

Options for Zero Carbon Transport

Nick McCarthy Technical Specialist nick.mccarthy@cenex.co.uk

Introduction

- Who is Cenex?
- Defining emissions
- UK Zero emissions capability
- Customer attitudes
- Demonstration projects

Introduction to Cenex

Biomethane

Hydrogen

Today Cenex operates as an independent, not-for-profit, RTO and consultancy specialising in the delivery of R&D projects, supporting innovation and market development.

FCH2 Technical Conference Why Low Carbon (Low Emission) Vehicles?

Low Carbon

- Sustainability (climate change, economic competitiveness)
- Energy (security, diversity)

- Health
- Environment
- Economy

Government Policy

- "Stick and carrot" policy framework for motor industry
 - European regulation
 - Local city policies
 - Innovation policy framework supporting supply chain capability development

FCH2 Technical Conference Pathways to Low Emission Vehicles

Current Baseline Reduce Carbon in Fuel

Improve Vehicle Energy Efficiency

Vehicle Light-weighting

Connected Vehicle (ITS)

Vehicle Meeting Carbon Targets

For road transport three alternative energy pathways are actively promoted by interested parties.

- Internal Combustion Engine (+ Plug In + Bio-fuels)
- Advanced Battery Electric Vehicles
- Hydrogen Fuel Cells

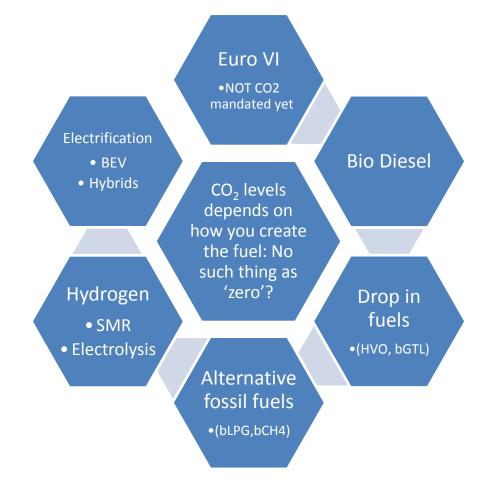
Critical Success Factors

- Electrified powertrain
- Ability to leverage renewable energy sources for fuel
- Zero emissions at tailpipe

cenex

Defining 'Zero Emissions'

- The point of measurement is critical
 - Tailpipe Urban NOx and particulate emissions
 - Tank to wheel UK guidance for many reported standards
 - Well to wheel more progressive fleets report this
 - Life cycle analysis global, long term impact
 - Academics only?
- We are not all working to the same standard
- Well to wheel of the fuel easier than life cycle analysis of entire vehicle system


CO₂e

- National statistics recommended 0.48 kg of CO2e/kWh for BEVs
- Depends on time of year and time of day
- http://www.gridwatch.templar.co.uk/

NO_x & Particulates, Unburnt hydrocarbons, CO

- Significant public health issue
- Urban NOx and particulates driving tailpipe measurements at the moment

FCH2 Technical Conference Hydrogen Refuelling

Where will you find it?

UK

14 stations open by April 171

UKH2Mobility recommended a national network of 1,150 HRS by 2030²

Sources:

1) www.H2ME.eu (2017), 2) www.ukh2mobility.co.uk (2015)

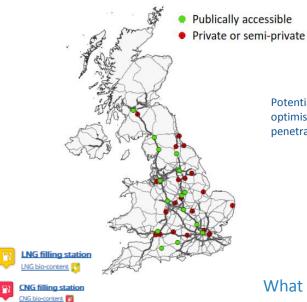
In Operation funded by H2ME

In Operation non funded by H2ME

In Preparation funded by H2ME*

In Preparation non funded by H2ME

* Locations may be subject to change


FCH2 Technical Conference Gas Refuelling

- 16 publicly accessible stations in the UK^{1,3} and additional private stations
- c3,090 publicly accessible stations across Europe²

Where will you find it?

Potential for >350 stations in UK by 2030 for optimistic scenarios³ for vehicle market penetration (van, truck, bus)

Sources:

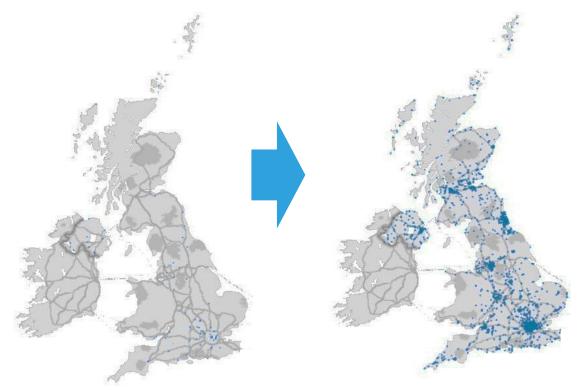
 www.gasvehiclehub.com/refuellin g-facility (2017)

2) cngeurope.com (2017)

3) Transport Energy Roadmap, LowCVP\Element Energy (2015)

What is it used for?

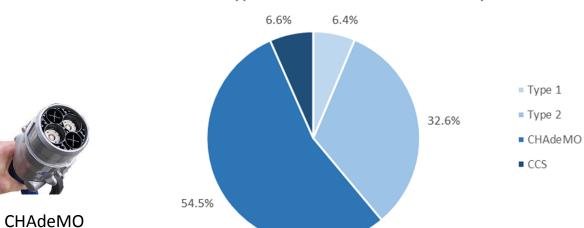
Cars, LCVs (mainland Europe), Vans, Buses & Trucks (pan-Europe)



EVSE Infrastructure Growth – National Charge Point registry

2012 2017

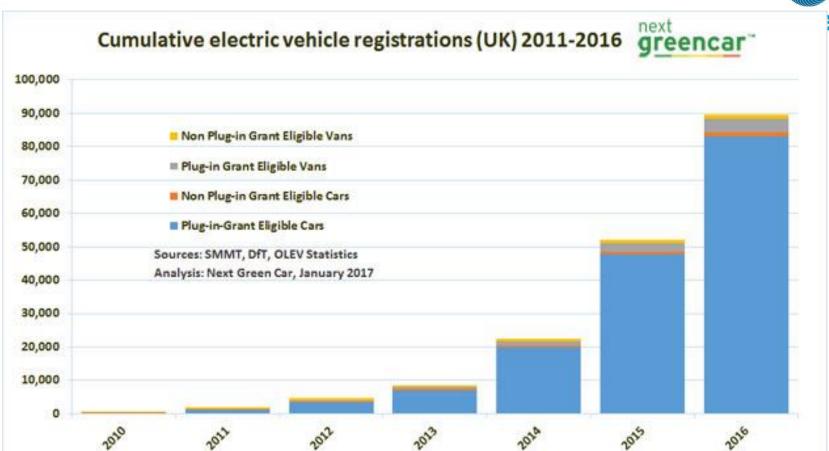
Connector Type Market Share



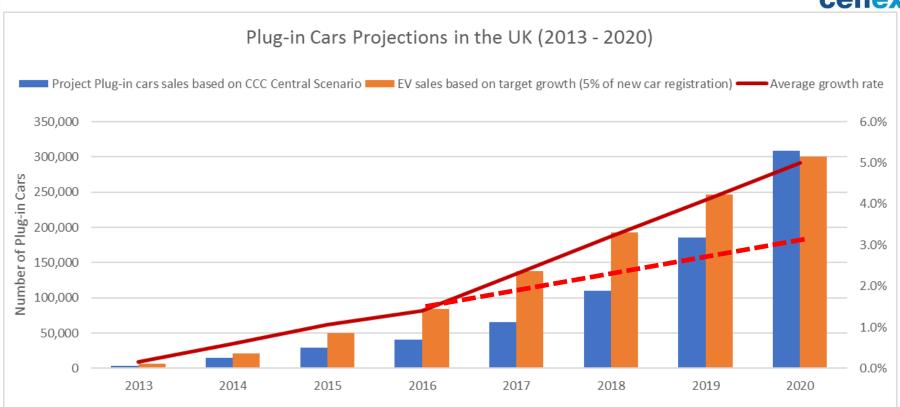
CCS

Type 1

Connector Types Market Share in the UK: by Mid 2016


Type 2

How many EVS could the UK Support?


- 31.7 million cars in the UK (2016)
 - Average C-segment saloon (Astra/Focus/Golf)
 - travels 24 miles/day (38.2km) (Ricardo 2010)
 - Requires 12 kWh/day from the grid
- Without use of smart charging to manage grid loading, capacity could be limited to as few as 1 million vehicles
- With smart overnight charging, generation capacity remains unchallenged at much greater numbers

EVSE Infrastructure Growth

Rapid decreases in battery prices have helped accelerate EV sales, especially in Europe and China

Average battery pack price

\$ per kWh

US, EU, and China electric vehicle sales¹
Units, thousands

¹ Plug-in hybrid electric vehicles and battery electric vehicles; excludes low-speed vehicles and hybrid electric vehicles without a plug

SOURCE: IHS, Bloomberg, New Energy Finance

² Includes Denmark, France, Germany, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, and the UK

³ Extrapolated based on Q1-Q3 2016 IHS data and assuming continued growth in all three markets in Q4

FCH2 Technical Conference Anecdotal evidence

- In certain key location or market sectors, electrification is not cost effective due to cost of grid reinforcement (e.g. new substations and cabling):
 - Parcel delivery company (London)
 - Refrigerated transport company (London)
 - Heavy plant hybridisation and electrification

What Zero emission vehicles (tailpipe) are on the market?

Electric Vehicle – Examples of Cars & Vans

				i e					
BMW i3 (60	£C	at. 1	26.5k	Mercedes B-	£ Cat. 1	28.5k	VW e-golf	£ Cat. 1	27k
Amp-h battery) Sea	ats	5	Class	Seats	5		Seats	5
	Rai	nge	118 EV		Range	124 EV		Range	118 EV
	N	AC Ø	4 h 4.6 kW		₩AC @	9-21 (3-4) h		∦ AC ⑦	8 h
a a	A NI	DC @	T2 80% in 30			13A (16A)	-Golf - Golf	∦ DC	CCS 80% in
			min		₩ DC @	unknown			30 min
Out Now	Bat	t	22 kWh	Out Now	Bat	28 kWh	Out Now	Bat	24 kWh
(2014)	Coi	n	CCS, T2	(2014)	Con	T2	(2014)	Con	CCS & T2
Nissan Leaf	£	Cat. 1	20-22k	Renault ZOE	£ Cat. 1	164	Tesla Model X	£ Cat. 1	83k
(83 Amp-h batte		eats	5	Kellault ZOL	Seats	5	(250 Amp-h	Seats	7
(037mp ii butte		ange	155 EV		Range	150 EV	battery)	Range	303 EV
10/21		•			⊮ AC	4 h (7kW) /	Suttery)	₩AC ①	14 h
MAC Ø 5 h MDC Ø CHA		CHA 80% in		Ø	1 h (22kW)		₩AC @	Rapid AC	
	***	DC &	30 min	200	⊮ DC	T2 80% in 30		A AC	80% in 30
Out Now	В	at	30 kWh	Out Now	0	min			min
	C	on	CHA & T1		Bat	22 kWh	Out Now	Bat	90 kWh
(2016)				(2013)	Con	T2	(2016)	Con	T2 & TS
Nissan	£ Cat. V	17k (v	van) or 23k	Citroen	£ Cat. V	21k	BD Otomotiv eTraffic	£ Cat. V	Unknown
e-NV200		(taxi)		Berlingo électrique	Seats	2 (van)	/	Seats	3 (van)
	Seats	2 (var	n), 5 (taxi)		Range	106 EV		Range	100 EV
() () () () () () () () () ()	Pld	728 k	o .		Pld	636 kg		Pld	790 kg
- A	Range	110 E	EV .		∦ AC ⑦	12 h		∦ AC ⑦	8 h
7	∦ AC ⑦				∦ DC ⑦	CHA 80% in		∦ DC ⓒ	CHA 80% in
Out Now	₩DC @		80% in 30min	Out Now		35min	Out Now		45min
	Bat	24 kV		(2013)	Bat	22.5 kWh	(2012)	Bat	53 kWh
(2014)	Con	CHA 8	& T1	(2013)	Con	CHA & T1	(===)	Con	CHA & T1

Electric Vehicle – Examples of Bus & Taxi

BYD K9 ebus (12 metres)

Out Now (2010)

£	315k-475k
Seats	31 (68 Total capacity)
Range	186 EV
∦ AC ⑦	6 h normal charge
∦ AC ⑦	3 h fast charge
Bat	380 kWh
Con	T2

Volvo 7900 (12 metres Hybrid)

Out Now (2014)

£	350k-400k
Seats	36 (95 Total capacity)
Range	4.4 EV, 470 diesel
⊮ AC ⑦	6 mins
Bat	19 kWh
Tank	205 litres
Engine	5 litre diesel
Con	Roof charging

Metrocab taxi REEV

Taxi use – 348 miles out 2017:

- Hackey carriages
- Private hire (Uber)

Types of H2 vehicles in the UK & EU today

Out Now (2014)

£	53k
Seats	5
Range	369 miles
H2	5.6 kg (2 tanks)
H2 P	700 bar
Bat	24 kWh
FC Stack	100 kW

Toyota Mirai

Out Now (2016)

	£	61k	
	Seats	4	
	Range	312 miles	
	H2	5 kg (2 tanks)	
	H2 P	700 bar	
	Bat	1.6 kWh	
	FC Stack size	113 kW	

Honda Clarity

Out Now (2016)

£	42k	
Seats	5	
Range	435 miles	
H2	5 kg (2 tanks)	
H2 P	700 bar	
Bat	1.6 kWh	
FC Stack size	100 kW	

Symbio RE Kangoo

Out Now (2015)

£	Vehicle +18k (+ 60/month battery/H2 rental)
Seats	2
Range	100 EV, 250 EV-H2 miles
H2	1.8 kg
H2 P	350 bar
Bat	22kWh
FC Stack size	5kW

ULEMCo dual fuel H2 - diesel Ford Transit

Out Now (2015)

£	-
Seats	2
Range	95 - 135 miles
H2	3.2 kg (2 tanks)
H2 P	350 bar
Engine size	2.2 litre
Engine type	Euro 5

Symbio RE Maxity

Out Now (2015)

£	Vehicle +40k
Seats	2
GVW	4.5 tonne
Range	120 miles
H2	4 kg (2 tanks)
H2 P	350 bar
Bat	42 kWh
FC Stack size	20 kW

Types of H2 vehicles in the UK & EU in the future

Audi A7 H-Tron Quattro Hybrid FCREx

Debut in 2017

£	TBA
Seats	5
Range	31 miles EV, 370 miles EV + FCREx
H2	6 kg (3 tanks)
H2 P	700 bar
Bat	1.8 kWh
FC Stack size	110 kW

Mercedes-Benz GLC F-CELL Hybrid FCREx

Debut in 2018

£	ТВА
Seats	5
Range	31 miles EV, 310 miles EV + FCREx
H2	4 kg (2 tanks)
H2 P	700 bar
Bat	9 kWh
FC Stack size	100 kW

Examples of potential EV reinforcement points from other automotive megatrends

Autonomous

- EV vehicle architecture has a central control unit to facilitate autonomy
- Autonomous charging could add convenience

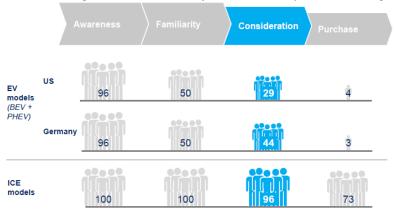
Automotive industry megatrends

Shared

- Greater annual driving distances can offer a decisive TCO edge for EVs
- Some consumers may prefer access to multiple vehicle types over ownership (including EVs)

- A connected EV ecosystem could increase the convenience of charging
- Connected car grid solutions could enable costeffective load balancing




- Tightening emissions efficiency rules make EVs necessary to meet standards
- Lower battery costs improve EV economics

SOURCE: McKinsey Sustainable Mobility Initiative

Percentage of responses, US and Germany, 2016

SOURCE: McKinsey Sustainable Mobility Initiative - 2016 Electrified Vehicle Consumer Surveys

cenex

Why do demonstration projects?

Put vehicles in the hands of real customers

 Begin to form a refuelling network – even with a mature vehicle technology an infrastructure is needed before people will invest

Germany,

Denmark, Norway, Sweden, Holland

UK & EU ongoing projects – 2015 to 2022

2016-2022

Hydrogen Mobility Europe

H2ME2

Project Name	Dates	No. Vehicles	No. HRS	Locations
H2ME	2015-2020	Month 12: 40 FCEV cars & 59 FC REx vans By 2020: 325 FCEVs	Month 12: 1 HRS By 2020: 29 HRS	UK, France, Germany, Denmark, Norway, Sweden
				UK, France,

By 2022: 1,200 FCEV

cars & vans

By 2022:

20 HRS

H2 Refuelling Infrastructure

- Hydrogen refuelling station planning and commissioning are a choke point
 - Local planning
 - Regulations Codes & standards
 - Hydrogen Supply
- Unified ISO standards recently published include local authority 'check lists' for approval:
 - PD ISO/TS 19880-1:2016 (Gaseous hydrogen Fuelling stations: Part 1: General requirements)
 - SAE J2601 (Fuelling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles)
 - SAE J2799 (Hydrogen Surface Vehicle to Station Communications Hardware and Software)
- Full international standard for Hydrogen refuelling facilities on forecourts to be published in 2017

Preparation >>> Siting >>> Planning >>> Commissioning >>> Open

Country	Location	GA	Status	Country	Location	GA	Status
France	Lyon	H2	Prep. (2018)	UK	London / Beaconsfield	H1	Planning (2017)
	Valence	H2	ТВС		London / Gatwick	H1	Plan/Comm. (2017)
	Montelimar	H2	TBC				
	Bordeaux	H2	Prep. (2018)		Aberdeen	H1	ТВС
			- ()		Swindon	H2	Prep/siting Confirmed: Swindon & Birmingham. Investigating 6 more sites (2017-18)
	Nantes	H2	Prep. (2018)		Birmingham	H2	
	Paris Versailles	H2	Prep. (2017)		UK South England	H2	
	Paris Ouest (La defense)	H2	Prep. (2020)	Denmark	Kolding	H1	Open
	Paris Nord (Roissy-CDG)	H2	Prep. (2018)	Sweden	Sandviken	H1	Open
	<u> </u>		* * *		Mariestad	H2	Open
	Nancy	H2	ТВС		Stockholm	H2	Siting
	Paris Sud (Orly)	H1	Comm. (2017)	Iceland	Reykjavic	H2	Siting (2018)
	Rodez	111	Comm. (2017)		sites tbc	H2	Prep/Siting (2018)
		H1	Comm. (2017)		sites tbc	H2	Pre/Siting (2018)
	Sarreguemines	H1	Open	Norway	Ryen	H2	Site/planning (TBC)
The	The Hague	H2	Planning (TRC)		Hvam	H2	Site/planning (TBC)
Netherlands	The Hague		Planning (TBC)		Hovik	H1	ТВС

Results from Projects – H2ME & H2ME2

Mobility Europe

40 FCEV cars & 57 FC REx vans By 2020: 325 FCEVs By 2022: 1,200 FCEV cars & vans

Vehicles

- Miles driven: To date ~278,000 miles (448,079 km)
- Fuel efficiency:

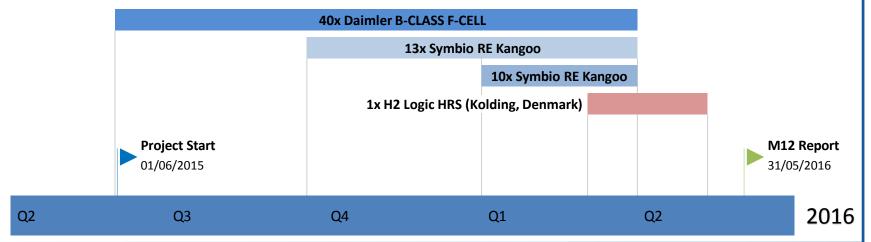
Vans - 100km/kgH2 Cars - 103km/kgH2

Range:

Vans - 400 km (250 miles) **Cars** - 380 km (235 miles)

Reliability: much higher that 98%, TBC.

Refuelling stations (HRS)


- Amount of H2 dispersed:
 To date 5,676 kg
- Time of day refuelled: peaks 18:00 to 05:00 and 11:00 to 12:00
 - Reliability: Stations have been available for 98% (downtime from unscheduled downtime due to Compressor/Pump) of the trial so far and reliability has been rated as good

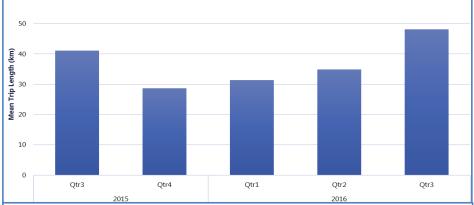
2015

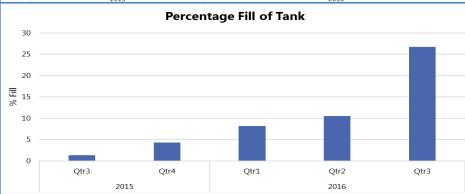
Results from Projects – H2ME

- M12 (First Year) H2ME Milestone Report Summary June 2015 to May 2016:
 - **40** Daimler B-CLASS F-CELL fuel cell passenger cars were operated by variety of organisations in Germany as company fleet vehicles.
 - **23** Symbio RE Kangoo range extended fuel cell vans operated as work vehicles in a number of fleets and locations in France.
 - One NEL Hydrogen HRS was deployed in Kolding, Denmark from March 2016 to refuel existing fuel cell vehicles.

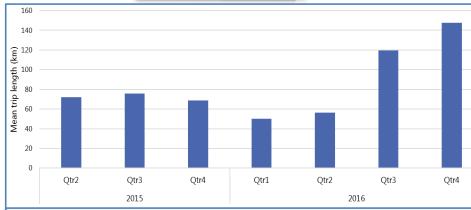
Hydrogen Mobility Europe Vehicle and Infrastructure Performance Report – November 2016 update

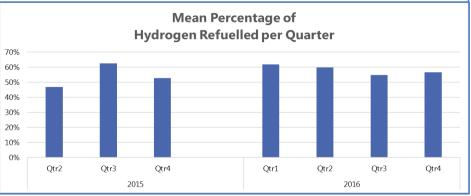
H2ME 1 Fleet Daily Trip Distance




- The overall avg. distance travelled per day was found to be 36.5 km.
- The avg. distance travelled per day for the Symbio RE fleet ranged from ca. 27-47 km.
- As a percentage, the overall avg. amount of H2 refuelled per event by the 10% of the for the Symbio RE fleet was 0.2 kg, or 11% of the 1.8 kg tank capacity. Note trend

- The overall avg. trip length was found to be 14.9 km. Comparable to German national trip data – avg. car trip length during the working week was approximately 15 km (1).
- As a percentage, the overall avg. amount of H2 refuelled per event by the 10% of the FCEV Daimler fleet was 2.18 kg, or 59% of the 3.7 kg tank.


FCH2 ference



Conclusions – H2 Vehicles

- Greater range than Electric vehicles
- Used similar to ICE passenger vehicles & by fleets in real applications
- The only tailpipe emission is water zero local emissions for clean air zones (CAZ)
- Timelines predict fuel cell vehicles as the only viable pathway to achieving low carbon transportation for longer range, larger vehicles – HGV prospect

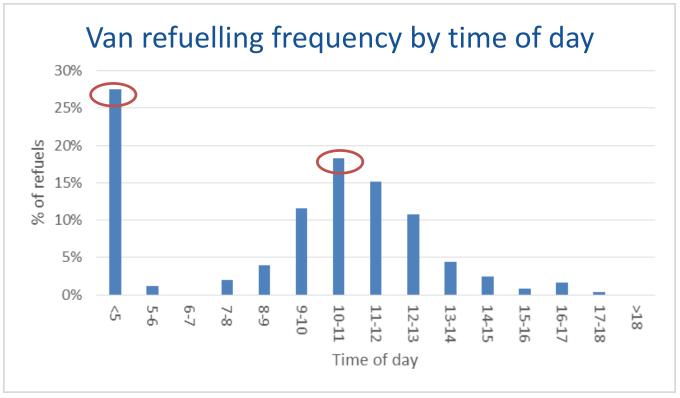
- Demonstration Projects future fast-tracking
 - Invaluable to prove technologies work and gain feedback
 - Pioneer the next iteration of hydrogen & fuel cell development

Conclusions – Hydrogen refuelling stations (HRS)

Reliable

- The Station availability for the trials were >90% (Hytec >99%,H2ME & Hyfive 98%, LHNE 92%)
- Outage periods combined with a lack of backup stations can cause users to lose confidence

Hytec: Users rated stations poorly due to two relatively long (up to three week) planned outage periods to upgrade the only two existing stations at the time

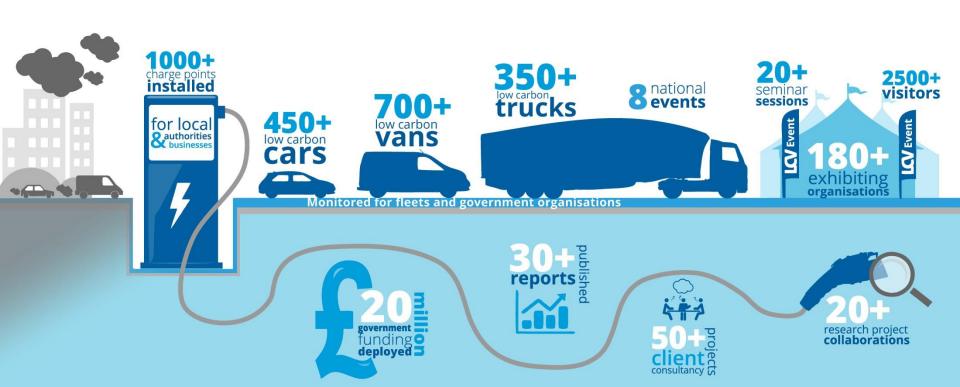

Limited Number – High Demand

- Observed vehicle refuelling patterns display that delivery vehicles (vans) will fill up on hydrogen as part of their delivery routes
- As a consequence, these vehicles are more likely to refuel at certain times during the day, creating predictable and repeating demand peaks for the HRS

Conclusions – Hydrogen refuelling stations (HRS)

London Hydrogen Network Expansion (LHNE) Project summary report - September 2016

In conclusion


- Cenex offer independent verification of results to funding bodies and industrial partners
- Emission type defines point of interest
 - Tail pipe, W-T-W or lifecycle?
- BEV market is well served and growing
 - But not fast enough?
- Customer attitudes
 - critically important
- Demonstration projects
 - Build real world knowledge base
 - Build infrastructure

Thank you for listening

cenex

Nick McCarthy

Technical Specialist nick.mccarthy@cenex.co.uk

Bibliography

- Dr Peter Speers (2015): D6.12: Hytec Final Summary Technical Report:
 Online (last accessed 20/01/2017):
 http://www.fch.europa.eu/sites/default/files/project_results_and_delivera bles/Final%20overall%20technical%20report.pdf
- Graham et al (2016): London Hydrogen Network Expansion: Project Summary Report: Online (last accessed 20/01/2017)
- Periodic Report Summary 1 HYFIVE (Hydrogen For Innovative Vehicles)
- http://cordis.europa.eu/result/rcn/176047 en.html
- H2ME year 1 report available in 413 H2ME/Reports/Deliverables/D4.7
- Element Energy (2012): Hydrogen Transport in activities in London and HyTEC: Online (last accessed 19/01/2017)