

Impact of temperature and concentration within a chemically regenerative redox cathode polymer electrolyte fuel cell system using phosphomolybdo vanadium polyoxoanion catholyte

David Ward, Bob Smith and Trevor Davies

**University of Chester, UK
Faculty of Science & Engineering**

14th March 2018

Outline of Presentation

- Background
 - What is a **Chemically Regenerative Redox Cathode (CRRC) Polymer Electrolyte Fuel Cell (PEFC)** system?
 - What are the advantages over conventional PEFC systems?
- Investigation objectives
- Methodology and operating condition
 - How is CRRC-PEFC performance measured?
- Results
- Conclusions
- Future Investigation

Background

What is a **CRRC-PEFC System?**

What is a CRRC-PEFC System?

- Fuel cell / flow battery hybrid
 - Conventional PEFC fuel cell **anode**
 - Redox flow battery **cathode**
- Circulates a liquid mediator/catalyst solution through the cathode
- Can be likened to the cardiovascular system
- Technology developed by *Acal Energy Ltd* but now IP owned of UoC

Advantages over conventional PEFCs

- Eliminates need for Pt on the cathode
 - Pt reduced by as much as 80%
 - Significant cost saving
 - Performance less vulnerable Pt loss
- Indirect reduction of oxygen
 - Degradation via by-products avoided (e.g. H_2O_2)
- Liquid cathode
 - Avoids damage via internal conflagrations (hot spots)
 - Maintains membrane hydration (no need to humidify gas supply)
- Ease of heat management
 - Heat absorbed and distributed by flow of catholyte (high SHC)
 - Exothermic reaction occurs in Regenerator not cell
 - Eliminates need for complex cell stack cooling channels
 - Heat can be removed via a simple inline heat exchanger

What happens within the cell?

What happens within the Regenerator?

What is the catholyte?

- Empirical formula $H_7PV_4Mo_8O_{40}$ (HV4)
- Polyoxometalate Keggin Structure
- Single atom of phosphorus at core
- Surrounded by x4 vanadium atoms
- Surrounded by molybdenum and oxygen atoms

Objectives of this Investigation

- Examine system performance over a range of operating **temperatures and concentrations**
 - With respect to **HV4** polyoxometalate catholyte ($H_7PV_4Mo_8O_{40}$)
 - Previously reported results relevant to **80°C and 0.3M¹**
- Examine with performance with respect to...
 - Cell performance
 - Regenerator oxidation kinetics
 - Combined system performance

(I-V curves)
(sustainable current)
(sustainable power)

1. *David B.Ward, Natasha L.O.Gunn, NadineUwigena and Trevor J.Davies. "Performance comparison of protonic and sodium phosphomolybdovanadate polyoxoanion catholytes within a chemically regenerative redox cathode polymer electrolyte fuel cell", Journal of Power Sources, 375 (2018), 68-76.*

Method:

How to quantify CRRC-PEFC Performance?

Apparatus and Operating Conditions

- Anode membrane assembly:
 - 25 cm² active area
 - Ion Power NR212
- Anode:
 - ~600 mbar hydrogen
 - Dead ended
- Catholyte:
 - 0.2, 0.3, 0.4 and 0.45 M
 - 0.3 L system volume
 - ~140 mL/min recirculation rate
- Regenerator:
 - 1 L/min air flow
 - 500 mL bubble column with sintered glass sparge
- System operating temperature, 40, 50, 60, 80 & 90°C

Redox Potential vs. Fraction V Reduced

V^{4+}
Reduced

V^{5+}
Oxidised

I-V curves at varying states of vanadium reduction (0.3 M HV4 catholyte at 80°C)

V^{5+}
Oxidised

V^{4+}
Reduced

Regeneration Current vs. fraction vanadium reduced

CRRC-PEFC at Steady State Operation

Electrons Transferred in Cell

Electrons Transferred in Regenerator

Hence, sustainable current determined by rate of regeneration

Sustainable I-V curve (0.3 M HV4 catholyte at 80°C)

V^{5+}
Oxidised

V^{4+}
Reduced

Experimental Design

Temperature / °C	Catholyte Concentration / M			
	0.2	0.3	0.4	0.45
40	X	X		X
50		X		
60		X		
70		X		
80	X	X	X	X
90	X	X		X

Results

Cell voltage comparison @ 65%R & 1 A.cm⁻²

Regeneration Comparison @ 65%R

Sustainable power comparison @ 1 A.cm⁻²

Conclusions

- **80°C** demonstrated to give **optimum** cell, regenerator and therefore, overall system performance
- **0.3 – 0.45M** range demonstrated to give **comparable** cell, regenerator and therefore, **overall system performance**
 - Significant performance **decline** demonstrated at **0.2M**
- Therefore, considering material costs, **80°C and 0.3M** suggested to be **optimal** operating point

Future Investigation

- Impact of temperature and concentration with respect to other catholyte formulations
 - e.g. $\text{Na}_4\text{H}_3\text{PV}_4\text{Mo}_8\text{O}_{40}$ (pH adjusted using NaOH)²
- Varying the proportion of NaOH added³
- Addition of other salts (e.g. KHO)
- Alternative membranes

2. *David B. Ward & Trevor J. Davies, "Effect of Temperature and Catholyte Concentration on the Performance of a Chemically Regenerative Fuel Cell", Accepted for publication by Johnson Matthey Technology Review.*
3. *David Ward, Bob Smith & Trevor Davies, "Impact of Incrementally Adding NaOH to Catholyte used in a Chemically Regenerative Redox Cathode Polymer Electrolyte Fuel Cell", Poster Presentation, Fuel Cell & Hydrogen Technical Conference 2018.*

Thank you for listening

- Any questions?
- Email contact: dward@chester.ac.uk
- Acknowledgements:
 - Dr. Natasha L. O. Gunn
 - Mr. Constantinos Menelaou
 - Dr. Matthew Herbert