gynaecology* 1993; **100**:558-562.
- 4 Simms I, Catchpole M, Brugha R, Rogers P, Mallinson H, Nicoll A. Epidemiology of genital Chlamydia Trachomatis in England and Wales. *Genitourinary Medicine* 1997; **73** :122-126.
- 5 Jacobson L, Westrom L. Objectivised diagnosis of acute pelvic inflammatory disease. *American Journal* of Obstetrics & Gynecology 1969; **105**(7):1088-1098.
- 6 Kani J, Adler MW. Epidemiology of pelvic inflammatory disease. In: Berger GS, Westrom LV, editors. Pelvic inflammatory disease. New York: Raven Press; 1992.
- 7 Simms I, Vickers MR, Stephenson J, Rogers PA, Nicoll A. National assessment of PID diagnosis, treatment and management in general practice: England and Wales. *International Journal of STD and AIDS* 2004; **11**(7):440-444.
- 8 Huengsburg M, Ip CB, Radcliffe KW. How well is pelvic inflammatory disease managed in general practice? A postal questionnaire survey. *Sexually Transmitted Infections* 1998; **74**:361-363.
- 9 Simms I, Rogers P, Charlett A. The rate of diagnosis and demography of pelvic inflammatory disease in general practice: England and Wales. *International Journal of STD and AIDS* 1999; **10**:448-451.
- Risser WL, Cromwell PF, Bortot AT, Risser JM. Impact of new diagnostic criteria on the prevalence and incidence of pelvic inflammatory disease. *Journal of Pediatric and Adolescent Gynecology* 2004; 17:39-44.
- 11 Velebil P, Wingo PA, Zhisen X, Wilcoc LS, Peterson HB. Rate of hospitalisation for gynecologic disorders among reproductive age women in the United States. *Obstetrics & Gynecology* 1995; 86:764-769.
- 12 Simms I, Stephenson J. Pelvic inflammatory disease epidemiology: what do we know and what do we need to know? *Sexually Transmitted Infections* 2000; **76**:80-87.
- 13 Ross J. Pelvic inflammatory disease. Clinical Evidence 2004; 11:2121-2127.
- 14 Department of Health. Hospital Episode Statistics. Office for National Statistics: London; 2003.
- 15 Haggerty CL, Schultz R, Ness RB. Lower quality of life among women with chronic pelvic pain after pelvic inflammatory disease. *Obstetrics & Gynecology* 2003; **102**:934-939.
- 16 Yeh JM, Hook EW, Goldie SJ. A refined estimate of the average lifetime cost of pelvic inflammatory disease. *Sexually Transmitted Diseases* 2003; **30**(5):369-378.
- 17 Piyadigamage A, Wilson JD. An audit of outpatient management of pelvic inflammatory disease. *International Journal of STD and AIDS* 2002; **13**:577-579.
- 18 Anon. British National Formulary. March ed. British Medical Association/Royal Pharmaceutical Society of Great Britain; 2004.
- 19 Ross, J, Stewart, P. Management of acute pelvic inflammatory disease. London: Royal College of Obstetricians and Gynaecologists; 2003: Guideline No 32.
- 20 Clinical Effectiveness Group. National guideline for the management of pelvic infection and perihepatitis. *Sexually Transmitted Infections* 1999; **75**(Suppl1):S54-S56.
- 21 Kane BG, Degutis LC, Sayward H.K., D'Onofrio G. Compliance with the centres of disease control and prevention recommendations for the diagnosis and treatment of sexually transmitted diseases. *Academic Emergency Medicine* 2004; **11**(4):371-377.
- 22 Ross J. Pelvic inflammatory disease. *Clinical Evidence* 2001; **6**:1256-1260.
- 23 Ross JD. Outpatient antibiotic therapy for pelvic inflammatory disease: What is the evidence? *British Medical Journal* 2001; **322**:251-252.
- 24 Walker CK, Workowski KA, Washington AE, Soper DE, Sweet RL. Anaerobes in pelvic inflammatory disease: Implications for the Centres of Disease Control and Preventions' guidelines for treatment of sexually transmitted diseases. *Clinical Infectious Diseases* 1999; 28(supp 1):S29-S36.
- 25 Walker CK, Kahn JG, Washington AE, Peterson HB, Sweet RL. Pelvic inflammatory disease: metaanalysis of antimicrobial regimen efficacy. *Journal of Infectious Diseases* 1993; **168**(4):969-978.

- 26 Peterson HB, Walker CK, Kahn JG, Washington AE, Eschenbach DA, Faro S. Pelvic inflammatory disease: Key treatment issues and options. *Journal of the American Medical Association* 1991;266(18):2605-2611.
- 27 Jadad A., Moore R., Carroll D. Assessing the quality of reports of randomised clinical trials: is blinding necessary? *Controlled Clinical Trials* 1996; **17**:1-12.
- 28 Arredondo JL, Diaz V, Gaitan H, Maradiegue E, Oyarzun E, Paz R, *et al.* Oral clindamycin and ciprofloxacin versus intramuscular ceftriaxone and oral doxycycline in the treatment of mild-to-moderate pelvic inflammatory disease in outpatients. *Clinical Infectious Diseases* 1997; **24**(2):170-178.
- 29 Bevan CD, Ridgway GL, Rothermel CD. Efficacy and safety of azithromycin as monotherapy or combined with metronidazole compared with two standard multidrug regimens for the treatment of acute pelvic inflammatory disease. *Journal of International Medical Research* 2003; **31**:45-54.
- 30 Henry SA. Overall clinical experience with aztreonam in the treatment of obstetric-gynecologic infections. *Reviews of Infectious Diseases* 1985; **7 Suppl 4**:S703-S708.
- 31 Larsen JW, Gabel-Hughes K, Kreter B. Efficacy and tolerability of imipenem-cilastatin versus clindamycin + gentamicin for serious pelvic infections. *Clinical Therapeutics* 1992; **14**(1):90-96.
- 32 Hemsell DL, Little BB, Faro S, Sweet RL, Ledger WJ, Berkeley AS, *et al.* Comparison of three regimens recommended by the centers for disease control and prevention for the treatment of women hospitalized with acute pelvic inflammatory disease. *Clinical Infectious Diseases* 1994; **19**(4):720-727.
- 33 Hemsell DL, Martens MG, Faro S, Gall S, McGregor JA. A multicenter study comparing intravenous meropenem with clindamycin plus gentamicin for the treatment of acute gynecologic and obstetric pelvic infections in hospitalized women. *Clinical Infectious Diseases* 1997; **24**(SUPPL. 2):S222-S230.
- 34 Maggioni P, Di Stefano F, Vacchini V, Irato S, Mancuso S, Colombo M, *et al.* Treatment of obstetric and gynecologic infections with meropenem: Comparison with imipenem/cilastatin. *Journal of Chemotherapy* 1998; **10**(2):114-121.
- 35 Martens MG, Gordon S, Yarborough DR, Faro S, Binder D, Berkeley A, *et al.* Multicenter randomized trial of ofloxacin versus cefoxitin and doxycycline in outpatient treatment of pelvic inflammatory disease. *Southern Medical Association Journal* 1993; **86**(6):604-610.
- 36 Thadepalli H, Mathai D, Scotti R, Bansal MB, Savage E. Ciprofloxacin monotherapy for acute pelvic infections: A comparison with clindamycin plus gentamicin. *Obstetrics & Gynecology* 1991; **78**(4):696-702.
- 37 Walters MD, Gibbs RS. A randomized comparison of gentamicin-clindamycin and cefoxitin-doxycycline in the treatment of acute pelvic inflammatory disease. *Obstetrics & Gynecology* 1990; **75**(5):867-872.
- 38 Wendel GD, Jr., Cox SM, Bawdon RE, Theriot SK, Heard MC, Nobles BJ. A randomized trial of ofloxacin versus cefoxitin and doxycycline in the outpatient treatment of acute salpingitis. *American Journal of Obstetrics & Gynecology* 1991; 164(5 Pt 2):1390-1396.
- 39 The European Study Group. Comparative evaluation of clindamycin/gentamicin and cefoxitin/doxycycline for treatment of pelvic inflammatory disease: a multi-center trial. *Acta Obstetricia et Gynecologica Scandinavica* 1992; **71**(2):129-134.
- 40 Ness RB, Soper DE, Peipert J, Sondheimer SJ, Holley RL, Sweet RL, *et al.* Design of the PID Evaluation and Clinical Health (PEACH) Study. *Controlled Clinical Trials* 1998; **19**(5):499-514.
- 41 Ness RB, Soper DE, Holley RL, Peipert J, Randall H, Sweet RL, et al. Effectiveness of inpatient and outpatient treatment strategies for women with pelvic inflammatory disease: results from the Pelvic Inflammatory Disease Evaluation and Clinical Health (PEACH) Randomized Trial. American Journal of Obstetrics & Gynecology 2002; 186(5):929-937.
- 42 Soper DE, Despres B. A comparison of two antibiotic regimens for treatment of pelvic inflammatory disease. *Obstetrics & Gynecology* 1988; **72**(1):7-12.
- 43 Hoyme UB, Ansorg R, Von Recklinghausen G, Schindler AE. Quinolones in the treatment of uncomplicated salpingitis: Ofloxacin/metronidazole vs. gentamicin/clindamicin. *Archives of Gynecology* & *Obstetrics* 1993; **254**(1-4):607-608.
- 44 Landers DV, Wolner-Hanssen P, Paavonen J, Thorpe E, Kiviat N, Ohm-Smith M, *et al.* Combination antimicrobial therapy in the treatment of acute pelvic inflammatory disease. *American Journal of Obstetrics & Gynecology* 1991; **164**(3):849-858.
- 45 Treatment of acute PID: Cefoxitin plus doxycycline versus clindamycin plus tobramycin. Minneapolis, Minnesota, Twenty fifth Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington DC: American Society for Microbiology; 29<sup>th</sup> Ocober 1985.
- 46 Apuzzio JJ, Stankiewicz R, Ganesh V, Jain S, Kaminski Z, Louria D. Comparison of parenteral ciprofloxacin with clindamycin-gentamicin in the treatment of pelvic infection. *American Journal of Medicine* 1989; 87(5 A):148S-151S.
- 47 Balbi G, Piscitelli V, Di Grazia F, Martini S, Balbi C, Cardone A. [Acute pelvic inflammatory disease: comparison of therapeutic protocols]. [Italian]. *Minerva Ginecologica* 1996; **48**(1-2):19-23.

- 48 Crombleholme WR, Schachter J, Ohm-Smith M, Luft J, Whidden R, Sweet RL. Efficacy of single-agent therapy for the treatment of acute pelvic inflammatory disease with ciprofloxacin. *American Journal of Medicine* 1989; **87**(5 A):142S-147S.
- 49 Martens MG, Faro S, Hammill H, Maccato M, Riddle GD, LaPread E. Comparison of cefotaxime, cefoxitin and clindamycin plus gentamicin in the treatment of uncomplicated and complicated pelvic inflammatory disease. *Journal of Antimicrobial Chemotherapy* 1990; **26**(SUPPL. A):37-43.
- 50 Buisson P, Mulard C, Baudet J, Bernard P, Mares P, Montero M, *et al.* [Treatment of upper genital infections in women. Multicenter study of the comparative efficacy and tolerance of an amoxicillinclavulanic acid combination and of a triple antibiotic combination]. [French]. *Revue Francaise de Gynecologie et d Obstetrique* 1989; **84**(10):699-703.
- 51 Burchell HJ, Cronje HS, de Wet JI. Efficacy of different antibiotics in the treatment of pelvic inflammatory disease. *South African Medical Journal* 1987; **72**(4):248-249.
- 52 Ciraru-Vigneron N, Bercau G, Sauvanet E, Nguyen Tan LR, Felten A, Leaute JB, *et al.* [The drug combination amoxicillin-clavulanic acid compared to the triple combination ampicillin-gentamicin-metronidazole in the treatment of severe adnexal infections]. [French]. *Pathologie et Biologie* 1986; 34(5 Pt 2):665-668.
- 53 de Beer JA, van den EJ, Odendaal HJ. Efficacy of ampicillin and cefoxitin in the treatment of acute pelvic inflammatory disease. A comparative study. *South African Medical Journal* 1983; **64**(19):733-736.
- 54 Judlin P, Koebele A, Zaccabri A, Van Walleghen E, Pavis A, Badonnel Y, *et al.* [Comparative study of ofloxacin+amoxicillin-clavulanic acid versus doxycycline+amoxicillin-clavulanic acid combination in the treatment of pelvic Chlamydia trachomatis infections]. [French]. *Journal de Gynecologie, Obstetrique et Biologie de la Reproduction* 1995; **24**(3):253-259.
- 55 Spence MR, Genadry R, Raffel L. Randomised prospective comparison of ampicillin and doxycycline in the treatment of acute pelvic inflammatory disease in hospitalised patients. *Sexually Transmitted Diseases* 1981; **8**(2):164-166.
- 56 Gerstner GJ. [Single administration of 1 g ceftriaxon versus 3 x 1 g cefotaxim in the treatment of gynecologic infections--a randomized comparative study]. [German]. *Gynakologische Rundschau* 1989; 29(3):182-186.
- Gerstner GJ. A single dosis of 1 g ceftriaxon and a 3 times 1 g cefotaxim in gynecologic infections compared. A randomised comparative study. *Archives of Gynecology & Obstetrics* 1989; 245(1-4):450-451.
- 58 Gerstner GJ. Comparison of ceftriaxone (1 x 1 g/day) versus cefotaxime (3 x 1 g/day) for gynecologic and obstetric infections: A randomized clinical trial. *Gynecologic & Obstetric Investigation* 1990; 29(4):273-277.
- 59 Gjonnaess H, Dalaker K, Urnes A, Norling B, Kvile G, Mardh PA, et al. Treatment of pelvic inflammatory disease effects of lymecycline and clindamycine. *Current Therapeutic Research* 1981; 29(6):885-892.
- 60 Heinonen PK, Teisala K, Aine R, Miettinen A. Intravenous and oral ciprofloxacin in the treatment of proven pelvic inflammatory disease. *American Journal of Medicine* 1989; **87**(supp 5A):152S-156S.
- 61 Heinonen PK, Teisala K, Miettinen A, Aine R, Punnonen R, Gronroos P. A comparison of ciprofloxacin with doxycycline plus metronidazole in the treatment of acute pelvic inflammatory disease. *Scandinavian Journal of Infectious Diseases Supplementum* 1989; **60**:66-73.
- 62 Gall SA, Kohan AP, Ayers OM, Hughes CE, Addison WA, Hill GB. Intravenous metronidazole or clindamycin with tobramycin for therapy of pelvic infections. *Obstetrics & Gynecology* 1981; **57**(1):51-58.
- 63 Ibrahim S, Derde MP, Kaufman L, Clerckx-Braun F, Jacqmin P, Brulein V, *et al.* Safety, pharmacokinetics and efficacy of once-a-day netilmicin and amikacin versus their conventional schedules in patients suffering from pelvic inflammatory disease. *Renal Failure* 1990; **12**(3):199-203.
- 64 Tulkens PM, Clerckx-Braun F, Donnez J, Ibrahim S, Kallay Z, Delmee M, *et al.* Safety and efficacy of aminoglycosides once-a-day: experimental data and randomized, controlled evaluation in patients suffering from pelvic inflammatory disease. *Journal of Drug Development* 1988; 1(SUPPL. 3):71-82.
- 65 Tulkens PM. Pharmacokinetic and toxicological evaluation of a once-daily regimen versus conventional schedules of netilmicin and amikacin. *Journal of Antimicrobial Chemotherapy* 1991; **27 Suppl C**:49-61.
- 66 Loffield RJ, Fijen CA. Antibiotic resistance of Helicobacter pylori: a cross-sectional study in consecutive patients and relation to ethnicity. *Clinical Microbiology and Infection* 2003; **9**(7):600-604.
- 67 Drummond MF, O'Brien B, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. 2nd ed. Oxford: Oxford Medical; 1998.
- 68 Curran JW. Economic consequences of pelvic inflammatory disease. *American Journal of Obstetrics & Gynecology* 1980; **138**:848-851.

- 69 Washington AE, Arno PS, Brooks MA. The economic costs of pelvic inflammatory disease. *Journal of The American Medical Association* 1986; **255**(13):1735-1738.
- 70 Washington AE, Katz P. Cost of and payment source for pelvic inflammatory disease. *Journal of The American Medical Association* 1991; **266**(18):2565-2569.
- 71 Rein DB, Kassler WJ, Irwin KL, Rabiee L. Direct medical cost of pelvic inflammatory disease and its sequelae: Decreasing but still substantial. *Obstetrics & Gynecology* 2000; **95**(3):397-402.
- 72 McNeeley SG, Hendrix SL, Mazzoni MM, Kmak DC, Ransom SB. Medically sound, cost-effective treatment for pelvic inflammatory disease and tubo-ovarian abscess. *American Journal of Obstetrics & Gynecology* 1998; **178**:1272-1278.
- 73 Adams EJ, Garcia PJ, Garnett GP, Edmunds WJ, Holmes KK. The cost-effectiveness of syndromic management in pharmacies in Lima, Peru. *Sexually Transmitted Diseases* 2003; **30**(5):379-387.
- 74 Hager WD, Eschenbach DA, Spence MR, Sweet RL. Criteria for diagnosis and grading of salpingitis. *Obstetrics & Gynecology* 1983; **61**(1):113-114.
- 75 Soper DE. Diagnosis and laparoscopic grading of acute salpingitis. *American Journal of Obstetrics & Gynecology* 1991; **164**:1370-1376.
- 76 Hillis SD, Joesoef R, Marchbanks PA, Wasserheit JN, Cates WJ, Westrom L. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. *American Journal of Obstetrics & Gynecology* 1993; 168:1503-1509.
- 77 Lepine LA, Hillis SD, Marchbanks PA, Joesoef R, Peterson HB, Westrom L. Severity of pelvic inflammatory disease as a predictor of the probability of live birth. *American Journal of Obstetrics & Gynecology* 1998; **178**:977-981.
- 78 Soper DE, Brockwell NJ, Dalton HP. Microbial etiology of urban emergency department acute salpingitis: treatment with ofloxacin. *American Journal of Obstetrics & Gynecology* 1992; **167**:653-660.
- 79 Piepert JF, Sweet RL, Walker CK, Kahn JG, Rielly-Gauvin K. Evaluation of ofloxacin in the treatment of laparoscopically documented acute pelvic inflammatory disease (salpingitis). *Infectious Diseases in Obstetrics and Gynaecology* 1999; 7:138-144.
- 80 Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines. *MMWR Morbiditity and Mortality Weekly Reports* 2002; **55**:1-84.
- 81 Recommendations arising from the 31st Study Group. The prevention of pelvic infection. In: Templeton A, editor. The Prevention of Pelvic Infection. London: RCOG Press; 1996. p. 267-270.
- 82 Anonymous. Gonrrhoea incidence in England rises again. *Community Disease Reports CDR Weekly* 2000; **10**:107.
- 83 Witte EH, Peters AA, Smit IB, van der Linden MC, Mouton RP, van der Meer JW. A comparison of perfloxacin/metronidazole and doxycycline/metronidazole in the treatment of laparoscopically confirmed acute pelvic inflammatory disease. *European Journal of Obstetrics, Gynecology, & Reproductive Biology* 1993; 50:153-158.
- 84 CDC. Guidelines on sexually transmitted diseases. MMWR 1998; 47:RR02.