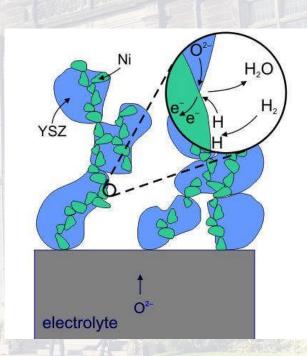
Tailoring the microstructure of impregnated SOFC electrodes for improved performance

Cristian Savaniu and John T.S. Irvine

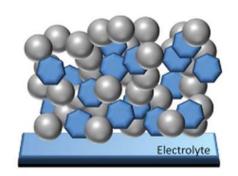
Technology Drivers

- Performance
- Materials, microstructure and processing, system management nano is beneficial
- Durability
- ☐ Materials, temperature, system nano is problematic
- Cost
- ☐ Manufacturing, materials nano can be expensive
- Fuel Flexibility
- ☐ Materials, system management nano is beneficial
- Retain focus on clean energy target
- ☐ Whole cycle analysis

Advancing SOFC technologies


- The development of novel anode materials with excellent performance and stability at intermediate-temperatures and operating with various fuels- H₂, syngas and hydrocarbons is essential
- Two approaches in developing electrode materials:
- optimising the state-of-the-art electrode materials or
- exploring novel systems with high mixed ionic and electronic conductivity (MIEC).

NI/YSZ CERMET


Good Current Collector
Steam reforming catalyst

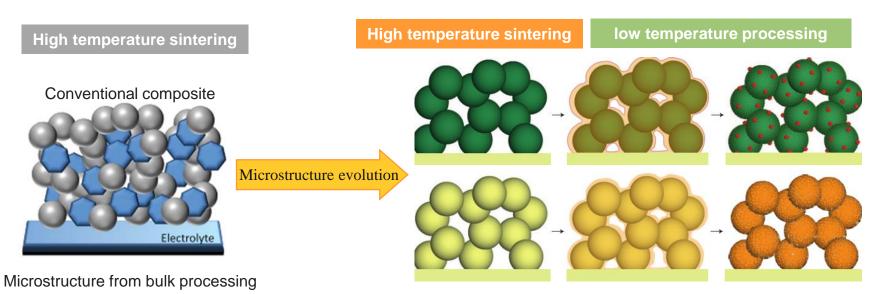
Drawbacks:

Promotion of carbon fibres, $C_nH_{2n+2} \rightarrow C$ Reaction with mercaptans Ni +S \rightarrow NiS Ni coarsening, Degradation 2Ni + $O_2 \rightarrow$ 2NiO

MIEC fabrication

Grain growth thus reduced active surface areas

Detrimental interfacial reactions


Mismatched thermal expansions

Large amount of material to meet percolation

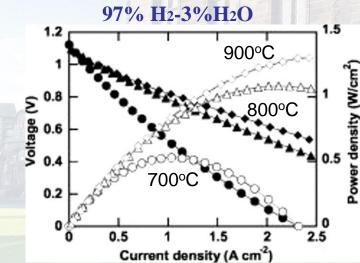
Microstructure from bulk processing

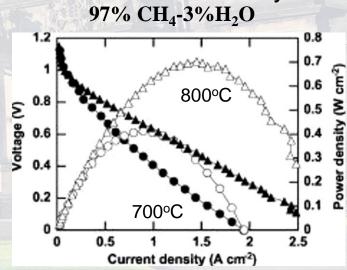
- Alternative mixed electronic and ionic conducting (MIEC) electrode materials require novel fabrication routes
- Impregnation method has been an effective approach for cell fabrication or performance optimisation
- Nano-sized species are impregnated into porous framework either to enhance the electronic or ionic conductivity of the electrode or its catalytic activity

Impregnation technique

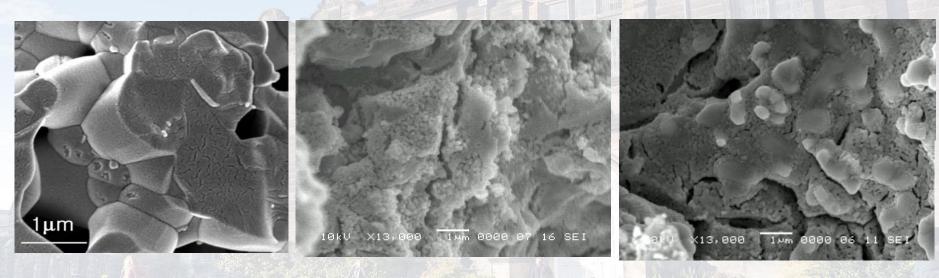
Typical microstructures produced by solution impregnation: above, dispersed catalyst particle formation on top of an electron conducting backbone, below- a continuous layer of MIEC perovskite formed on top of an ion conducting backbone

Nature Energy, 1, Article number: 15014 (2016)


Impregnation technique


- ✓ Enhance the TPB
- ✓ Enhance electrocatalytic activity by adding low amounts of catalysts;
- ✓ Match in thermal stability;
- ✓ Potential for improved coking resistance and sulfur tolerance;
- ✓ Broaden the range of available materials;
- ✓ Flexibility in tailoring the electrode microstructure
- ★ Clever process design
- ➤ Processing time and cost; could be wasteful especially when expensive materials are used
- ★Particles growth and agglomeration leading to degradation;
- ★ Up-scaling;
- X Fundamentals not well understood

Alternative ceramic anodes produced by impregnation:

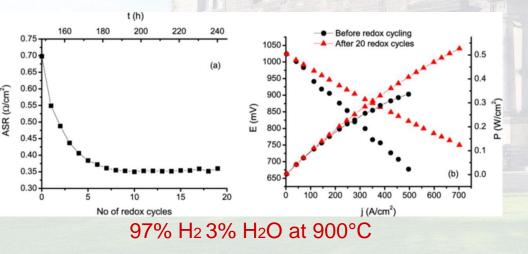

Anode: Porous YSZ, 45 wt% La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O₃ (LSCM), 5 wt% ceria, 0.5 wt% Pd Cathode: Porous YSZ, 40 wt% LSF, Electrolyte: 60 microns YSZ

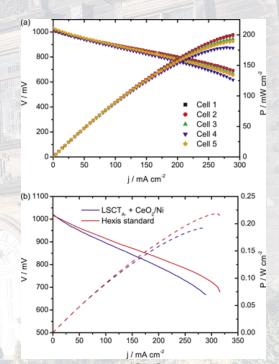
Electrochemical performance is excellent, stable towards oxidation and tolerant to hydrocarbons:

Evolution of LSCM/YSZ nano/microstructure

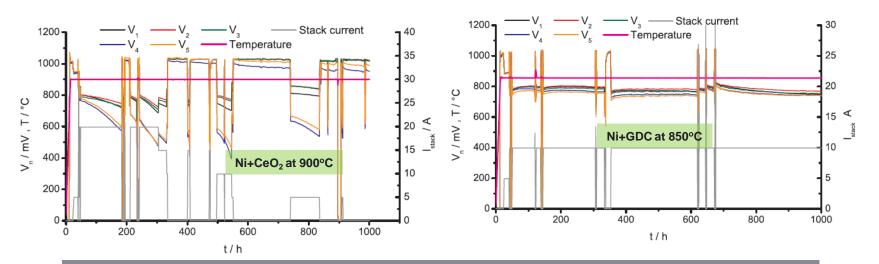
(a) SEM images of the LSCM-YSZ composite with 45wt% LSCM calcined at 1200°C in air. (b) The same composite after reduction in humidified H₂ at 800°C for 4h and c) after re-oxidation at 800°C for 5h

Electrolyte supported cells with impregnated La_{0.2}Sr_{0.25}Ca_{0.45}TiO_{3-δ} (LSCT) anode backbone

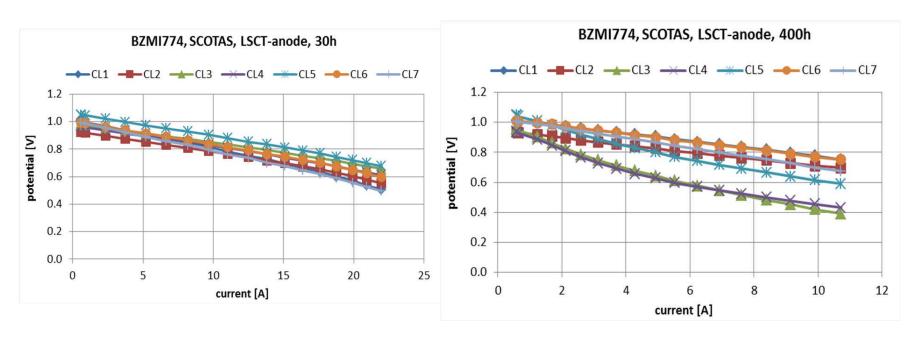

E. Stefan, M. Cassidy, C. Savaniu, M. Verbraeken, J. Irvine University of St Andrews


U. Weissen, B. Iwanschitz, A. Mai Hexis AG

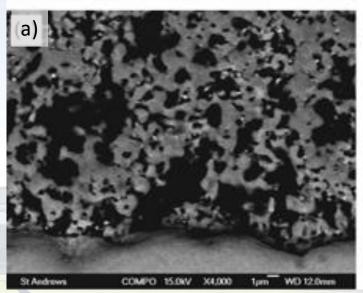
Ni + CeO₂ impregnation into LSCT anode- Hexis

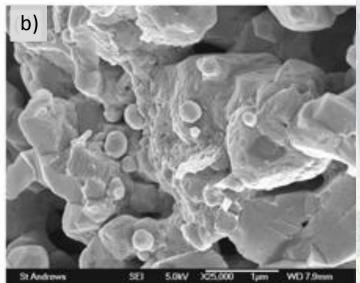

- Initial activation of ASR with time
- Improvement upon redox cycling, improved contacting with Ni mesh
- ASR = $0.35 \Omega cm^2 0.5 \Omega cm^2$
- Stable for 250 hours

I–V for a 5 cell stack with Ni/CeO₂ impregnated LSCT_{A–} anode at 900 °C in CPOx reformed natural gas (a). Comparison with standard HEXIS Ni cermet based anode (b


Perovskite LSCT_{A-} anode scaffold impregnated with CeO₂/Ni

- Durability test of 5 cell stack (HEXIS) with LSCT_A anode with Ni +CeO₂ and Ni + GDC ($Gd_{0.2}Ce_{0.8}O_{1.90}$) as impregnated catalyst in 4g h⁻¹ of CPOx (catalytic partial oxidation) reformed natural gas.
- □ The Ni+CeO₂ infiltrated LSCT_A- anode showed comparable performance with the standard HEXIS Ni-cermet anode;
- ☐ The Ni + GDC impregnated cell seemed more stable than the Ni + CeO₂ impregnated LSCT_{A-} anode cell;


☐ Fuel Cells, 15, 682, 2015


Galileo Stack 1 kW with 3.3 kW reformed CH₄ input

60 cells, 1kWh stack, 850°C

Ceramic backbone + catalyst

Ni particles 50 – 100 nm

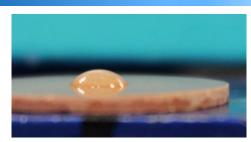
Nanoparticles keep growing up to 300 nm after ~1000h

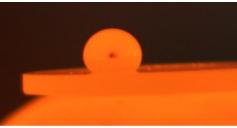
Ni/CeO₂ impregnated LSCT_{A-} (c, d) after testing at 900 °C for 1,000 hours in CPOx reformed NG

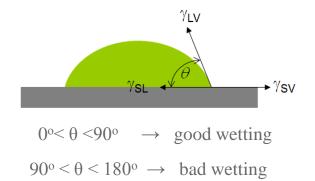
Imperial College London

WUNIVERSITY OF Department of Materials Science and Metallurgy

"Tailoring the Microstructural Evolution in Impregnated SOFC Electrodes"


Tailoring the microstructural evolution in impregnated electrodes


- Characterisation of Interfaces
- Manufacture of porous substrates and Optimisation of Impregnation procedures
 - In-situ and In-operando Spectroscopy
 - Optimisation and Demonstration of cell performance and durability


Wetting and surface energy

Objectives:

- Evaluate the surface/interfacial properties of materials and the effect of material processing
- Contact angle measurements to determine the wetting properties
- Optimisation of the contact angle
- Correlate these properties with the electrochemical performance

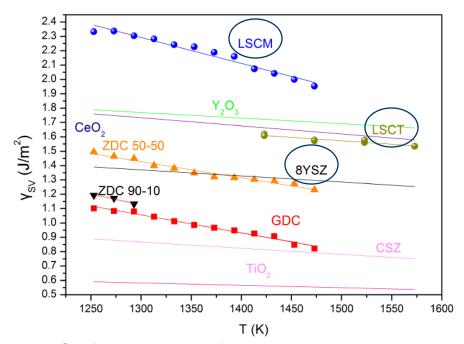
For a solid–liquid interface in thermodynamic equilibrium: $\gamma_{SL} = \gamma_{SV} + \gamma_{LV} \cdot \cos\theta$ (Young equation)

 γ_{SV} = surface energy of solid substrate

 γ_{LV} = surface energy of liquid

 γ_{SL} = interfacial energy

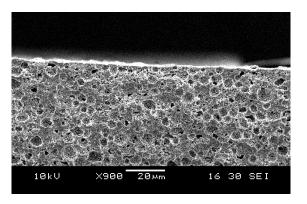
 θ = contact angle


Surface energy determination

General Energy Equation:

$$\gamma_{SL} = \gamma_{SV} + \gamma_{LV} - W$$

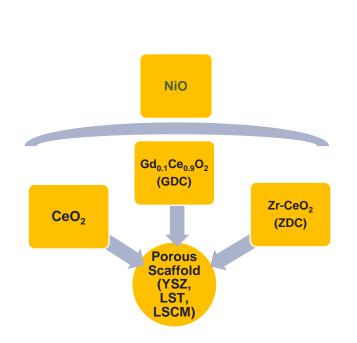
Young –Dupre equation

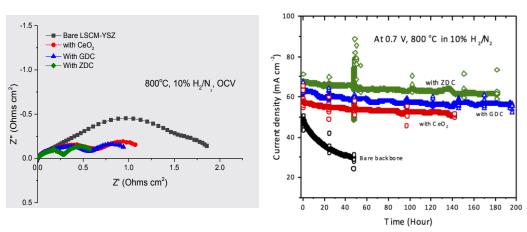

W = work of adhesion= γ_{LV} (1+ cos θ)

Surface energy of some typical materials with temperature

Optimisation of porosity and Impregnation procedures

- Develop and define porous scaffold structures;
- Optimisation of impregnation process;
- Electrochemical performance;

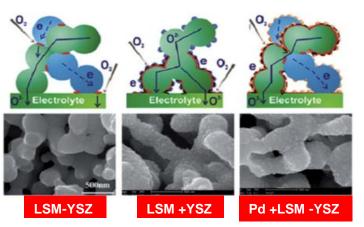



Microstructure of a YSZ backbone produced by aqueous tape casting using starch and PMMA as pore formers

HAADF STEM image of an impregnated structure

Examples of impregnated SOFC anodes

Electrochemical performance of LSCM:YSZ backbone impregnated different cerias

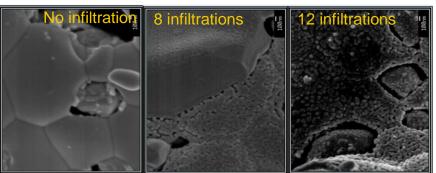


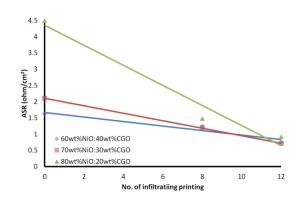

Inkjet impregnation of functional coatings (Cambridge)

Inkjet technology features:

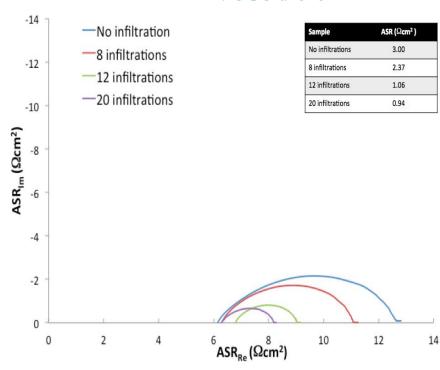
- High productivity, enabling rapid, accurate, non-contact deposition of small liquid drops
- Performance: enhanced thickness control and higher resolution compared to conventional processing
- Flexibility: restricted only be the rheology of the ink
- Cost: Lower cost and better scalability than vacuum, vapour deposition and lithographic routes.

Promoting LSM-YSZ cathode activity by impregnation

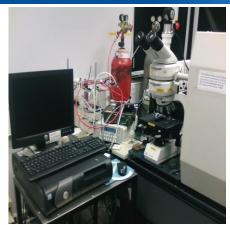


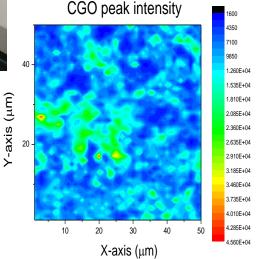

Int. J. Hydrogen Energy, 37, 449, 2012

Practical examples: Co-infiltrated LSM/YSZ, Co-Ceria LSCF cathodes


Anode TPB engineering by inkjet printing infiltration

CGO impregnation into Ni/CGO composite anode


Ni/CGO anode



Surface characterisation of impregnated electrodes

In-situ Raman Spectroscopy (Imperial)

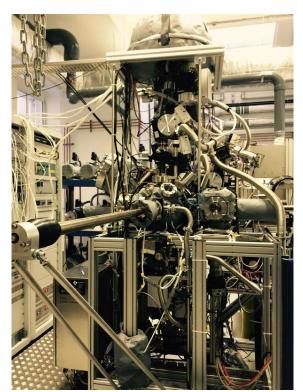
- A chemically specific, non-invasive, optical characterisation technique
- Near surface sensitivity, chemical specificity and high spatial resolution
- Technique developed to investigate reaction kinetics, temperature distribution, oxidation states and coking mechanism on SOFC operation with hydrocarbon fuels, under realistic conditions
- Well suited to examine the impact of impregnation on the reaction kinetics within a SOFC environment



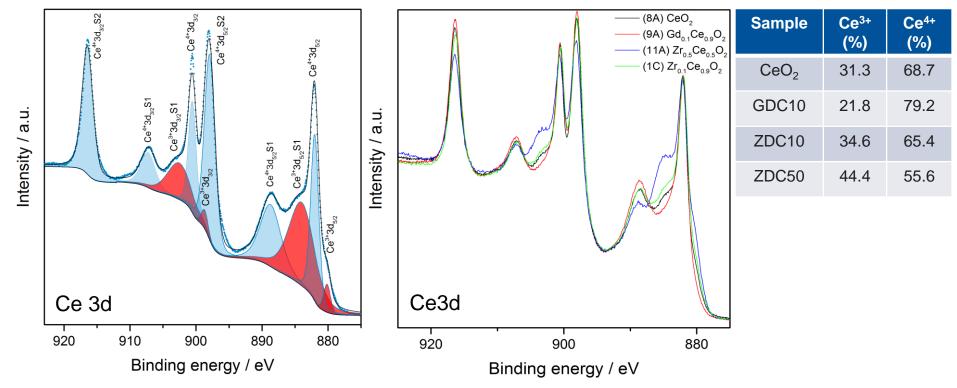
Surface distribution of species can be determined by Raman mapping through intensity integration

Surface characterisation (Raman)

Surface composition


Peak positions and relative intensities give information on oxidation state of materials Can monitor the changes in oxidation state of materials during in-situ redox cycling

Surface characterisation of impregnated electrodes


In-situ X-ray Photoelectron Spectroscopy (XPS), Imperial

- XPS is a powerful surface characterisation technique.
 - Provides quantitative analysis of the elemental composition and oxidation states of the surface
 - Examines the active redox couples involved in electrode reactions, providing insights into reduction/oxidation kinetics
- In-situ XPS is very helpful for mechanistic understanding of interactions between impregnates and backbone.

HiPPES Scienta Omicron

Surface characterisation (XPS)

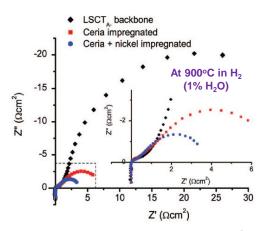
☐ Observations: Doping ceria with Gd decreases the amount of Ce³⁺ while Zr dopant increases Ce³⁺

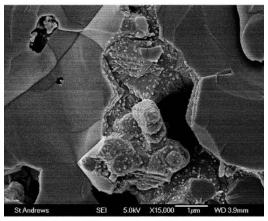
Nickel is present on the top layer of the sample and does not change the Ce³⁺/Ce⁴⁺ ratio

Summary

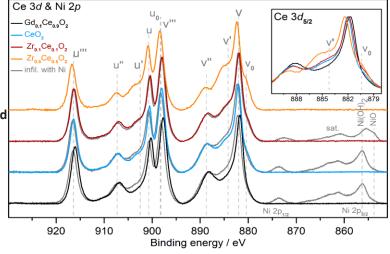
- ➤ Wet impregnation has been demonstrated to be an effective approach to produce or optimise SOFC electrodes for enhanced performance and stability;
- Systematic, fundamental studies are required to study the interactions between impregnated particles and backbone and their influence on SOFC electrode performance and durability;
- ➤ Long-term tests are needed to fundamentally understand the promotion mechanism of the infiltrated nanoparticles and assess the structural stability of the nanoscale engineered electrodes under SOFCs operation conditions.

Acknowledgements


- 1X. Yue, R. Price, M. Cassidy, P.A. Connor, G. Triantafyllou, J.T.S. Irvine,
- ²G. Kerherve, ²D.J. Payne, ³R. C. Maher, ³L. F. Cohen,
- ⁴R. Tomov, B.A. Glowacki, V.Kumar
- ¹ School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Fife, UK
- ² Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
- ³ The Blackett Laboratory, Imperial College London, London, SW7 2BZ, United Kingdom
- ⁴ Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK



Thank you for attention!


SOFC anode produced by impregnation

Designing the microstructure with diverse combination of materials

Performance and microstructure of $La_{0.2}Sr_{0.25}Ca_{0.45}TiO_3$ (LSCT_{A-}) backbone with and without Ni (5wt%) and CeO_2 (10wt%) impregnates

