

Performance comparison of four catholyte formulations within a chemically regenerative redox cathode polymer electrolyte fuel cell system

Trevor Davies, University of Chester, FCH2 2017, 1st June 2017

Faculty of
Science & Engineering

University of
Chester

Outline

- Conventional polymer electrolyte fuel cells (PEFCs)
 - Direct reduction of O_2
- Chemically Regenerative Redox Cathode (CRRC) PEFCs
 - In-direct reduction of O_2
 - Lower cost and improved durability
- Optimizing the catholyte in CRRC PEFCs
 - Thermodynamic properties
 - Cell performance
 - Regeneration

Conventional PEFCs

Faculty of
Science & Engineering

Cost and Durability

- Platinum
 - O_2 reduction is relatively slow and requires large Pt loadings
- Selectivity
 - Slight deviations from the 4 e^- reduction pathway result in HO^\bullet and peroxides that can damage cell components
- Start up
 - Air on the cathode vs. a hydrogen | air front on the anode at start up oxidizes the carbon support in the catalyst layer
- Crossover
 - H_2 crossover to the cathode causes production of peroxides
- Cooling
 - PEFCs limited to $< 80^\circ\text{C}$ operation

Chemically Regenerative Redox Cathode PEFCs

Faculty of
Science & Engineering

University of
Chester

In-direct Reduction of O_2

Catholyte ("liquid catalyst") replaces O_2 at the cathode

Advantages

- Carbon cathode
 - Porous carbon cathode material – graphite felt
 - Only Pt required on the anode for hydrogen oxidation
- Air never enters the fuel cell
 - Main pathways for cell degradation avoided
 - 10,000 hours operation on auto test cycle
- Catholyte ensures membrane is always wet
 - No need for gas humidification
 - Can operate above 80°C
- Catholyte is thermodynamically stable
 - Long lifetime
 - 100% recyclable

Catholyte Study

Faculty of
Science & Engineering

Catholyte (POM)

- The catholyte (“liquid catalyst”) plays a key role in determining overall system performance
- Requirements include
 - High redox potential
 - Good ionic conductivity
 - Fast electrode kinetics
 - Fast regeneration kinetics
- Best catholytes discovered to date are V-Mo polyoxometallates (POMs) with the keggin structure
 - $H_6PV_3Mo_9O_{40}$ (empirical formula)
 - Acidic solutions ($0 < \text{pH} < 2$)

Phosphomolybdic acid
 $H_3PMo_{12}O_{40}$

POM Speciation

- Dynamic equilibrium present in POM solutions leading to range of species present (V_1 , V_2 , V_3 , V_4 keggins and free vanadium)

- ^{31}P NMR can identify the different P species present in solution
- Higher acidity leads to less keggin bound vanadium and more free vanadium

Catholyte Reduction and Regeneration

$$\% \text{ Reduction} = \frac{[\text{vanadium(IV)}]}{[\text{vanadium}]} \times 100\%$$

Faculty of
Science & Engineering

University of
Chester

Catholyte Comparison

- Four catholytes compared (empirical formulas):
 - 0.3 M $H_6PV_3Mo_9O_{40}$ (HV3)
 - 0.3 M $Na_3H_3PV_3Mo_9O_{40}$ (NaV3)
 - 0.3 M $H_7PV_4Mo_8O_{40}$ (HV4)
 - 0.3 M $Na_4H_3PV_4Mo_8O_{40}$ (NaV4)
- Vary the counter ion (H^+ vs. Na^+)
- Vary the vanadium content (V_3 vs V_4)
- Investigate catholyte performance at 80°C
 - Thermodynamic properties
 - POM Reduction curve, pH
 - Cell performance
 - “Standard” fuel cell with graphite felt cathode and 25 cm² GORE Primea membrane with 0.4 mg cm⁻² Pt loading on anode only
 - Regeneration reaction
 - Chemical current vs. redox state
 - Steady state performance

Thermodynamic Properties

- HV3 and HV4 have higher redox potentials than NaV3 and NaV4 for a given level of reduction
 - Suggests better fuel cell performance with HV3 and HV4

Fuel Cell Performance

0.3 M $\text{H}_7\text{PV}_4\text{Mo}_8\text{O}_{40}$ (HV4)

- Cell performance depends on the level of reduction of the catholyte
- Example is for HV4 at different levels of reduction but all the catholytes have similar parallel i - V curves

- Fuel cell performance of each catholyte at 45% reduction
- HV4 and HV3 have superior performance compared to Na POMs
 - HV4 gives slightly higher maximum power
 - Total vanadium concentration has little effect on *i*-*V* curve

Regenerator Performance

- The rate at which the reduced POM reacts with air can be expressed as a regeneration current, I_R :

$$I_R = [\text{POM}]VnF \frac{d\theta}{dt}$$

- HV3 takes much longer to regenerate than the other POMs
- NaV4 and NaV3 capable of much higher regeneration currents at lower levels of reduction
- Regeneration current limits maximum open circuit voltage of system

Steady State Fuel Cell Performance

- The system is in a “steady state” when the cell current is equal to the regeneration current

Summary

- For a given % Reduction, HV4 and HV3 have superior cell performance
 - Higher open circuit potentials due to lower pH
 - Lower pH results in higher conductivity
- For a given % Reduction, NaV4 and NaV3 have superior regeneration rates
 - Higher pH results in POM speciation with more V2, V3 and V4 keggins and less free vanadium
 - NaV4 has better regeneration rates then NaV3 due to more favourable POM speciation
- Under steady state operation, NaV4 and HV4 have very similar performance, with slightly more power available from NaV4
- Trade-off between cell open circuit potential and regeneration

Thank you

■ Acknowledgements

- Dr David B. Ward (University of Chester)
- Dr Natasha L.O. Gunn (University of Chester)
- Mr Constantinos Menelaou (University of Chester)
- Mr Chris Andrews (University of Chester)
- Dr Matthew Herbert (University of Chester)
- Dr Corinne Wills (University of Newcastle)