

interfaces Interfaces

Ecohydrological interfaces as critical hotspots for transformations of ecosystem exchange fluxes

Astrid Harjung Universitat de Barcelona Departament d'Ecologia astridharjung@ub.edu

Changes in DOM quantity and quality in the hyporheic zone during drought

GFs Gordon Research Seminars

- Context
- Study site
- Hypothesis and research questions
- Methodology: Fluorescent properties of DOM
- Results and Discussion
- Conclusions
- Outlook

Context

- The fate of allochthonous OM in head waters has profound implications for water quality downstream.
- Intermittent rivers and streams are among the most common and dynamic freshwater ecosystems.
 Flow intermittency increases in with climatic drying trends or water abstractions.

• The Hyporheic Zone (HZ) is a biogeochemical Hot Spot, where allochthonous material meets autochthonous inputs from benthic community.

La riera Fuirosos

Astrid Harjung, Universitat de Barcelona

Hypothesis

• The HZ is a Hot Spot of DOM transformation.

- What hydrological and geomorphological conditions drive these transformations?
- The drought, will enhance the transformation of DOM inside the pool and the hyporheic zone.
 - When is the "Hot moment" of these transformations?

 These transformations have effects on the Net Ecosystem Production (NEP) inside the pool.
Which ones?

Optical Properties of DOM

Hydrology

Hydrology

CDOM and NEP

CDOM represents more terrestrial derived DOM -> authochthonous DOM underestimated

CDOM and NEP

Before drought the NEP and the CDOM are negativly correlated -> CDOM tends to reduce primary production.

CDOM and NEP

During fragmentation they are not anymore negativly correlated – measurments of protein-like substances in continuum?

HZ during drought

HZ during drought

Protein-like DOM

Spatial changes

Conclusions

- What drives DOC transformation and consumption in the HZ?
 - Residence time in the HZ
 - Only during drought the HZ is a Hot Spot for DOM transformation
 - The bedrock and the fresh input from the pool affect the HZ
 - Reduced conditions in the HZ

Conclusions

• When is the "Hot moment" of DOM transformations?

- When the stream is dry and there is a short rain event
- In the first days of fragmentation
- How does this affect the NEP of the pool?
 - Strong rise in GPP, NEP gets positive, then negative during algae bloom

Outlook

• Couple DOM quality and quantity to CO₂ measurements

- Continuous measurements with fluorimeters in the HZ
- Continuous measurements of protein-like DOM
- Drought and reflow in artificial flumes

Thank you!

Thanks to: Alba, Andrea, Bet, Mary, Myrto, Patri, Tim and Quico

Funding

Reliable Instruments for an Unreliable World

MARIE

g

CURIE