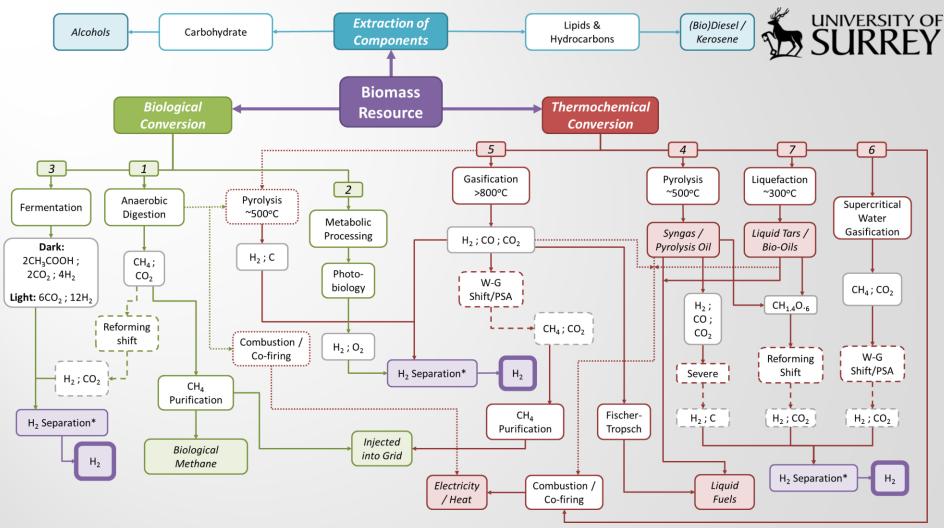


Systematic Review and Life Cycle Analysis of biomass derived fuels for Solid Oxide Fuel Cells

Focus: Identification of sustainable hydrogen and gaseous fuel sources, from biomass feedstocks, for use in fuel cells.

Stage 1: Identification of biomass pathways, analysis of fuel gases, and ranking of sustainable & high yielding pathways with potential for fuel cells.

Stage 2: Utilisation of Life Cycle Analysis (LCA) to assess and investigate the environmental impact of key pathways, and re-ranking of fuel gases.


BIRMINGHA

- Issue of hydrogen coming from fossil sources.
- Abundance of different types of waste biomass:
 - Lignocellulosic Agricultural residues
 (woody biomass/ (corn stover, rice straw, etc., forestry residues) /animal slurries)
- Most can be exploited to extract hydrogen and hydrogen rich gases.
- Developments in sustainable biological produced hydrogen (biohydrogen) are advancing.

BIRMINGHA

^{* &#}x27;Hydrogen Separation' stage is where additional gases are removed to produce pure hydrogen, typically via pressure swing absorption.

NB: 'Reforming Shift' and 'Bio-shift' in Figure 2 refer to steam methane reforming and biological water-gas shift reaction.

Figure 1
Hydrogen pathways from biomass
Adapted from: Schlarb-Ridley (2013) and Milne (2002)

Table 1 Biomass pathways and respective fuel gas production

UNIVERSITY OF SURREY

	Pathway	y Inputs Out		Potential Fuel Gas		
1	Anaerobic Digestion	Plant Biomass / Animal Slurry / Wastes.	Biogas.	Biogas* Biomethane.		
2	Metabolic Processing	Carbon Dioxide + Water + Nutrients.	Biohydrogen.	Biohydrogen.		
3	Fermentation	Algal Biodigester Sludge / Anaerobic Digestate / Organic Waste Biomass.	Biohydrogen.	Biohydrogen.		
4	Pyrolysis	Dry Biomass.	Syngas (32.6%).	Syngas^.		
			Bio-Oil (36%).	Hydrogen. Hydrogen.		
5	Gasification	Dry Biomass.	Syngas.	Syngas^. Hydrogen.		
6	Supercritical Water Gasification	Wet or Dry Biomass.	Syngas.	Syngas^. Hydrogen.		
7	Liquefaction	Wet Biomass.	Bio-Oil.	Hydrogen.		
RC	Natural Gas	Grid Source	Fossil Natural Gas [~] .	De-sulphured Natural Gas.		

Hydrogen from Biomass

Life Cycle Analysis

Table 2 Biomass pathways summary table ranking order - Stage 1

	Pathway	Fuel Gas	Fuel Gas LHV	Fuel Cell	Total Chain Efficiency	Fuel Cell Output	Stack Fuel Demand	Biomass Feedstock Demand
1	Anaerobic Digestion	Biomethane.	13.89 kWh _e /kg	SOFC	32.4%	4.50 kWh/kg	222.20 kg/MWh	0.00045 kg/MWh
RC	Natural Gas	De-sulphured Natural Gas.	11.95 kWh _e /kg	SOFC	28.7%	3.43 kWh/kg	291.81 kg/MWh	364.77 kg/MWh
2	Metabolic Processing	Biohydrogen.	33.34 kWh _e /kg	SOFC	5.4%	1.80 kWh/kg	555.51 kg/MWh	811.02 kg/MWh
6	Supercritical Water Gasification	Hydrogen.	33.34 kWh _e /kg	SOFC	35.7%	10.42 kWh/kg	96.00 kg/MWh	3692.19 kg/MWh

Biomethane from Biogas via PSA

Hydrogen from Biomass

Goal and Scope: Assessment of four 1MWh SOFC systems, each with a different fuel gas, including production of fuel gas from biomass/source materials/biological processes.

Inventory: The quantity of biomass and fuel gas needed for each system was calculated. Processes, inputs and outputs were also defined. Investigatory research data was used and topped up with database data.

ISO 14040 & 14044
2006 Standards
Environmental Management

LCA & LCI Principles & Framework

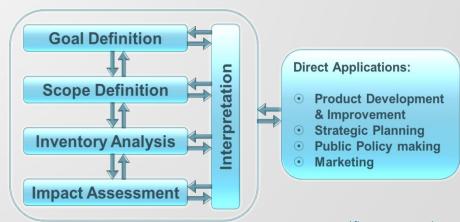
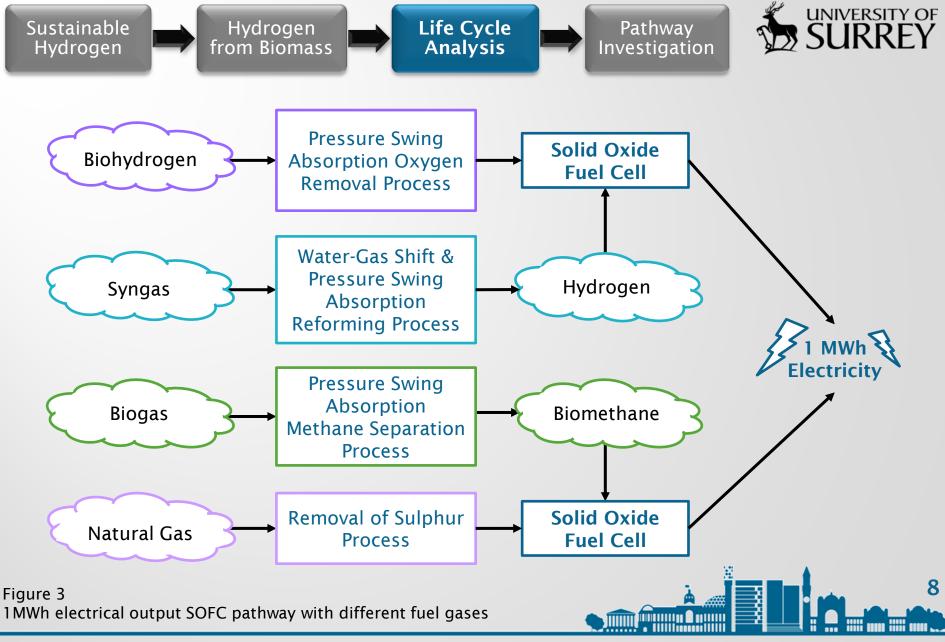
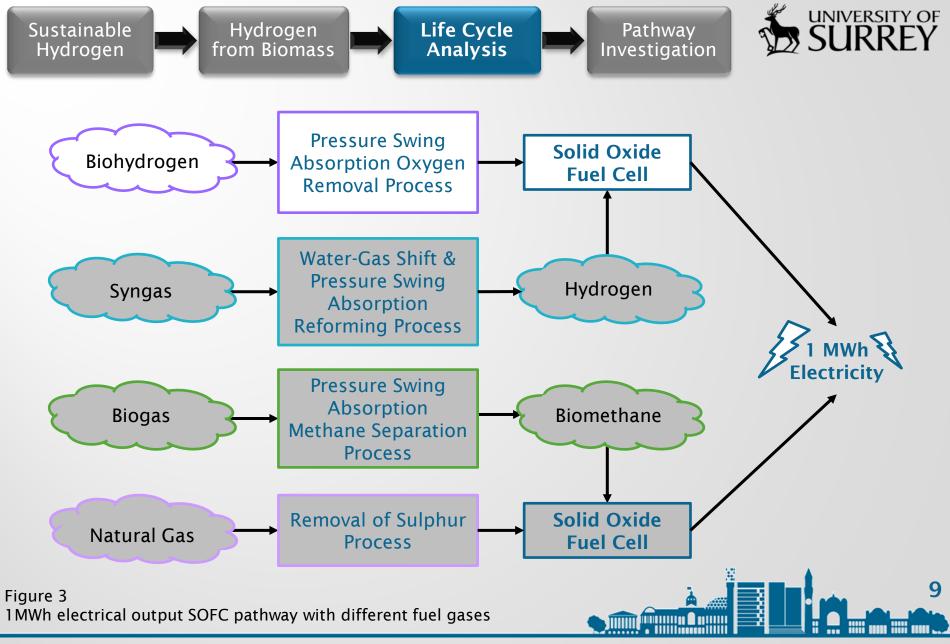
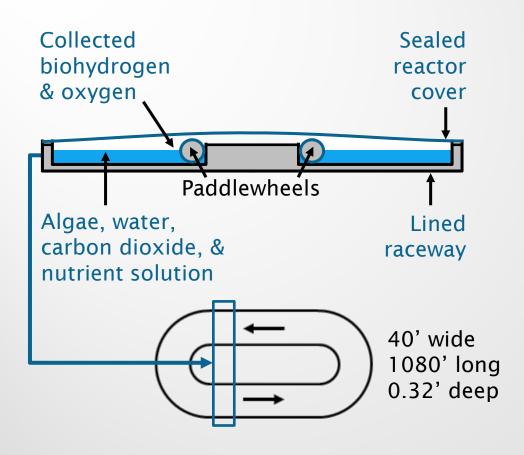



Figure 2 LCA methodology



Life Cycle Analysis


Life Cycle Analysis

Life Cycle Analysis

Metabolic Processing - Algal Biohydrogen

1 tonne biohydrogen requires 20 raceways

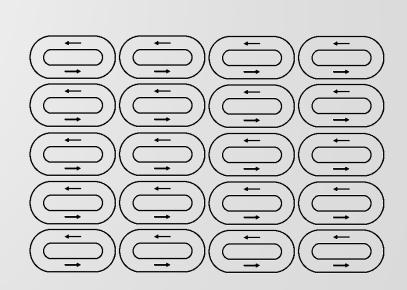


Figure 4
Metabolic Processing Photobiolysis Bioreactor
Adapted from: NREL (2015)

Metabolic Processing - Biohydrogen via PSA

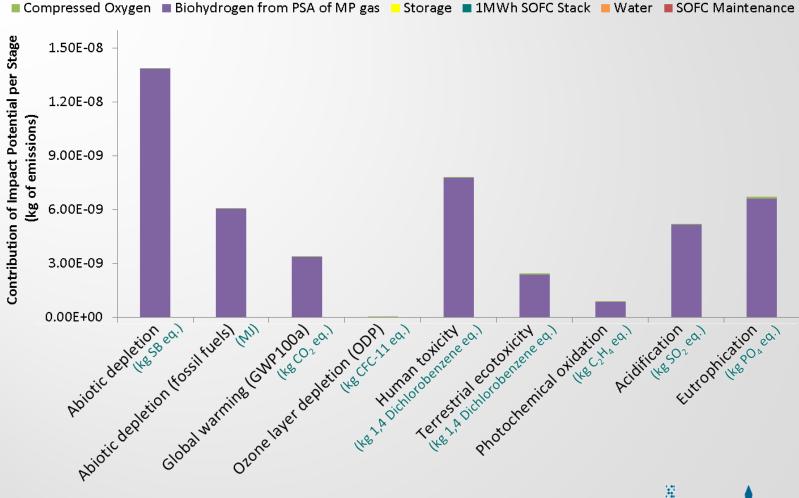


Figure 5 Biohydrogen via PSA Impact Assessment

Life Cycle Analysis

UNIVERSITY OF BIRMINGHAM

Metabolic Processing - Biohydrogen via PSA 🦠

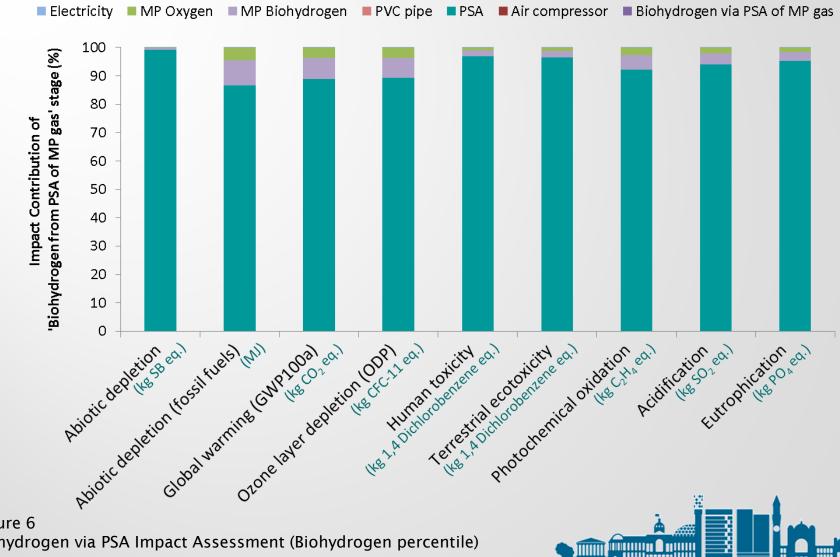


Figure 6 Biohydrogen via PSA Impact Assessment (Biohydrogen percentile)

Life Cycle Analysis

BIRMINGHAM

Metabolic Processing - Pre-PSA Biohydrogen SURREY

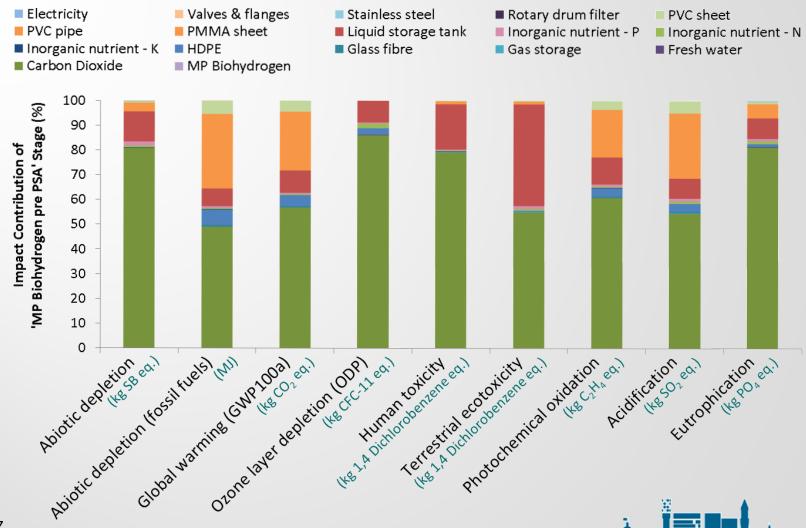
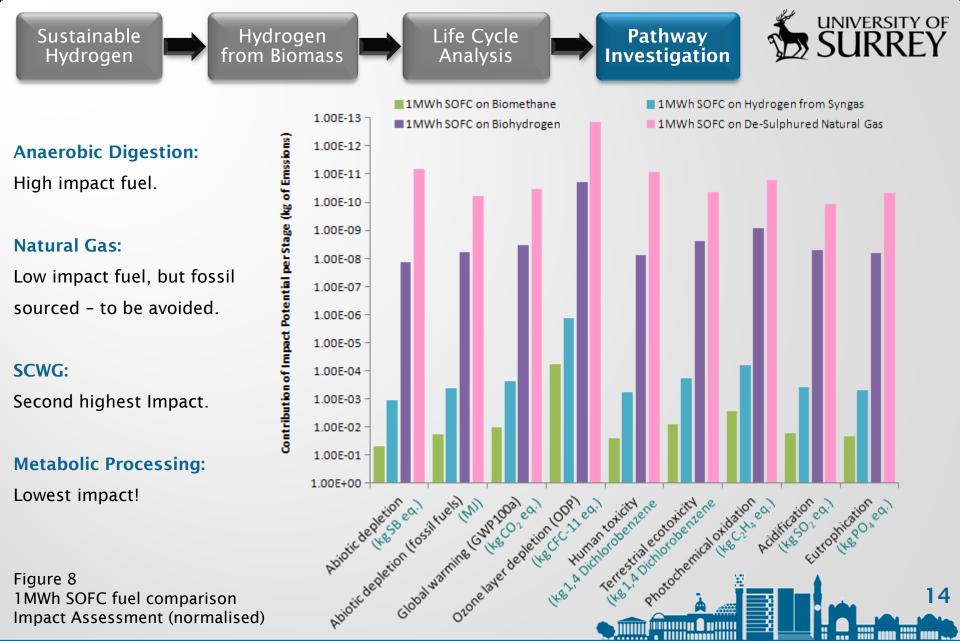



Figure 7 MP Biohydrogen pre PSA Impact Assessment (percentile)

13

Pathway Investigation

1MWh SOFC fuel comparison Impact Assessment (normalised)

> UNIVERSITYOF BIRMINGHAM

14

Table 3
Biomass pathways summary table ranking order - Stage 2

	Pathway	Fuel Gas	Environmental Impact Rank
2	Metabolic Processing	Biohydrogen.	Lowest impact per 1MWh worth of biohydrogen
RC	Natural Gas	De-sulphured Natural Gas.	Good environmental performance, but fossil source with high demands.
6	Supercritical Water Gasification	Hydrogen.	High impact fuel, with high demands for 1MWh SOFC.
1	Anaerobic Digestion	Biomethane.	Highest impact fuel, but low demands for 1MWh SOFC.

Focus: Identification of sustainable hydrogen and gaseous fuel sources, from biomass feedstocks, for use in fuel cells.

- **Stage 1:** Anaerobic Digestion and SCWG identified as potential biomass pathways for sustainable, high yielding fuel gases for SOFCs. Better performance seen from external reforming than internal reforming, unlike Gasification Syngas.
- Stage 2: LCA results showed environmental impacts of Algal Metabolic Processing biohydrogen had excellent fuel gas potential. SCWG was also found to have a lower impact than Anaerobic Digestion, but higher than Natural Gas.
- **Stage 3:** Preliminary assessment of impact burdens shows potential allocation to sub-processes, not fuel gas.

BIRMINGHA

1) Are the Impact Assessment emissions really burdens?

Are burdens associated only with the primary produce, not the waste?

If true, can burdens be allocated to a deeper sub-process?

i.e. Are emissions truly associated with the fuel gas, or with a sub-process?

2) Potential for 'free' fuel gas

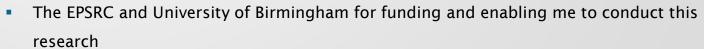
Comparison of results to original emissions from waste pathway and calculating the associated 'free' fuel gas that has come from using a waste product.

i.e. What impacts does leaving the waste biomass to naturally decompose and/or be disposed of have?

3) Stage 3 Rankings

Biomethane from AD Biogas **VS** Biohydrogen from Algal MP gas

Final identification of sustainable fuel gases for SOFCs!


Thank You

Any Questions?

Acknowledgements

Sincerest thanks to:

Fuel Cell and Hydrogen Research Group for their support

Appendix 1
Biomass pathways and respective coverage in literature across 'biomass' and 'biomass LCA' filters

Literature Statistics	Unfiltered	Biomass Filter	Biomass Life Cycle Filter	Whole Pathway Potential	Biomass LCA Potential	Research Ranking
Anaerobic Digestion	7,012 (100%)	806 (11.5%)	107 (1.5%)	7.8%	6.9%	3rd
Metabolic Processing	11,010 (100%)	784 (7.1%)	41 (0.4%)	12.3%	2.6%	1st
Fermentation	14,184 (100%)	1,654 (11.7%)	193 (1.4%)	15.8%	12.4%	5th
Pyrolysis	14,047 (100%)	1,407 (10%)	230 (1.6%)	15.7%	14.8%	6th
Gasification	14,239 (100%)	1,774 (12.5%)	379 (1.7%)	15.9%	24.4%	7th
Combustion/Co-Firing	22,307 (100%)	2,689 (12.1%)	375 (1.7%)	24.9%	24.1%	n/a
Liquefaction	4,650 (100%)	553 (11.9%)	149 (3.2%)	5.2%	9.6%	4th
Supercritical Water Gasification	2,152 (100%)	334 (15.5%)	82 (3.8%)	2.4%	5.3%	2nd

Appendix 2 Biomass pathway efficiencies and total chain efficiencies

	Pathway	Process Efficiency	Gas Clean-up / Reforming Efficiency	Fuel Gas	Fuel Gas LHV		Fuel Cell Efficiency	Total Chain Efficiency	Ref.	
1	Anaerobic Digestion	75%	n/a 90%	Biogas*. Biomethane.	5.28 kWh _e /kg 13.89 kWh _e /kg		SOFC ~60% SOFC ~60%	36% 32.4%	Charles (2011) Rasi (2009)	
2	Metabolic Processing	< 10%	90%	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	5.4% 4.05%	Lee (2012) Benemann (1997)	
3a	Dark Fermentation	~ 9%	90%	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	4.89 % 3.65%	Kotay (2008) Das (2001)	
3b	Light Fermentation	~ 6%	90%	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	2.97% 2.23%	Kotay (2008) Das (2001)	
4	Pyrolysis	75%	n/a 74.4% < 60%	Syngas^. Hydrogen. Hydrogen.	$3.61 \text{ kWh}_{e}/\text{kg}$ $33.33 \text{ kWh}_{e}/\text{kg}$ $33.33 \text{ kWh}_{e}/\text{kg}$	→ →	SOFC ~60% SOFC ~60% PEFC ~45% SOFC ~60%	11.74% 12.05% 9.04% 9.72%	Hanif (2016) Zafar (2015) Keachagiopoulos (2006)	
5	Gasification	50 – 80% (65%)	n/a 74.4%	Syngas^. Hydrogen.	3.61 kWh _e /kg 33.33 kWh _e /kg	→	PEFC ~45% SOFC ~60% SOFC ~60% PEFC ~45%	7.29% 31.2% 29.02% 21.76%	Ernsting (2015) Sikarwar (2016) Braga (2016)	
6	Supercritical Water Gasification	< 80%	n/a 74.4%	Syngas^. Hydrogen.	3.61 kWh _e /kg 33.33 kWh _e /kg	→	SOFC ~60% SOFC ~60% PEFC ~45%	33.6% 31.25% 23.44%	Sikarwar (2016) Braga (2016)	
7	Liquefaction	70%	< 60%	Hydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	25.2% 18.9%	Yokoyama (2008) Keachagiopoulos (2006)	
RC	Natural Gas	80 – 90% (85%)	50 – 100% (75%)	De-sulphured	11.94 kWh _e /kg	→	SOFC ~60%	28.69%	Muggeridge (2014)	

Natural Gas.

[^] Syngas (~50% H_2 , ~25% CO_2 , ~10% CO_2 , ~10% H_2O_2 , ~5% CH_{4_1} trace H_2S_2) ~ Fossil Natural Gas (~95% CH₄, ~2.5% C_2H_6 , ~1.5% N_2 , <1% CO_2 , trace SO_2)

UNIVERSITY OF BIRMINGHAM

^{*} Biogas (~60% CH₄, ~39% CO₂, ~1% N₂, trace SO₂, trace SiO₂)

Appendix 3 Biomass pathways and their respective fuel cell and biomass demands

Fuel Cell

Fuel Gas LHV

Fuel Gas

	ratiiway	ruer das	ruei das Liiv		Efficiency	Efficiency	ruer cen output	Demand	Feedstock Input	Nei.
1	Anaerobic Digestion	Biogas*. Biomethane.	5.28 kWh _e /kg 13.89 kWh _e /kg	→	SOFC ~60% SOFC ~60%	36% 32.4%	1.90 kWh/kg 4.50 kWh/kg	526.27 kg/MW 222.20 kg/MW	0.0013 kg/MW 0.00045 kg/MW	CROPGEN (2011) Anaerobic Digestion (2017) Stucki (2011)
2	Metabolic Processing	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	5.4% 4.05%	1.80 kWh/kg 1.35 kWh/kg	555.51 kg/MW 740.68 kg/MW	811.02 kg/MW 1081.35 kg/MW	NREL (2015)
3a	Dark Fermentation	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	4.89 % 3.65%	1.62 kWh/kg 1.22 kWh/kg	617.23 kg/MW 822.98 kg/MW	12.06 kg/MW 16.07 kg/MW	Kim (2006)
3b	Light Fermentation	Biohydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	2.97% 2.23%	0.99 kWh/kg 0.74 kWh/kg	1010.02 kg/MW 1346.69 kg/MW	20.08 kg/MW 26.77 kg/MW	Kim (2006)
4	Pyrolysis	Syngas^. Hydrogen. Hydrogen.	3.61 kWh _e /kg 33.33 kWh _e /kg 33.33 kWh _e /kg	→ →	SOFC ~60% SOFC ~60% PEFC ~45% SOFC ~60% PEFC ~45%	11.74% 12.05% 9.04% 9.72% 7.29%	0.42 kWh/kg 4.02 kWh/kg 3.01 kWh/kg 3.24 kWh/kg 2.43 kWh/kg	2359.41 kg/MW 248.90 kg/MW 331.87 kg/MW 308.62 kg/MW 411.49 kg/MW	6590.54 kg/MW 2262.77 kg/MW 3017.03 kg/MW 2805.61 kg/MW 3740.82 kg/MW	Ayalur Chattanatha (2012) Capareda (2013)
5	Gasification	Syngas^. Hydrogen.	3.61 kWh _e /kg 33.33 kWh _e /kg	→	SOFC ~60% SOFC ~60% PEFC ~45%	31.2% 29.02% 21.76%	1.13 kWh/kg 9.67 kWh/kg 7.25 kWh/kg	887.50 kg/MW 103.38 kg/MW 137.84 kg/MW	546.16 kg/MW 1602.83 kg/MW 2137.11 kg/MW	Capareda (2013) Kumar (2009)
6	Supercritical Water Gasification	Syngas^. Hydrogen.	3.61 kWh _e /kg 33.33 kWh _e /kg	→	SOFC ~60% SOFC ~60% PEFC ~45%	33.6% 31.25% 23.44%	1.21 kWh/kg 10.42 kWh/kg 7.81 kWh/kg	824.11 kg/MW 96.00 kg/MW 137.84 kg/MW	54940.66 kg/MW 3692.19 kg/MW 4922.92 kg/MW	Kelly-Yong (2011) Convert Units (2017)
7	Liquefaction	Hydrogen.	33.33 kWh _e /kg	→	SOFC ~60% PEFC ~45%	25.2% 18.9%	8.40 kWh/kg 6.30 kWh/kg	119.04 kg/MW 158.72 kg/MW	59.52 kg/MW 79.36 kg/MW	Ayalur Chattanatha (2012)
RC	Natural Gas	De-sulphured Natural Gas.	11.94 kWh _e /kg	→	SOFC ~60%	28.69%	3.43 kWh/kg	291.81 kg/MW	364.77 kg/MW	

Total Chain

Fuel Cell Output

Stack Fuel

^{*} Biogas (~60% CH₄, ~39% CO₂, ~1% N₂, trace SO₂, trace SiO₂)

^ Syngas (~50% H₂, ~25% CO, ~10% CO₂, ~10% H₂O, ~5% CH₄, trace H₂S)

~ Fossil Natural Gas (~95% CH₄, ~2.5% C₂H₆, ~1.5% N₂, <1% CO₂, trace SO₂)

Pathway

- Ayalur Chattanathan, S., Adhikari, S. and Abdoulmoumine, N.: A review on current status of hydrogen production from bio-oil. *Renewable and Sustainable Energy Reviews.* **16.** (2012) pp 2366-2372. 10.1016/j.rser.2012.01.051
- Benemann, J. R.: Feasibility analysis of photobiological hydrogen production. *International Journal of Hydrogen Energy*. **22.** (1997) pp 979-987.
- Braga, L. B., da Silva, M. E., Colombaroli, T. S., Tune, C. E., de Araujo, F. H. M., Vane, L. F., Predroso, D. T. and Silveira, J. L.: Chapter 2 - Hydrogen Production Processes. In: Sustainable Hydrogen Production Processes: Energy, Economic and Ecological Issues. Springer:Switzerland. (2016) pp 5-76.
- Capareda, S. C.: Chapter 9 Pyrolysis. In: Introduction to Biomass Energy Conversions. CRC Press:Boca Raton, FL. (2013a) pp 319 362.
- Capareda, S. C.: Chapter 10 Gasification. In: Introduction to Biomass Energy Conversions. CRC Press:Boca Raton, FL. (2013b) pp 363 402.
- Charles, W., Carnaje, N. P. and Cord-Ruwisch, R.: Methane conversion efficiency as a simple control parameter for an anaerobic digester at high loading rates. *Water Science and Technology.* **64.** (2011) pp 534 539.
- Convert Units: Measurement Unit Converter. [Online]. Available at: http://www.convertunits.com. [Accessed: April 2017.]
- CROPGEN: Renewable energy from crops and agrowastes Database of values. (2011)
- Das, D. and Veziroglu, T. N.: Hydrogen production by biological processes: a survey of literature. *International Journal of Hydrogen Energy.* **26.** (2001) pp 13-28.
- Ernsting, A.: Biomass gasification and pyrolysis. Report. biofuelwatch: Edinburgh. (2015)
- Hanif, M. U., Capareda, S. C., Iqbal, H., Arazo, R. O. and Baig, M. A.: Effects of Pyrolysis Temperature on Product Yields and Energy Recovery from Co-Feeding of Cotton Gin Trash, Cow Manure, and Microalgae: A Simulation Study. *PLoS One.* 11. (2016) pp e0152230. 10.1371/journal.pone.0152230
- Keachagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A. and Vasalos, I. A.: Hydrogen Production via Steam Reforming of the Aqueous Phase of Bio-Oil in a Fixed Bed Reactor. *Energy & Fuels.* **20.** (2006) pp 2155-2163.
- Kelly-Yong, T. L., Lim, S. and Lee, K. T.: Gasification of oil palm empty fruit bunch fibers in hot compressed water for synthesis gas production *Journal of Applied Sciences*. 11. (2011) pp 3563-3570.
- Kim, M., Baek, J., Yun, Y., Junsim, S., Park, S. and Kim, S.: Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. *International Journal of Hydrogen Energy.* 31. (2006) pp 812-816. 10.1016/j.ijhydene.2005.06.009
- Kotay, S. M. and Das, D.: Biohydrogen as a renewable energy resource—Prospects and potentials. International Journal of Hydrogen Energy. 33. (2008) pp 258-263. 10.1016/j.ijhydene.2007.07.031

- Kumar, A., Jones, D. D. and Hanna, M. A.: Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. *Energies*. 2. (2009) pp 556-581. 10.3390/en20300556
- Lee, J. W.: Advanced Biofuels and Bioproducts. Springer Science & Business Media:New York. (2012)
- Milne, T. A., Elam, C. C. and Evans, R. J.: Hydrogen from Biomass State of the Art and Research Challenges. Report. National Renewable Energy Laboratory:Colorado. (2002)
- Muggeridge, A., Cockin, A., Webb, K., Frampton, H., Collins, I., Moulds, T. and Salino, P.: Recovery rates, enhanced oil recovery and technological limits. *Philosophical Transactions of the Royal Society.* **372**. (2014) pp 20120320. 10.1098/rsta.2012.0320
- NREL: Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Section 3.1 Hydrogen Production. Report. NREL:Golden, CO. (2015)
- Rasi, S.: Biogas Composition and Upgrading to Biomethane. Dissertation. University of Jyväskylä:Finland. (2009)
- Schlarb-Ridley, B. and Partker, B.: A UK Roadmap for Algal Technologies May 2013. Report. NERC-TSB Algal Bioenergy-SIG:Swindon. (2013)
- Shimeskit, B. and Mukhtar, H.: Natural Gas Purification Technologies Major Advances for CO2 Separation and Future Directions. In: Advances in Natural Gas Technology. InTech:Croatia. (2012) pp 235-270.
- Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J. and Fennell, P. S.: An overview of advances in biomass gasification. *Energy and Environmental Science*. **9.** (2016) pp 2939-2977.
- Stucki, M., Jungbluth, N. and Leuenberger, M.: Life Cycle Assessment of Biogas Production from Different Substrates. Report. Swiss Office of Energy: Ittigen, Switzerland. (2011)
- The Official Information Portal on Anaerobic Digestion: Feedstocks. [Online]. Available at: http://www.biogas-info.co.uk/about/feedstocks/#sewage>. [Accessed: March 2017.]
- Yokoyama, S. and Matasumura, Y.: 4.6. Hydrothermal Liquefaction. In: The Asian Biomass Handbook. The Japan Institute of Energy: Japan. (2008) pp 114-116.
- Zafar, S.: Biomass Pyrolysis Process. [Online]. Available at: http://www.bioenergyconsult.com/biomass-pyrolysis-process/. [Accessed: January 2017.]

References