Computational Modelling of Physical Systems

School of Physics and Astronomy

College of Engineering and Physical Sciences


Code 21286

Level of study Third/Final year

Credit value 10

Semester 1

Module description

Mathematical models in science - describing phenomena such as bubble collapse, evolution of a black hole accretion disc or chaotic dynamics - are often analytically intractable. This module develops the ability to take a model and transform it in to a problem, which can be analysed on the computer. The importance of being able to check the reliability of the computational results, and determining their accuracy is emphasised along with being able to incorporate library routines to extend the problem solving abilities.
The module is constructed such that key concepts including: quadrature, use of NAG library routines, root finding, numerical differentiation, solving ordinary differential equations, matrices, eigenvectors and random numbers are covered via continuously assessed worksheets - where much emphasis is placed on checking the code against known answers before using it to evaluate analytically intractable problems. A range of projects is then offered - these range from logistic maps, and bubble formation to use of Monte-Carlo techniques in particle physics and self-organised criticality to model forest fires.

The module is taught from the computer laboratory four hours per week. All the worksheets will be available on Webct.