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Foreword

Mathematics is an essential and integral component of all of the scientific disciplines, and its appli-
cations within chemistry are numerous and widespread. Mathematics allows a chemist to understand
a range of important concepts, model physical scenarios, and solve problems. In your pre-university
studies it is likely you have already encountered the use of mathematics within chemistry, for example
the use of ratios in mixing solutions and making dilutions or the use of logarithms in understanding
the pH scale. As you move through your university studies you will see mathematics increasingly
used to explain chemistry concepts in more sophisticated ways, for example the use of vectors in
understanding the structures of crystals, or numerical approximations of ordinary differential equa-
tions (ODEs) in kinetics to predict the rates and mechanisms of chemical reactions. The ability to
understand and apply mathematics will be important regardless of the branch of chemistry you are
studying, be it the more traditional areas of inorganic, organic and physical chemistry or some of
the newer areas of the subject such as biochemistry, analytical and environmental chemistry.

For some time it has become apparent that many students struggle with their mathematical
skills and knowledge as they make the transition to university in a wide range of subjects. From
our own experiences of teaching undergraduates we have been aware of this ‘mathematics problem’
in chemistry and in 2014 we commenced a research project, working with four excellent and highly
motivated undergraduate summer interns, to try to reach a better understanding of these issues. We
also wanted are and to develop materials and resources to aid learners as they begin their study of
chemistry within higher education. At the University of Leeds educational research was undertaken to
analyse existing data sets and capture the views and opinions of both staff and students; the findings
of this work were then used by student interns at the University of Birmingham to develop this guide.

There are already a range of textbooks available that aim to help chemistry students develop
their mathematical knowledge and skills. This guide is not intended to replace those, or indeed the
notes provided by your lecturers and tutors, but instead it provides an additional source of ma-
terial presented in a quick reference style allowing you to explore key mathematical ideas quickly
and succinctly. Its structure is mapped to include the key mathematical content most chemistry
students encounter during the early stages of their first year of undergraduate study. Its key feature
is that it contains numerous examples demonstrating how the mathematics you will learn is applied
directly within a chemistry context. Perhaps most significantly, it has been developed by students
for students, and is based upon findings from the research undertaken by students.

While this guide can act as a very useful reference resource, it is essential you work to not only
understand the mathematical ideas and concepts it contains, but that you also practice your math-
ematical skills throughout your undergraduate studies. Whereas some people adopt what might
be termed a ‘formulaic approach’, following a structured process of applying particular formulae or
equations to a problem, this will not work all of the time and the reasons why might be quite subtle.
Understanding key mathematical ideas and being able to apply these to problems in chemistry is
an essential part of being a competent and successful chemist, be that within research, industry or
academia.

With even a basic understanding of some of the mathematics that will be used in your chemistry
course, you will be well prepared to deal with the concepts and theories of chemistry. We hope this
guide provides a helpful introduction to mathematics as you begin your study of chemistry within
higher education. Enjoy, and good luck!

Michael Grove, Joe Kyle & Samantha Pugh
September 2014
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0 Introduction

We have made this booklet to assist first year chemistry students with the maths content of their course.
It has been designed as an interactive resource to compliment lecture material with particular focus on
the application of maths in chemistry. We have produced this booklet using resources, such as lecture
notes, lecture slides and past papers, provided to us by the University of Birmingham and the University
of Leeds.

0.1 About the Authors

Allan Cunningham is in his fourth and final year of an MSci Mathematics degree at the University of
Birmingham. His dissertation is on the topic of Positional Games in Combinatorics.

Rory Whelan is currently in his second year of a joint honours course in Theoretical Physics and
Applied Mathematics at the University of Birmingham. When he isn’t doing physics or maths he enjoys
juggling and solving Rubik’s cubes.

0.2 How to use this Booklet

� The contents contains hyper-links to the sections and subsections listed and they can be easily
viewed by clicking on them.

� The book on the bottom of each page will return you to the contents when clicked. Try it out for
yourself now:

� In the booklet important equations and relations appear in oval boxes, as shown below:�� ��Chemistry > Maths

� Worked examples of the mathematics contained in this booklet are in the blue boxes as shown below:

Example: What is the sum 1 + 1?

Solution: 1 + 1 = 2

� Worked chemistry examples that explain the application of mathematics in a chemistry related
problem are in the yellow boxes as shown below:

Chemistry Example: What is the molecular mass of water?

Solution: The molecular formula for water is H2O. We have that the atomic mass of oxygen
is 16 and hydrogen is 1. Hence the molecular mass of water is equal to 16 + (1× 2) = 18.

� Some examples can also be viewed as video examples. They have hyper-links that will take you to
the webpage the video is hosted on. Try this out for yourself now by clicking on the link below:

Chemistry Example: An ion is moving through a magnetic field. After a time t
the ion’s velocity has increased from u to v. The acceleration is a and is described by the
equation v = u+ at. Rearrange the equation to make a the subject.

Click here for a video example

Solution: . . .

©University of Birmingham, University of Leeds 2014
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1 Mathematical Foundations

1.1 Addition, Subtraction, Multiplication and Division

We will all be familiar with the following operations: addition (+), subtraction (−), multiplication (×)
and division (÷) but for the sake of completeness we will review some simple rules and conventions.

Operator Representation Ordering

Addition A + B A + B = B + A

Subtraction A − B A − B 6= B − A

Multiplication A×B or A ·B or A ∗B or AB A × B = B × A

Division A ÷ B or A
B

A
B 6= B

A

Addition and Multiplication are Distributive

For numbers x, y and a the distributive rule for addition and multiplication is:�� ��a× (x+ y) = (a× x) + (a× y)

Example:
For example suppose we have x = 3, y = 5 and a = 6 then:

1. a× (x+ y) = 6× (3 + 5) = 6× 8 = 48

2. (a× x) + (a× y) = (6× 3) + (6× 5) = 18 + 30 = 48

So a× (x+ y) = (a× x) + (a× y) and the distributive rule holds.

Factorisation

Factorisation is used to tidy up equations in order to make them easier to read and understand.

Example:
We can factorise the equation y = 8x + 12 if we note that both 8x and 12 are divisible by 4 this
gives us y = 4(2x+ 3).

Note: It is mathematical convention not to include the × symbol when multiplying so 4x means 4× x
and in the above example y = 4(2x+ 3) means y = 4× (2x+ 3).

Example:
We can factorise the equation y = 3x3 + 6x if we note that both 3x3 and 6x are divisible by 3x
this gives us y = 3x(x2 + 2).

Multiplying Out Terms

Multiplying out terms (or expanding out of brackets) makes use of the distributive law to remove brack-
ets from an equation and is the opposite of factorisation.

Example:
We can multiply out the equation y = 5(x+ 3) to give y = (5× x) + (5× 3) = 5x+ 15.

©University of Birmingham, University of Leeds 2014
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Example:
We can multiply out the equation y = 3z(2x4 + 7) to give:

y = (3z × 2x4) + (3z × 7)

=⇒ y = 6zx4 + 21z

Example:
We can multiply out the equation 3a[(a+ 3b)− 5(2b− a)] to give: 3a[(a+ 3b)− (5× 2b− 5× a)]
= 3a[(a+ 3b)− (10b− 5a)]

= 3a(6a− 7b)

= 18a2 − 21ab

Adding and Subtracting Negative Numbers

1. Adding a negative number is like subtracting a positive number.

2. Subtracting a negative number is like adding a positive number.

Example:
Suppose we have x = 4 and y = −3.

x+ y = 4 + (−3) = 4− 3 = 1

x− y = 4− (−3) = 4 + 3 = 7

Order of Operations: BODMAS

Consider the calculation below:

6 + (7× 32 + 1)

In what order should we calculate our operations? BODMAS tells us that we should carry out the
operations in the order listed below:

1. First Brackets.

2. Then Orders. (This is the powers and roots).

3. Then Division.

4. Then Multiplication.

5. Then Addition.

6. Then Subtraction.

Note: Addition and subtraction have the same priority so can actually be done in either order. The
same is true for multipication and division.

Example:
So returning back to 6 + (7× 32 + 1)

6 + (7× 32 + 1) Start inside the Brackets and do the Orders first

6 + (7× 9 + 1) Then Multiply the 7 and 9

6 + (63 + 1) Then Add the 63 and 1

6 + (64) Brackets are done so the last operation is to Add the 6 and 64

70
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Chemistry Example: Calculate the molecular mass of CuSO4 · 5 H2O hydrated copper
sulphate.

Solution:

Molecular mass of CuSO4 · 5 H2O = 64 + 32 + (16× 4) + 5× ((1× 2) + 16)

= 64 + 32 + 64 + 5× (2 + 16)

= 64 + 32 + 64 + 5× 18

= 64 + 32 + 64 + 90

= 250

Chemistry Example: Below is the van der Waals equation:(
p+

an2

V 2

)
(V − nb) = nRT

which relates the pressure p, the volume V and the absolute temperature T of an amount n of a
gas where a and b are constants.

Suppose we have 1.0 mol of argon gas occupying a volume of 25×10−3 m3 at a pressure of
1.0×105 Pa and a = 0.10 Pa m6 mol−2 and b = 4.0× 10−5 m3 mol−1. Calculate the left hand side
of the equation.

Solution: Using BODMAS we start with the brackets. In this question we have two brackets so
we begin with the first of them on the left side by substituting the values from the question:

(
p+

an2

V 2

)
=

(
1× 105 +

0.1× 12

(25× 10−3)2

)
Do the Orders

=

(
1× 105 +

0.1× 1

625× 10−6

)
Then Divide and Multiply

= (1× 105 + 160) Then finally Add

= 1.0016× 105

We now calculate the second bracket. First substitute the values from the question:

(V − nb) = (25× 10−3 − 1× 4× 10−5) Then Multiply

= (25× 10−3 − 4× 10−5) Then Subtract

= 2.496× 10−2

Finally as both brackets have been calculated we can find their product.(
p+

an2

V 2

)
(V − nb) = 1.0016× 105 × 2.496× 10−2 = 2.5× 103 Pa m3 to 2 significant figures.
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1.2 Mathematical Notation, Symbols and Operators

In order to save ourselves time we often use symbols as shorthand. We look at three new symbols ∆, Σ
and Π which are used to describe operations, just like (+), (−), (×) and (÷).

The Delta ∆ Operator

We use the Greek capital letter ∆ (called delta) to represent the difference (or change) between the start
and end values of a quantity. For any quantity A:

∆A = Afinal −Ainitial

where Afinal is the final amount of A and Ainitial is the initial amount of A so ∆A is equal to the difference
in these two values.

Note: If ∆A is positive then there is an increase in A and if ∆A is negative then there is a decrease in A.

Chemistry Example: If the optical absorbance Abs increases from 0.65 to 1.35 during a
reaction, what is ∆(Abs)?

Solution: First recall that:

∆(Abs) = AbsFinal −AbsInitial

From the question AbsInitial = 0.65 and AbsFinal = 1.35. Hence ∆(Abs) = 1.35− 0.65 = 0.70.

The Sigma Σ Operator

The Greek capital letter Σ (called sigma) is used to represent a sum, normally long sums which would
take a while to write out completely. The general form for a sum using sigma is:

n∑
i=1

Xi = X1 +X2 +X3 + · · ·+Xn

Below we have what each of the terms in the sum means:

� Xi are the numbers that are being summed; it could be an expression involving i.

� i is called the summation index; it identifies each term in the sum.

� i = 1 tells us to start summing at i = 1.

� n tells us to stop summing when we have reached i = n.

For a numerical explanation, consider take the sum 1 + 2 + 3 + 4 + 5. This can be simplified into the

sum notation as
5∑
i=1

i. From the notation we can see that we are summing the number i from when i is

equal to 1 to 5.

Example: What is the value of
7∑
i=4

i2

Solution: To begin we ‘read’ what the operation is telling us to do. We know it is a sum from the
Σ and the terms we are summing are the squares of the index. We are starting with 4 and ending
at 7 (and assume that each number is an integer). This then will give us:

7∑
i=4

i2 = 42 + 52 + 62 + 72 = 16 + 25 + 36 + 49 = 126
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The summation index might not be numbers, for example when finding the RMM (relative molecular
mass) of a molecule we sum the masses of all its constituent elements. This can be expressed as:∑

i=Element

NiMi

where i goes through all the elements present in the molecule. Ni is the number of element i atoms in
the molecule and Mi is the RAM (relative atomic mass) of element i.

For example finding the RMM of methane CH4 would look like this:∑
i=Elements

NiMi = NCarbonMCarbon +NHydrogenMHydrogen = (1× 12) + (4× 1) = 16

The Pi Π Operator

You will be familiar with the Greek letter π (called pi) as the constant 3.141 . . . But capital pi Π is
used as an operator. The operation it represents is similar to the one that the Sigma operator does, but
instead of adding all the terms you multiply them. The general form for the product using the Pi is:

n∏
i=1

Xi = X1 ×X2 ×X3 × · · · ×Xn

All the other notation you should recognise from the Sigma operator.

Note: An easy way to remember which is which, Sigma = Sum, Pi = Product.

Chemistry Example: A chemist is making a species that requires 3 steps. The first step
gives a 66% yield, the second gives a 50% yield and the third gives a 95% yield. What is the overall
percentage yield for this synthesis?

Solution: We can calculate the overall percentage yield by using the Pi operator as the overall
yield is the product of all the individual yields.

Overall Yield =
3∏
i=1

(yield of step i)

Plugging the numbers in gives:

Overall Yield = (yield of step 1)× (yield of step 2)× (yield of step 3)

Overall Yield = 0.66× 0.50× 0.95 = 0.3135

Hence the overall percentage yield will be 0.3135× 100 = 31% to 2 significant figures.

©University of Birmingham, University of Leeds 2014
12

http://creativecommons.org/licenses/by-nc-nd/4.0/


1.3 Fractions

Fractions are a way of expressing ratios and are synonymous to division. They are written in the form:

A

B

� The expression on the top of a fraction A is called the numerator.

� The expression on the bottom B is known as the denominator.

Note: Fractions are used as a nicer way of showing division ie: a÷ b =
a

b

Simplifying Fractions

Plenty of fractions can be reduced to simpler forms, for example 2
4 is the same as 1

2 . The best way of
simplifying is to find a number that is a factor of the numerator and the denominator so that it cancels.

Example: Simplify
350

1000
into its simplest form.

Solution: We first notice that a factor of 10 can be taken out of both the numerator and denomi-
nator, leaving us with:

10× 35

10× 100
=
��10× 35

��10× 100
=

35

100

The only remaining factors of 35 are 7 and 5. 5 is also a factor of 100 so we can take it out as a
factor as well:

35

100
=

5× 7

5× 20
= �5× 7

�5× 20
=

7

20

We can not simplify any further because the numerator and denominator share no more factors.

Example: Simplify
2x+ 6xy

4x2 + 10x3
.

Solution: We note first all the terms are even this means we can take a factor of 2 out. Also all
the terms have an x in them meaning we can take a factor of x out.

Since we now have a factor of 2x on both the numerator and denominator it will cancel, leaving
us with a fraction that can’t be simplified any more. The following steps are illustrated below.

2x+ 6xy

4x2 + 10x3
=

2(x+ 3xy)

2(2x2 + 5x3)
=

2x(1 + 3y)

2x(2x+ 5x2)
=
��2x(1 + 3y)

��2x(2x+ 5x2)
=

1 + 3y

2x+ 5x2

Chemistry Example: What fraction of water’s mass is hydrogen?

Solution: Recall the relative atomic mass of oxygen and hydrogen are 16 and 1 respectively.
Remeber also that the molecular formula for water is H2O.

So the molecular mass of water is equal to (1× 2) + 16 = 18. The mass of the hydrogen in water
is 2, so out of the 18 amu (atomic mass units) 2 are of the hydrogen. Expressed as a fraction this
is 2

18 which simplifies to 1
9 .

Note: Don’t fall into the trap when simplifying shown in this incorrect example:

a+ b

b+ c
=
a+ �b

�b+ c
=
a

c
WRONG!

If you still are uncertain then use a = 1, b = 2, c = 3 and then be shocked to find that 1
3 = 3

5 !
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Multiplying Fractions

Multiplying two fractions together is a simple process, the numerator is the product of the numerators
and the denominator is the product of the denominators.�



�
	a

b
× x

y
=
a× x
b× y

Generally when we multiply many fractions together, the numerator is the product of all the numer-
ators and similarly with the denominators. Using the Π notation we can generalise this as:�

�

�

�
a

b
× c

d
× · · · × y

z
=
a× c× · · · × y
b× d× · · · × z

=

y∏
a

numerators

z∏
b

denominators

Note: If we are multiplying a fraction by a number that isn’t in fraction form, such as an integer or π,
then it will only multiply the numerator. We do this by treating it as a fraction in the form number

1 as
shown in question 2 of the next example.

Example: Find the following:

1.
1

2
× 2

3
× 4

5
× 5

7

2. 5
√

2× 3

10

Solution:

1.
1

2
× 2

3
× 4

5
× 5

7
=

1× 2× 4× 5

2× 3× 5× 7
=

40

210
=

4

21

2. 5
√

2× 3

10
=

5
√

2

1
× 3

10
=

5
√

2× 3

1× 10
=

15
√

2

10
=

3
√

2

2

Chemistry Example: A chemist prepares a solution containing 1
50 mole of propanol in

1000ml of water. How many moles are there in a 250ml aliquot of this solution?

Solution: To calculate this we need to know what fraction 250 ml is to 1000ml. That will be 250
1000

which simplifies to 1
4 .

The number of moles taken out is then the product of the two fractions, 1
50 ×

1
4 = 1×1

50×4 = 1
200 .

Dividing Fractions

The inverse of the fraction is where the numerator and denominator switch, e.g. fraction a
b has an inverse

of b
a .

Division is the inverse of multiplication so when we divide by a fraction we are essentially multiplying
by the inverse of that fraction. So a general example of division of fractions would look like:�

�

�

�

(
a

b

)
(
c

d

) =
a

b
× d

c
=
ad

bc
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Example: Find the following:

9

16
÷ 3

4

Solution:

9

16
÷ 3

4
=

9

16
× 4

3
=

9× 4

16× 3
=

36

48
=

3

4

Adding and Subtracting Fractions

To be able to add and subtract two fractions they both need to have the same denominator called a
‘common denominator’. Take 1

4 + 1
5 for example. We need a new denominator for both in order to add

them. The easiest denominator to pick is almost always the product of the two so in this case 4×5 = 20.

1

4
+

1

5
=

(
1

4
× 5

5

)
+

(
1

5
× 4

4

)
=

5

20
+

4

20
=

9

20

Subtracting fractions works exactly the same way, the denominators need to be the same but you
then subtract at the end.

Example: Find
1

3
+

1

6
. Express your answer as a simplified fraction.

Solution: The first thing is to check whether the denominators are the same and if not can we do
to fix that. Notice that in this case we don’t need to change the second fraction because 3 is a
factor of 6. What we would do instead is change the first fraction to have 6 as the denominator
by multiplying by 2

2 .

1× 2

3× 2
+

1

6
=

2

6
+

1

6
=

3

6

From here we can see that the fraction can be simplified further. A factor of 3 can be taken out
of the top and bottom leaving us with:

3× 1

3× 2
= �

3× 1

�3× 2
=

1

2

Example: Express
1

x+ 1
− 1

x− 1
as a single fraction.

Solution: To do this we will multiply the denominators to get (x+1)(x−1) as the new denominator.(
1

x+ 1
× x− 1

x− 1

)
−
(

1

x− 1
× x+ 1

x+ 1

)

=
x− 1

(x+ 1)(x− 1)
− x+ 1

(x+ 1)(x− 1)
=

(x− 1)− (x+ 1)

(x+ 1)(x− 1)
=

−2

(x+ 1)(x− 1)

Being able to work with fractions is good as you don’t always need a calculator to calculate them
unlike if you exclusively used decimals for all calculation.
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1.4 Percentages

Percentages express how large one quantity is relative to another quantity; so for example percentage
yields express how large the yield of a reaction is compared to the theoretical yield. A percentage of a
quantity is a way of expressing a number as a fraction of 100. The symbol for percentage is %.

In general if we have quantities x and y and we want to express how large x is compared to y (i.e.
what percentage is x of y?) we can use the formula:�



�
	percentage =

x

y
× 100%

Example: What percentage is 8 of 160?

Solution:

8

160
× 100% = 5%

We may also want to calculate the percentage of a quantity for example, what is 28% of 132? In
general we can use the formula: �



�
	x =

percentage

100%
× y

Example: What is 28% of 132?

Solution:

x =
28%

100%
× 132 = 36.96

Chemistry Example: In the esterification reaction

CH3OH + CH3COOH −−→ CH3COOCH3 + H2O

the reactants combine in the following proportions based on their molar masses: 32g of CH3OH
reacts with 60g of CH3COOH to form 74g of the ester product.

In a particular reaction 1.8g of methanol is mixed with an excess of ethanoic acid. At the end of
the experiment 2.6g of the ester is extracted. What is the percentage yield?

percentage yield =
actual yield

theoretical maximum yield
× 100%.

Solution: First we need to calculate the theoretical maximum yield:

From the question we know that 32g of CH3OH yields 74g of ester.

Dividing through by 32 gives us that 1g of CH3OH yields 74
32g of ester.

Multiplying by 1.8 gives us that 1.8g of CH3OH yields 1.8× 74
32 = 4.2g of ester.

We know from the question the actual yield is 2.6g so using the percentage yield formula we have

percentage yield =
2.6g

4.2g
× 100% = 61.9%.

Note: We may wish to convert between fractions and percentages:

1. To convert a fraction to a percentage we multiply the fraction by 100%. For example, 1
2 as a

percentage is 1
2 × 100% = 50%.

2. To convert a percentage to a fraction we divide the percentage by 100% and simplify. For example,
25% as a fraction is 25%

100% = 1
4 .
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1.5 Rounding, Significant Figures and Decimal places

Rounding

We round numbers as follows:

1. Decide to which ‘nearest’ number or decimal point to round to.

2. Leave it the same if the next digit is less than 5 (rounding down).

3. Increase it by 1 if the next digit is 5 or more (rounding up).

Example: Round 467 to the nearest 10.

Solution: So the answer is 470 (we round up to 470 as the digit after the 6 is a 7).

Example: Round 0.314 to 2 decimal places.

Solution: So the answer is 0.31 (we round down to 0.31 as the digit after the 1 is a 4).

Significant Figures

Significant figures are used to give us an answer to the appropriate precision. We use s.f. as a short hand
for significant figures. So we write a number to a given number of significant figures as follows:

� When asked to write a number to n significant figures we only display the first n non-zero digits.

� Therefore an answer may require rounding up or down. For example, a temperature of 37.678◦C
to 3 s.f. is 37.7◦C.

� For positive decimals less than 1 we start counting the number of significant figures from the first
non-zero number. For example, 0.009436 to 2 s.f. is 0.0094 and not 0.00.

� We use significant figures on negative numbers in the same way. For example, −137.54 to 2 s.f. is
−140.

IMPORTANT: When multiplying or dividing numbers expressed to different numbers of significant
figures we leave our answer to smallest number of significant figures used in the numbers we have multi-
plied or divided.

Chemistry Example: Below we have the reaction of methanol and salicylic acid to from the
ester methyl salicylate.

O

O H

OH

+ HO CH3 −−→

O

O CH3

OH

+ H2O

The rate of formation of the ester is given by the expression:

rate = k[methanol][salicylic acid]

where k is the rate constant. What is the rate when k = 3.057 (mol dm−3)−1s−1, [methanol] =
3 mol dm−3 and [salicylic acid] = 0.86 mol dm−3?

Solution: So substituting these values into the rate equation gives:

rate = 3.057× 3× 0.86 = 7.88706 mol dm−3s−1

Now our concentration of methanol was expressed in the fewest number of significant figures, in
fact to 1 s.f. so we should also leave our answer to 1 s.f.

rate = 8 mol dm−3s−1
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Decimal Places

The correct number of decimal places is used to indicate the correct precision when adding or subtract-
ing. Consider the number 4.5312 which is given to 4 d.p. (decimal places). However we could also write
this number to 1 d.p. which would be 4.5.

Example: A Baker is making a cake and adds to the mixture 100.0g of flour, 40.2g of sugar
and 50.134g of eggs. Calculate the total mass of the cake to the correct number of decimal places.

Solution: The issue is that the masses in the question are given to different numbers of decimal
places. So we must follow these steps:

1. Add or subtract as normal including all the decimal places.

2. Round the answer to the smallest number of decimal places of the items used in step 1.

Applying these rules to the example:

1. 100.0g + 40.2g + 50.134g = 190.334g

2. Now the smallest number of decimal places in the items we summed in step 1. is 1 d.p. from
the 100.0g of flour and 40.2g of sugar so we round our answer from part 1 to 1 d.p. to get
the answer 190.3g.

©University of Birmingham, University of Leeds 2014
18

http://creativecommons.org/licenses/by-nc-nd/4.0/


1.6 Equations and Functions

Physical and chemical quantities are often linked in equations.

y = ax + b

variables

coefficient of x constants

� Variables are quantities that can take different values; they can vary.

� Constants are fixed numbers so unlike variables cannot change.

� The coefficient of x is the constant before the x. In the same way for the equation y = 8t2 + t the
coefficient of t2 is 8 and the coefficient of t is 1.

What is a Function?

Relationships between quantities are referred to as functions which we usually denote f(x), pronounced
‘f of x’.

In general we have y is a function of x:

y = f(x)

This means that y is equal to an expression ‘made up’ of x’s. For example y = x+ 3 or y = e3x.

� So a function takes a quantity (a variable or number) and applies operations to it. This produces
new quantity.

� Although we have used the notation f(x) there is no reason why we could not use g(x) or even
φ(x).

� We can also have f(z) or g(θ) if we have functions ‘made up’ of variables other than x. For example
f(z) = z2 and g(θ) = cos(θ).

Note: We can often think of f(x) and y as interchangeable.

Example: The function f takes a variable, doubles it and then subracts 2. The function g
halves its input. What is:

1. f(3)?

2. f(x)?

3. g(8)?

Solution:

1. The function f takes the input and doubles it then subtracts 2. With the input being 3, we
can find f(3) by applying those steps to the number 3. When we double it we get 6. Subtract
2 then gives us 4. So our final answer is f(3) = 4.

2. We do these same steps but with the variable x instead of a number. First we double it to
give 2x. Then we subract 2 to give 2x− 2. We now have that f(x) = 2x− 2.

3. We apply the function g to 8. Halving 8 will give us 4, hence g(8) = 4.
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Chemistry Example: In an experiment, the pressure of a gas is monitored as the tempera-
ture is changed, while the volume and amount of gas remain constant and the following relationship
was established:

p = 0.034T

1. Identify the variables and coefficients in the equation.

2. What is p a function of?

3. Given that T = 343 what is the value of p?

Solution:

1. In the experiment, p can vary and T can also vary. This means that p and T are both
variables. The 0.034 is multiplying the T, making it a coefficient. The coefficient of p is 1.

2. In the equation p = 0.0341T the only other variable apart from p is T . Hence p is a function
of T and T alone.

3. To find this we will substitute 343 for T into the equation to get, p = 0.0341×343 = 11.662 =
11.7 (to 3 s.f.)

Functions with Multiple Variables

Functions can also be of multiple variables. The function:

y = f(x, z)

means that the function f takes in a value of x and also a value of z to give an output so x and z are
both variables. For example:

y = f(x, z) = xz + 2x+ 2

This function would input variables x and z and give their product plus 2x plus 2 as an output. If x = 2
and z = 1

2 then y = 7.

Chemistry Example:

Consider the ideal gas equation:

pV = nRT .

The temperature T can be expressed as a function of pressure p and volume V which are variables.
This can be written as:

T = f(p, V ) =
pV

nR

Note: You wouldn’t say that T is a function of n and R since they are constants and not variables
and therefore T does not depend on them.
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1.7 Graphs

Plotting data on a graph has the major advantage it is often clear to see trends and patterns that are
present. In experiments we have:

� a control variable that we can change,

� an observed variable that we measure,

� and all other quantities we try and keep constant.

When plotting a graph of data we always plot the control variable along the horizontal (or x) axis
and the observed variable along the vertical (or y) axis.
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,
y

Straight Line Graphs

Straight line graphs come in the form: �� ��y = mx+ c

where x is the controlled variable, y is the observed variable and m and c are constants.

� c is known as the intercept and is where the graph passes through the y-axis. Hence to find c we
find the value of y when x = 0.

� m is known as the gradient and describes how steep the line is. It can be found by drawing a
‘triangle ’ on the straight line and using it to calculate the equation:

m =
∆y

∆x

This can all be visualised on the graph below:

When x increases from 1 to 3 we have that y increases
from 1 to 5. Hence

∆x = 3− 1 = 2

∆y = 5− 1 = 4

So the gradient m =
∆y

∆x
=

4

2
= 2

The intercept c is where the graph passes through the y-axis
hence from the graph we can see c = −1.
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Example: What is the equation of the straight line shown in the diagram below?

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

∆y

∆x

Solution: We know that since this a straight line it will be in the form y = mx+ c. The value of
c is the value of y when x = 0. At x = 0, y = 1 from the graph. Therefore c = 1.

To find m we need to calculate
∆y

∆x
. Using the triangle method with the triangle in the above

graph gives:

gradient =
∆y

∆x
=
y2 − y1

x2 − x1
=

3− (−1)

1− (−1)
=

4

2
= 2

Since m = 2, the equation of the line is y = 2x+ 1.

Example: What is the equation of the straight line shown in the diagram below?

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

0

∆y

∆x

Solution: Since this a straight line it will be in the form y = mx + c. The value of c can be seen
to be 0, because when x = 0, y is also 0.

Using the triangle method we can find the gradient of the line. With the triangles on the graph
we have:

gradient =
∆y

∆x
=
y2 − y1

x2 − x1
=
−1− 1

2− (−2)
=
−2

4
= −1

2

Combining this altogether gives us that the equation of this line is, y = −1

2
x.
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Graphs with Units

Often graphs won’t be those of just numbers and a line but instead will have some physical significance
and hence include units. Consider the graph of a particle’s velocity as a function of time:
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The equation of the line is v = 8t+ 25. v has units of metres per seconds and to make the equation
work so everything on the right hand side must also have units of metres per second as well. That means
that the c = 25 has units of m/s. This 25 m/s is the starting velocity of the particle.

The units of m can be worked out from the equation:

∆y

∆x
or in this case

∆v

∆t

∆v has the same units as v (m/s) and similarly ∆t has the units (s). This means m, the gradient, has

units of m/s ÷ s or m/s
2
. Since the gradient has units of distance per time squared, then it means that

it is an acceleration. The particle will accelerate at 8m/s
2
.
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2 Algebra

2.1 Powers

Powers are a way to write that we have multiplied a number by itself a given number of times. For
example 4 squared is 42 = 4×4 and 5 cubed would be 53 = 5×5×5. So more generally, for any positive
whole number n: �



�
	xn = x× x× ...× x︸ ︷︷ ︸

n times

� We call x the base.

� We call n the index of the base or its power.

We would either say xn as ‘x raised to the power of n’, ‘x to the power of n’ or ‘x to the n’.

Example:

So we can write T × T × T × T × T as T 5. (Note that T is the base and the power is 5).

Example:

It is worth noting when a negative number is raised to an even power then the answer is positive.

(−2)4 = −2×−2×−2×−2 = 16

Negative Powers

We can also have negative numbers as powers, these give fractions called reciprocals for example 2−1 = 1
2 .

So more generally: �
�

�
�

x−n =
1

xn

As long as x 6= 0

Example:

So we can write
1

qqqqqq
as

1

q6
which is q−6.

We can simplify multiple terms like in the examples below by collecting together the terms which are
the same.

Example:

So we can simplify cccdcd to c4d2. (Note that we have collected all the c and d together separately).

Example:

So we can simplify
xxyzzzz

abbb
to

x2yz4

ab3
which we can then write as x2yz4a−1b−3.

Special Cases

1. Any non zero number raised to the power of 1 is itself, for example 31 = 3 and 151 = 15. So we
have: �� ��x1 = x
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Note: Usually we do not write bases to the index of 1 we just write the base. So we would write
x and not x1.

2. If a number is rasied to the power of 0 then the answer is 1. For example 40 = 1 and (−454.786)0 =
1. So we have: �� ��x0 = 1

Rules for Powers

We have the following three rules for when working with powers:

1. xa × xb = xa+b

2.
xa

xb
= xa−b

3. (xa)b = xa×b

Example:

So we can simplify
y3z2y4

z6
to y3+4z2−6 which is y7z−4 (we have used rules 1 and 2 here).

Example:

So we can simplify (a3b2ca)2 using rule 1 to (a3+1b2c)2 to (a4)2(b2)2(c)2 which we can then write
by using rule 3 as a8b4c2.

Roots

The opposite of squaring a number say 42 = 16 is finding the square root in this case
√

16 = 4. Note the
notation for square root is

√
. The same is true for cubing and cube roots which are denoted 3

√
. For

example 3× 3× 3 = 27 so 3
√

27 = 3. In general the opposite of raising a number x to the power of n is
to find the nth root which is denoted n

√
.

We also use fractional powers as another, often more useful way, to write roots. So we have that√
x = x

1
2 and 3

√
x = x

1
3 . More generally we have:�� ��x

1
n = n

√
x

Note: A root written in its fractional form is often must easier to manipulate with the algebraic rules
for powers.

Example:

A numerical example: since 5
√

32 = 2 we could also write 32
1
5 = 2.

Example:

So we can write

√
x

x
=
x

1
2

x
= x

1
2−1 = x−

1
2 .
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Example: Simplify the following:
3
√
ab3(ac4)2

a
4
3 b

The first thing that we can do is expand the brackets on the numerator to give:

3
√
ab3(ac4)2

a
4
3 b

=
3
√
ab3a2c8

a
4
3 b

The cube root can now be simplified

=
a

1
3 ba2c8

a
4
3 b

All the powers can be collected

= a
1
3−

4
3 +2 b1−1 c8 This can be simplified

= a−1+2 b0 c8

= ac8
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2.2 Rearranging Equations

Rearranging equations is changing the arrangement of terms in an equation. Consider the ideal gas
equation pV = nRT . We could rearrange the equation so that we have T in terms of the other variables,
so in this case T = pV

nR . This rearranging is called making T the subject of the formula. When rearranging
we perform operations to both sides of the equation so we may:

� Add or subtract the same quantity to or from both sides.

� Multiply or divide both sides by the same quantity.

Order to do Rearrangements

BODMAS is used to decide which operations we should undo to make our quantity the subject. It is
used in reverse, so the operations are undone in the following order:

1. Subtraction

2. Addition

3. Multiplication

4. Division

5. Orders

6. Brackets

Note: As we mentioned in Section 1.1, addition and subtraction have the same priority so can be done
in either order. The same is true for multiplication and division.

Chemistry Example: An ion is moving through a magnetic field. After a time t the ion’s
velocity has increased from u to v. The acceleration is a and is described by the equation v = u+at.
Rearrange the equation to make a the subject.

Click here for a video example

Solution: We identify the operations in use are + and ×. Then we undo (or invert) each of the
operations. Remember that we can do anything as long as we do it on both sides of the = sign.

v = u+ at

We start by undoing the addition as we go in the order of BODMAS backwards. On the right
hand side we have u being added to the term involving a. We then invert the operation by doing
the opposite and subtracting u from both sides of the equation. So

v = u+ at

=⇒ v − u = u− u+ at

=⇒ v − u = at

We can now see that the only other operation acting on our a is multiplication which we undo by
dividing both sides of the equation by t:

=⇒ v − u
t

=
at

t

=⇒ v − u
t

=
aCt

Ct

=⇒ a =
v − u
t

We now have made a the subject of this equation.
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Chemistry Example: In thermodynamics, the Gibbs Function ∆G dictates whether a re-
action is feasible at a temperature T . ∆S and ∆H are the entropy and enthalpy changes for the
reaction. They are all related by the following equation:

∆G = ∆H − T∆S

Rearrange this equation to make ∆S the subject.

Solution: The first step is to undo the subtraction on the right hand side by adding T∆S to each
side. This produces the equation:

∆G+ T∆S = ∆H

The next step would be to undo the addition by subtracting ∆G from both sides to get the term
involving ∆S on its own. Doing this step gives:

T∆S = ∆H −∆G

This leaves only the multiplication to be dealt with, which is undone by dividing by T to give the
equation for ∆S to be:

∆S =
∆H −∆G

T

Rearranging with Powers and Roots

The inverse operations of powers are roots, so to reverse a power we take a root and vice versa. We
complete rearrangement in reverse order of BODMAS therefore we rearrange powers and roots in the
orders section.

Example: Einstein’s equation for mass energy equivalence is often seen in the form:

E = mc2

Express it with c being the subject.

Solution: To start with we would divide each side of the equation by m.

E

m
=
mc2

m
=⇒ E

m
=�
�mc2

��m
=⇒ E

m
= c2

Now c is raised to the power of 2. To undo this operation we take the square root of both sides.

E

m
= c2 =⇒

√
E

m
=
√
c2 =⇒

√
E

m
= c

Note: If we were to make a the subject in the equation a2 = b+ c we take the square root of the whole
of both sides of the equation to get a =

√
b+ c and not a =

√
b+
√
c.

Note: Similarly if we were to make d the subject in the equation
√
d = e + f we square the whole of

both sides of the equation to get d = (e+ f)2 and not d = e2 + f2.
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Example: Solve the following:

1. Given px+ a = qx+ b make x the subject of the formula.

2. Given

√
t+ 2

y
= y make t the subject of the equation.

3. Make P the subject of the equation x(1 + P )2 =
4

x

Click for video example of Question 3

Solution:

1. We have an x on both sides of the equation px + a = qx + b so we need to collect these
together, first by subtracting qx from both sides to get:

px+ a− qx = qx+ b− qx Then factorise and simplify

x(p− q) + a = b Subtract a from both sides

x(p− q) + a− a = b− a Now simplify

x(p− q) = b− a Divide both sides by (p− q)

x =
b− a
p− q

Hence x is now the subject

2. We notice that the only t is on the top of the fraction and underneath a square root. The
first step would be to multiply both sides by y to get:

√
t+ 2 = y2 Take away 2 from both sides
√
t = y2 − 2 Square both sides to remove the root

t = (y2 − 2)2 Hence t is now the subject

3. The P is inside a bracket which is being squared and multiplied. The first step would be to
divide both sides by x to give:

(1 + P )2 =
4

x2
Take the square root of both sides

1 + P =

√
4

x2
This square root can be simplified down, since the numerator

and denominator are both squares

1 + P =
2

x
Subtract 1 from both sides

P =
2

x
− 1 Hence P is now the subject

Click here for a video example on a similar question

©University of Birmingham, University of Leeds 2014
29

https://vimeo.com/103113640
https://vimeo.com/103113811
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.3 Physical quantities, Units and Conversions

Often we don’t just have numbers on their own, they are connected to physical quantities that can be
measured such as time, concentration, mass or velocity. When describing a quantity, units are needed
to define what it means physically. There is a lot of difference between 200 degrees Celsius, 200 Kelvin
and 200 degrees as an angle!

All quantities share the same format:�� ��Variable = Number×Units

E.g. suppose we have the mass m of the product is m = 1.2 g. Then the mass m is the variable, 1.2 is
the number and g grams are the units.

� Any terms in an equation that are added or subtracted need to have the same units in order to
produce an answer that makes sense. For example the sum 3kg + 12s doesn’t make physical sense.

� However different units can be multiplied together and divided to make a new compound unit.

Example: Speed is calculated from the equation:

Speed = Distance
Time

Distance is measured in metres m and time is measured in seconds s. What are the units of speed?

Solution: To do this we replace the terms in the equation with their units.

Units of Speed =
m

s

This means that this speed is measured in metres per second m
s . This can also be denoted by m/s

or ms−1.

Note: If a unit has a negative power then it is said to be per that unit. For example kJ mol−1 is
pronounced as kilo-joules per mole.

Base Units

There are 7 fundamental quantities in all of science which all other quantities are built from. These with
their SI units are:

� Length measured in meters m.

� Mass measured in kilograms kg.

� Time measured in seconds s.

� Temperature measured in kelvin K.

� Amount of substance measured in moles mol.

� Electric current measured in amperes A.

� Luminous intensity measured in candelas cd.

The main ones we are interested in for chemistry are mass, time, temperature, amount of substance
and length. From these we can construct a whole host of other units such as newtons N and pascals Pa.
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Chemistry Example: Find the units of the molar gas constant R using the ideal gas equation
pV = nRT where p is measured in kg m−1 s−2, V in m3, n in mol and T in K.

Solution: To begin we should rearrange the equation to make R the subject as it’s easier to do
this before putting the units in. So divide both sides of the equation by nT to give:

pV

nT
=
nRT

nT
=⇒ pV

nT
= R

Now we can substitute the units into this equation and then group the powers.

Units of R =
kg m−1s−2m3

mol K
=

kg m2s−2

mol K
= kg m2s−2mol−1K−1

It might look ugly but many physical constants have complex units.

Note: Calculating units is a good way of checking an equation has been manipulated correctly since the
units must be equal on both sides. For example if the left hand side of the equation has units of mass
per temperature then the right hand side must do as well.

Unit prefixes and Scientific Notation

The numbers used in chemistry range dramatically from being very large like Avogadro’s number to
incredibly small such as Planck’s constant so we use either prefixes or scientific notation to display num-
bers in a concise form. Take the kilogram for example, it means 1000 grams because it uses the prefix
kilo k to mean ×103 (which is 1000).

The SI prefixes that you are expected to know are shown in this table below.

Prefix Symbol Power of 10

Atto a 10−18

Femto f 10−15

Pico p 10−12

Nano n 10−9

Micro µ 10−6

Milli m 10−3

Centi c 10−2

Deci d 10−1

1 1 100

Kilo k 103

Mega M 106

Giga G 109

Tera T 1012

Peta P 1015

Example: Express the world’s population using an SI prefix to 1 significant figure.

Solution: At time of writing the world’s population is 7 billion people to 1 significant figure or
7,000,000,000. This can be written as 7× 1, 000, 000, 000 = 7× 109. 109 has to prefix Giga, G, so
the population would be 7 Giga-people.

Scientific notation (or standard form) is another way of writing incredibly large or small numbers.
Instead of writing the number to the nearest SI prefix, we write the number as one (non-zero) digit
followed by the decimal places all multiplied by the appropriate power of ten. For example 3112 is
3.112× 103 in standard form.
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Chemistry Example: Avogadro’s constant Na is 602 200 000 000 000 000 000 000 to 4
significant figures. Express it in standard form.

Solution: We need to first find the nearest power of 10. To do this we count how many places are
after the first digit. There are 23 places after the (first digit), so the power of 10 will be 23, 1023.

The appropriate decimal number would be 6.022, since that has a single digit followed by the
decimal places.

This then makes Avogadro’s constant 6.022×1023 to 4 s.f.

Converting between Units

For some measurements chemists prefer to use non-SI units because they produce nicer numbers to work
with. For example the Ångström (Å) is a unit of length with 1Å= 10−10m hence is more appropriate
unit when working with atomic spacings.

IMPORTANT: When substituting numerical values into equations to find another quantity we must
substitute the values in their SI form. For example when working in Ångström’s we would first have to
convert our answer to metres before substituting.

Example: The temperature outside is measured to be 95◦F. Given that Fahrenheit and Celsius
are linked by the equation:

C = 5
9 × (F− 32)

and Celsius and Kelvin are linked by the equation:

K = C + 273

Calculate the outside temperature in Kelvin.

Solution: We need to apply 2 changes in units, first from F to C and then from C to K. We
know the the temperature is 95◦F. Hence using the equation below we can find the temperature
in Celsius:

C = 5
9 × (F− 32) = 5

9 × (95− 32) = 5
9 × 63 = 35.

The temperature in Celsius is 35◦. Now all that is needed to do is put this into the equation below
to find the temperature in Kelvin:

K = C + 273 = 35 + 273 = 308.

Chemistry Example: An industrial chemist produces 2.5×105 dm3 of fertiliser in a reaction.
How much is that in m3?

Solution: First we need to find how many m3 there are per dm3. So we start with 1m3.

1m3 = (1m)3

We know what the conversion between m and dm from our prefixes table is 1dm = 0.1m which
means that 1m = 10dm. Substituting this back in gives:

(1m)3 = (10dm)3 Expand this out

1m3 = 103dm3 Divide through by 103

10−3m3 = 1dm3

We have a relation that allows us to put in dm3 and get out what it is in m3.

2.5× 105 dm3 = 2.5× 105 × 10−3 m3

=⇒ 2.5× 105 dm3 = 2.5× 102 m3
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2.4 Exponentials

We may use the term ‘exponential growth’ as a way to describe the rate of a reaction as the temperature
increases. In using this phrase we are describing a very fast rate of increase. We can represent this idea
mathematically with one of the simplest exponential equations:�� ��y = ax

where a is a constant, x is the controlled variable (in the above case temperature) and y is the observed
variable (in the above case rate of reaction).
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Above we have the graph of y = 2x and we can see the graph increases at very fast rate which is
what we would expect with exponential growth. Other mathematical things to note are:

� The graph passes through the point (0, 1) as any variable raised to the power of 0 is equal to 1.

� The values of y are small and positive when x is negative.

� The values of y are large and positive when x is positive.

The Exponential Function

So far we have used the word exponential to describe equations in the form y = ax however the word is
usually reserved to describe a special type of function. It is quite likely we will have seen the symbol π
before and know it represents the infinite number 3.14159265 . . . In this section we will be working with
the number:

e = 2.7182818 . . .

Like π, e is another number that goes on forever! When we refer to the exponential function we mean
y = ex. This can be seen as a special case of the previous section when the constant is a = e in the
equation y = ax. When we refer to ex we say ‘e to the x’.

Note: Another notation for ex is exp(x). They mean the same thing.
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Chemistry Example: The Arrhenius equation below describes the exponential relationship
between the rate of a reaction k and the temperature T

k = A exp

(
− Ea
RT

)
where R,Ea and A are all constants. Suppose for a reaction that the activation energy is Ea =
52.0 kJ mol−1, the gas constant R = 8.31 J K−1 mol−1 and A = 1.00. What is the rate of the
reaction k when the temperature T = 241 K?

Solution: We substitute our given values from the question into the Arrhenius equation.

k = A exp

(
− Ea
RT

)
= 1× exp

(
− 52× 103

8.31× 241

)
=⇒ k = exp(−25.9648 . . . )

=⇒ k = 5.2920 . . .× 10−12

=⇒ k = 5.29× 10−12 (to 3 s.f.)

Remember we can use the e button on our calculator to find the final answer.

Exponential Graphs

Exponential graphs follow two general shapes called growth and decay which are shown below.

� On the left exponential growth which is represented by the equation y = ex note that the graph
gets steeper from left to right.

� On the right exponential decay which is represented by the equation y = e−x note that the graph
gets shallower from left to right.

Algebraic Rules for Exponentials

We use very similar rules as the ones we had for powers. The only difference is that the base in now a
constant and the power is a variable.

1. ax × ay = ax+y

2.
ax

ay
= ax−y

3. (ax)y = ax×y

Note: Above we have that x and y are variables and a is a constant for example a = e or a = 3. And in
order to use the rules a must be the same for all terms. For example we can not simplify ex × 3x × 4x.
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Example: Simplify the following equations:

1. y = 3x × 32x

2. y =
2x

4

3. y =
(
e−x+1

)x
Solution:

1. Since the bases are the same we use the first rule.

y = 3x × 32x = 3x+2x = 33x

2. The first thing we notice is that 4 can be written as 22 so:

y =
2x

22
.

Now are we have powers to the same base we can apply the rules. Using the second rule we
have:

y = 2x−2

3. Using the third rule we get that:

y = e(−x+1)×x = e−x
2+x
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2.5 Logarithms

Just as addition and multiplication have inverses (subtraction and division) so we have inverses for ex-
ponentials. These are called logarithms. A logarithm answers the question ‘how many of one number do
we multiply to get another number?’

Example: How many 2’s do we multiply to get 8?

Solution: 2× 2× 2 = 8 so we need to multiply 3 of the 2’s to get 8. So the logarithm is 3.

We have a notation for logarithms for example the last example would be written as:

log2(8) = 3

where this tells us we need multiply 2 by itself 3 times to get 8.

So more generally we can write: �� ��loga(x) = y

� This tells us we need multiply a by itself y times to get x. (In other words x = ay).

� We say that a is the base of the logarithm.

We can see clearly that as logarithms are the inverse of exponents there exists a relationship between
the two given by: �� ��If y = ax then x = loga(y)

Example: Write 810.5 = 9 as a logarithm.

Solution: So we need to multiply 81 by itself 0.5 times to get 9 so we have log81(9) = 0.5

Example: If 10x = 3 then find x.

Solution: We need to multiply 10 by itself x times to get 3 so we have:

x = log10(3) = 0.477 to 3 s.f.

Logarithms are useful for expressing quantities that span several orders of magnitude. For example
the pH equation pH = − log10 [H+] as small change in pH results in a very large change in [H+].

Logarithms: The Inverses of Exponentials

As taking a logarithm is the inverse of an exponentials to the same base. We can cancel them using the
rules below. �� ��loga(ax) = x�� ��aloga(x) = x

IMPORTANT:

1. When cancelling in the first case all the quantities in the logarithm must be contained in the
‘power’ of the exponential. For example loga(ax + 3) 6= x + 3 as the 3 is not part of the power of
the exponential.

2. When cancelling in the second case all of the power must be contained in the logarithm. For
example aloga(x)+4 6= x+ 4 as the 4 is not in the logarithm.
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Example: Simplify the following:

1. log10(105x3+3x)

2. 3log3(x7+1)

3. log3(104x)

4. aloga(4x3)+2x

5. log8(82x4

+ 7)

Solution:

1. log10(105x3+3x) = 5x3 + 3x

2. 3log3(x7+1) = x7 + 1

3. We cannot simplify this as the logarithm has the base 3 and the exponential is to the base
10.

4. First note that aloga(4x3)+2x 6= 4x3 + 2x. We do this as follows:

aloga(4x3)+2x = aloga(4x3)a2x = 4x3a2x

5. We cannot simplify in this case as the 7 is not part of the exponential.

Logarithms to the Base 10

Many equations in chemistry include logarithms and we tend to use only two logarithms to different
bases. The first one is to the base 10 such as in the pH equation pH = − log10 [H+]. In the usual
notation we would write log10 however we tend to write logs to the base 10 as log so pH = − log [H+].
All the rules we have looked at are the same just when the base a = 10 so in particular:�� ��If y = 10x then x = log(y)

Logarithms to the Base e

The second common logarithm found in chemistry is the logarithm to the base e known as the ‘natural
logarithm’. We use the notation ln(x) but this means the same as loge(x). The natural logarithm is the
inverse operation for the exponential (y = ex) so we have the relationship as before:�� ��If y = ex then x = ln(y)

Example:

If 3 = ex then x = ln 3 ≈ 1.09861

As natural logarithms are the inverse operation to exponentials (y = ex) we have the following rules:�� ��ln(ex) = x�� ��eln(x) = x

Note: This rules are the same as the more general ones earlier in the section however look different due
to the ln notation.

Example:

We can simplify eln(x4+2) = x4 + 2.
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Example:

We can simplify ln
(
e(5x4+2x)

)
= 5x4 + 2x.

Laws of Logarithms

There are 3 laws of logarithms that we use to help algebraically manipulate logarithms:

1. loga(x× y) = loga(x) + loga(y)

2. loga

(
x

y

)
= loga(x)− loga(y)

3. loga(xb) = b× loga(x)

Note: Remember we write ln(x) for loge(x).

Example: Simplify each of the following into a single logarithm:

1. log 5 + log 2

2. log3 2 + log3 2 + log3 2

3. 3 log 3− 2 log 2

4. ln 8− ln 4

Solution:

1. Using the first law we can see that:

log 5 + log 2 = log 5× 2 = log 10.

Since log is used to denote the base 10 logarithm, log 10 = 1

2. This can be done using law 1 or by using law 3:

log3 2 + log3 2 + log3 2 = 3 log3 2 = log3 23 = log3 8

3. Law 3 needs to be used to remove the co-efficient in front of the logs:

3 log 3− 2 log 2 = log 33 − log 22 = log 27− log 4.

Now law 2 is applied to produce, log 27
4 which can’t be simplified further.

4. Law 2 is used to give:

ln 8− ln 4 = ln 8
4 = ln 2
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Chemistry Example: A general reaction takes place of the form:

aA + bB −→ cC + dD

where the equilibrium constant K is defined as K = [A]−a× [B]−b× [C]c× [D]d. Find the logarithm
of K as a sum of logarithms.

Solution: First we take the log of both sides of the equation.

logK = log
(
[A]−a × [B]−b × [C]c × [D]d

)
Then using law 1 we can expand this to be a sum of several logs.

logK = log ([A]−a) + log
(
[B]−b

)
+ log ([C]c) + log

(
[D]d

)
Now we can use law 3 to bring the powers down.

logK = −a log [A]− b log [B] + c log [C] + d log [D]

Converting between Logarithms to Different Bases

We may wish to convert between the different logarithms of different bases so for example we might want
to convert log(x) to ln(x). We do this using the following formula:�



�
	loga(x) =

1

logb(a)
× logb(x)

Example: Convert log(x) to be in the form ln(x)

Solution: Remember that log(x) = log10(x) and ln(x) = loge(x). So using the formula above we
have:

log10(x) =
1

loge(10)
× loge(x)

=⇒ log10(x) =
ln(x)

ln(10)
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2.6 Rearranging Exponentials and Logarithms

When working with logarithms and exponentials the same rules for rearranging apply. We still use
BODMAS in reverse order and the logarithms and exponentials are rearranged at the Orders stage.
There are two rules that we utilise when rearranging these equations:

1. aloga x = x

2. loga(ax) = x

This also works if we are using ln instead of log; it’s just a different notation.

Note: When exponentiating or taking a logarithm we must do the operation to the whole side of the
equation.

Example: Make x the subject in the following equations:

1. y = 10x − 1

2. ln(x+ 2) = ln(y) + ln(2)

Solution:

1. As we are doing BODMAS in reverse we start by adding 1 to both sides:

y + 1 = 10x Take a logarithm of base 10 of both sides

log10(y + 1) = log10(10x) The right hand side simplifies to x

x = log10(y + 1)

2. We can use the laws of logarithms to get the right hand side all as one natural logarithm:

ln(x+ 2) = ln(2y) Exponentiate both sides

eln(x+2) = eln(2y) Simplify this

x+ 2 = 2y Subtract 2 from both sides

x = 2y − 2

Chemistry Example: Rearrange the pH equation, pH = − log10 [H+], so that [H+] is the
subject of the formula.

Click here for a video example

Solution: First we use the third of logarithms to get:

pH = log10

(
[H+]−1

)
.

We now take exponentials to the base 10 of both sides of the equation.

10pH = 10log10 [H+]−1

Logarithms and exponentials to the same base cancel.

10pH = [H+]−1

=⇒ 10pH =
1

[H+]

=⇒ [H+] =
1

10pH

=⇒ [H+] = 10−pH
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Chemistry Example: Rearrange the Arrhenius equation

k = A exp

(
− Ea
RT

)
so that T is the subject of the formula.

Click here for a video example

Solution: First we need to divide both sides of the equation by A.

k

A
= exp

(
− Ea
RT

)
The inverse of the exponential function is the natural logarithm. So we must take the natural
logarithm of both sides of the equation:

ln

(
k

A

)
= ln

(
exp

(
− Ea
RT

))
.

Logarithms and exponentials to the same base cancel.

ln

(
k

A

)
= − Ea

RT

=⇒ T ln

(
k

A

)
= −Ea

R

=⇒ T = − Ea

R ln

(
k

A

)
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2.7 Simultaneous Equations

The simplest simultaneous equations are two equations with two variables. They are called simultaneous
because they must both be solved at the same time to find a pair of numbers that satisfy both equations.
The two equations below form a pair simultaneous of equations:

2y − x = 1 1

x+ y = 5 2

In order to solve these we use a method called substitution shown in the example below. We start by
making one of the variables the subject of one of the equations. We then substitute this new expression
into the other equation and solve.

Note: Similar methods can be applied to 3 equations with 3 unknowns and more generally for n equa-
tions with n unknowns.

Example: Solve the simultaneous equations: y + x = 5 1 and 2y − x = 1 2 .

Solution: To solve these we will make one of the variables the subject. Take equation 2 and
make x the subject:

2y = x+ 1

=⇒ 2y − 1 = x

Note: We could have found y as the subject or used equation 1 it does not matter!

As x = 2y− 1 we can substitute this expression into 1 to get that: (We must always substitute
our expression into the other equation that we did not rearrange in the step before).

y + x = 5

=⇒ y + (2y − 1) = 5

=⇒ 3y − 1 = 5

=⇒ 3y = 6

=⇒ y = 2

We have the value of y = 2. To find out what x is we need to substitute y = 2 into either one of

the equations (both should give you the same answer). So if we substitute this into 1 we get:

y + x = 5

=⇒ 2 + x = 5

=⇒ x = 3

We have the solution of x = 3 and y = 2.

Solving these simultaneous equations can also be done graphically. Below are both equations plotted
on the same graph. Notice the intersection point of the lines is (3,2) which is what we calculated.

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

0

x+ y = 5

2y − x = 1

y

x
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Example: Stacy’s mother was 30 years old when she was born. At what age is she half her
mother’s age?

Solution: To solve this problem we first need to form equations that describe the information given
to us. Let the variables s and m denote the age of Stacy and her mother respectively then we can
write:

1 m = s+ 30 Meaning that Stacy’s mother is 30 years older than her.

2 s = 1
2m Meaning that Stacy’s age is half her mother’s.

We want to find Stacy’s age s so to do that we shall substitute 1 into 2 resulting in:

s = 1
2 (s+ 30) Multiply each side by 2

2s = s+ 30 Subtract s from both sides

s = 30

Stacy will be 30 when she’s half her mother’s age.

Chemistry Example: Results from a mass spectrometry experiment show that 2 fragments
of a molecule both contain hydrogen and carbon. The empirical formula for the first fragment is
C2H5 which has a mass of 29 amu and the second has a formula of C8H18 with a mass of 114 amu.
Calculate the mass of the carbon and hydrogen atoms.

Solution: First we write the information provided in equations. We shall use the variables C and
H to be the mass of the carbon and hydrogen respectively. For the first fragment we can write
2C+5H = 29 and for the second fragment 8C+18H = 114. So we have the simultaneous equations:

2C + 5H = 29 1

8C + 18H = 114 2

To solve these we use substitution. In 1 we make C the subject by first subtracting 5 H from
both sides to give:

2 C = 29 − 5 H 3

From here we notice that in 2 there is a 8 C. We can multiply both sides of 3 by 4 to get

8 C = 116− 20 H which can be substituted into 2 to give:

(116− 20 H) + 18 H = 114

=⇒ 116− 2 H = 114

=⇒ 116− 114 = 2 H

=⇒ 2 = 2 H

=⇒ 1 = H

Now that we have found H, all we need to do is put that value into one of the equations and then

we solve for C. Substituted into 1 gives:

2 C + 5 H = 29

=⇒ 2 C + 5 = 29

=⇒ 2 C = 29− 5

=⇒ 2 C = 24

=⇒ C = 12
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Chemistry Example: A molecule of N2 has a mass of 4.6×10−26 kg and is at a temperature
of 293 K. The nitrogen’s velocity is given in the equation:

1 Ek =
1

2
mv2

and it’s kinetic energy is given by:

2 Ek =
3

2
kbT

What is the velocity of a nitrogen molecule? (kb = 1.4× 10−23)

Solution: Considering the variables there are only 2 unknowns, Ek and v. So we have a pair of

simultaneous equations. The first thing is to substitute the expression for Ek 2 into 1 .

Ek =
1

2
mv2

=⇒ 3

2
kbT =

1

2
mv2 3

We then re-arrange 3 to make v the subject:

3

2
kbT =

1

2
mv2 Multiply each side by 2.

3kbT = mv2 Divide by m on both sides.

3kbT

m
= v2 Finally square root.√

3kbT

m
= v

We can now put the numbers in on the left hand side and find that v = 520 ms−1 (to 2 s.f.)
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2.8 Quadratics

A quadratic (in the variable x) is any expression of the form:�� ��ax2 + bx+ c

where a, b and c are constants. It is called a quadratic because it contains terms in x up to and including
x2.

A quadratic function has the form: �� ��y = ax2 + bx+ c

where a, b and c are constants. There are a number of examples of such functions illustrated in the pages
that follow.

Expanding Brackets to Produce a Quadratic

Quadratic expressions can also be factorised and written in the form:

(x+A)(x+B)

where A and B are constants. We have a method called FOIL of expanding quadratic equations in the
above form so that they appear in the form ax2 + bx+ c.

FOIL stands for First, Outer, Inner and Last and tells us which terms to take the product of. In
the general case (x+A)(x+B) FOIL works as follows:

1. The First terms will be the x’s since they are both first in their brackets.

2. The Outer terms will be x and B because they are on the outer side (nearest to the edges).

3. The Inner terms are A and the other x for the same reason.

4. The Last terms are A and B because they are last in their brackets.

We then expand our quadratic (x+A)(x+B) as shown below:

(x+A)(x+B) =

F︷ ︸︸ ︷
x× x +

O︷ ︸︸ ︷
x×B +

I︷ ︸︸ ︷
A× x +

L︷ ︸︸ ︷
A×B = x2 + (A+B)x+AB

Note: This is in the form ax2 + bx+ c where a = 1, b = A+B and c = AB.

Example: Expand the brackets of the following:

1. (x+ 5)(x+ 7)

2. (x− 3)(x+ 2)

3. (x+ 1)2

Solution:

1. We use FOIL to get (x+ 5)(x+ 7) =

F︷ ︸︸ ︷
x× x +

O︷ ︸︸ ︷
x× 7 +

I︷ ︸︸ ︷
5× x +

L︷ ︸︸ ︷
5× 7.

Multiplying these out gives x2 + 7x+ 5x+ 35 = x2 + 12x+ 35

2. There are some negative numbers here so be careful when using FOIL.

(x− 3)(x+ 2) =

F︷ ︸︸ ︷
x× x +

O︷ ︸︸ ︷
x× 2 +

I︷ ︸︸ ︷
−3× x +

L︷ ︸︸ ︷
−3× 2 = x2 + 2x− 3x− 6 = x2 − x− 6

3. We can rewrite (x+ 1)2 as (x+ 1)(x+ 1) which we can then FOIL.

(x+ 1)(x+ 1) =

F︷ ︸︸ ︷
x× x +

O︷ ︸︸ ︷
x× 1 +

I︷ ︸︸ ︷
1× x +

L︷ ︸︸ ︷
1× 1 = x2 + x+ x+ 1 = x2 + 2x+ 1
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2.9 Solving Quadratic Equations

Solving a quadratic equation involves finding all possible values of x that satisfy ax2 + bx+ c = 0. The
values of x that satisfy this equation are called the roots.

Note that when a = 0, the quadratic equation reduces to a simple linear equation bx + c = 0 which
is easy to solve. Also, when a 6= 0 we can divide throughout by a to get an equivalent equation of the
form x2 + bx+ c = 0.

There are three methods that can be used to solve a quadratic:

1. Completing the square.

2. Inspection.

3. The quadratic formula.

Completing the Square

When a quadratic is in the form x2 +2bx+ b2 it is known as a perfect square because it can be factorised
into a squared linear term (x + b)2. However when a quadratic is not a perfect square we do have the
relationship below: �� ��x2 + 2bx+ c = (x+ b)2 + (c− b2)

(To see this simply expand out the left hand side.)
Hence if we are trying to solve x2 + 2bx + c = 0 then we can rewrite this as (x + b)2 + (c − b2) = 0

and then rearrange to find x.

Example: Find the values of x that make x2 + 4x− 1 = 0.

Solution: We can see that 2b = 4 and c = −1 so from the equation mentioned above we can change
the quadratic into the form with a perfect square:

x2 + 4x− 1 = 0
=⇒ (x+ 2)2 + (−1− (22)) = 0

=⇒ (x+ 2)2 − 5 = 0

We can now re-arrange and take the square root of both sides:

=⇒ (x+ 2)2 = 5

=⇒ x+ 2 = ±
√

5

=⇒ x = −2±
√

5

Note: When we take the square root of both sides we need to remember that both (−
√

5)2 and (−
√

5)2

are equal to 5; the expression ±
√

5 indicates that both signs are included. The two different roots for
this equation are shown on the graph below.

−8 −6 −4 −2 2

−4

−2

2

4

6

0

y = x2 + 4x− 1

y

x
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The x-axis is where y = 0 so the points where the curve crosses the x-axis are the roots (where
x2 + 4x − 1 = 0). The graph goes through a point just to the left of x = −4 and just to the right of
x = 0. Those correspond to x = −2−

√
5 and x = −2 +

√
5 respectively.

Note: When solving a quadratic equation that has come from a scientific situation, there may be non-
mathematical reasons for disregarding, say, a negative root as it might not make physical sense. A good
example would be if the roots represented a time since a having negative time doesn’t make sense.

Solving by Inspection

If we have a quadratic with integer coefficients it is sometimes possible to solve it by inspection. So if
the quadratic x2 + bx+ c can be factorised to give (x+A)(x+B) we have the roots of the equation are
−A and −B. We have the following rules for solving by inspection:

� c will be the product of A and B

� b will be the sum of A and B.

In other words if we are trying to solve x2 + bx+ c = 0 then we need to find two numbers A and B such
that their sum is b and product is c. We can then write the equation as (x + A)(x + B) = 0 and our
roots will be x = −A and x = −B.

Example: Find x by inspection in the following x2 + 5x+ 6 = 0.

Click for a video example

Solution: Since we want to factorise this we need to find two numbers that add to 5 and multiply
to 6. The best way to do this is to think about what the factors of 6 are. We have 1 and 6 as well
as 2 and 3. We can instantly see that 2 + 3 = 5 so these are the numbers required. We can rewrite
the original equation as:

x2 + 5x+ 6 = (x+ 2)(x+ 3)

=⇒ (x+ 2)(x+ 3) = 0

Now that we have the quadratic factorised we can now find out what x is. We notice if either of
the terms in the brackets is 0 then the whole thing will be 0. This gives the two situations:

x+ 2 = 0

OR

x+ 3 = 0

When we find out what x is for each of those we see that the roots are −2 and −3. These are both
solutions to this quadratic equation.

Inspection with Negative Coefficients

Inspection is easy when all the coefficients are positive but when they are negative you need to consider
a few things. First if c is negative then one of A or B will be negative. This is because when a negative
number multiplies a positive number the result will be negative. Secondly you would look at b, if it is
positive then the larger number of A and B is positive and vice versa.

Take the example x2 − 4x − 5. We first look at what factors 5 has: here the only factors are 1 and
5. Then we notice that since c is negative (here it is -5), one of A and B is negative and one is positive.
Finally, since b = −4 is negative the sum A + B is negative and this forces us to choose A = −5 and
B = 1 giving us, x2 − 4x− 5 = (x− 5)(x+ 1).
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Example: Factorise the following:

1. x2 + 4x− 12

2. x2 − 6x− 40

Solution:

1. From the signs we can deduce that one of A or B is negative and, since b = 4, A + B = 4,
i.e. is positive. The factors of 12 are 1 and 12, 2 and 6 and 3 and 4. The pair of numbers
that we need are therefore A = 6 and B = −2 giving us x2 + 4x− 12 = (x+ 6)(x− 2).

2. The signs tell us that one of A or B is negative and, since b = −6, A + B = −6, i.e. is
negative. Looking at the factors of 40 we can see that -10 and 4 would produce the required
result (-10 + 4 = -6) giving us, x2 − 6x− 40 = (x− 10)(x+ 4).

Finally, if c is positive but b negative then both A and B have to be negative, since they would give
a positive product but a negative sum.

Example: Factorise x2 − 8x+ 15.

Solution: Since c = 15 is positive we know that both A and B have the same sign and, since b = −8,
A+B = −8, we see that they must both be negative. Looking at the factors of 15 we can see that
-5 and -3 would produce the required result (-5 - 3 = -8) giving us, x2 − 8x+ 15 = (x− 5)(x− 3).

The Quadratic Formula

If all else fails we can always rely on the quadratic formula. If we have a quadratic equation of the form
ax2 + bx+ c = 0 then the quadratic formula for the roots is:�



�
	x =

−b±
√
b2 − 4ac

2a

Note: The ± symbol means plus or minus. So we have two solutions one for when you add the square
root and one where you subtract.

Example: Use the quadratic formula to solve the quadratic equation 3x2 − 5x+ 2

Solution: As we are using the formula all we need to do is put in the values for a, b and c. So
a = 3, b = −5 and c = 2. Putting these into the equation yields:

x =
−b±

√
b2 − 4ac

2a
=
−(−5)±

√
(−5)2 − 4(3× 2)

2× 3

=⇒ x =
5±
√

25− 24

6

=⇒ x =
5±
√

1

6

=⇒ x =
5 + 1

6
= 1 corresponding to the positive square root +

√
1

=⇒ x =
5− 1

6
=

4

6
=

2

3
corresponding to the negative square root −

√
1

So x = 1 and x = 2
3 are the two roots.
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Chemistry Example: Formic acid is a weak acid with a dissociation constant Ka of
1.8×10−4. The Ka relates the concentration of the H+ ions denoted [H+] and the amount of
acid dissolved denoted N by the equation:

Ka =
[H+]

2

N − [H+]

Given that there is 0.1 moles of formic acid dissolved, calculate the pH of the solution.

Solution: To find the pH first we need to find the concentration of H+ ions. Lets start by re-
arranging the equation for Ka.

Ka =
[H+]

2

N − [H+]
Multiply both sides by (N − [H+])

=⇒ Ka(N − [H+]) = [H+]
2

Expand the bracket

=⇒ KaN −Ka[H+] = [H+]
2

Take everything over to one side

=⇒ 0 = [H+]
2

+Ka[H+]−KaN

The equation [H+]
2

+Ka[H+]−KaN = 0 is quadratic as Ka and N are constants and our variable
(usually denoted x) is [H+].

We will put the symbols Ka and N into the quadratic formula and then put the numbers in
afterwards to avoid complicating things. So as a = 1, b = Ka and c = −KaN we have:

[H+] =
−b±

√
b2 − 4ac

2a
=
−Ka ±

√
Ka

2 − 4(−KaN)

2

=⇒ [H+] =
−Ka ±

√
Ka

2 + 4KaN

2

Putting the numbers given into that equation gives [H+] = 4.15 . . .× 10−3 for the positive square
root and [H+] = −4.33 . . .× 10−3 for the negative square root. We can immediately disregard the
negative answer because you can’t have a negative concentration of H+.

The final stage is to calculate the pH using the pH formula pH = − log [H+].

pH = − log(4.15× 10−3) = 2.38 . . . So pH = 2.4 (to 2 s.f.).
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3 Geometry and Trigonometry

3.1 Geometry

Circles: Area, Radius, Diameter and Circumference

Radius

Diameter

Circumference

Area

Above we have a circle which shows the Area A, Radius r, Diameter d and Circumference C of a
circle. These are related by the following equations:

� d = 2r

� A = πr2

� C = 2πr

Note: π is the number 3.14159 . . . which relates the circumference to the diameter π =
C

d
. It has an

infinite number of decimal places that do not repeat.

Chemistry Example: A hydrogen atom has a diameter of 106 pm. For a circle with a
diameter of 106 pm calculate the:

1. Circumference.

2. Area.

Solution:

1. To find the circumference first we must find the radius.

d = 2r ⇒ r =
d

2
. So r =

106 pm

2
= 53.0 pm.

Now we can find the circumference by using:

C = 2πr = 2π × 53.0 pm = 333.00 . . . pm = 333pm (to 3 s.f.).

2. As we know r = 53.0 pm we can find the area.

A = πr2 = π × (53.0 pm)2 = π × 2.809× 10−21 m = 8.824 . . .× 10−21 m

= 8.82× 10−21 m (to 2 s.f.).
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Spheres: Volume and Surface Area

Radius

Above we have a picture that shows the radius of a sphere which is the distance from the centre to
the surface. The volume V of a sphere is given by:

V =
4πr3

3

and the surface area AS is given by:

AS = 4πr2

Chemistry Example: A flourine atom is measured to have a radius of 53 pm. For a sphere
with a radius of 53 pm calculate the:

1. Volume.

2. Surface area.

Solution:

1. As r = 53 pm we can find the volume by using the formula:

V =
4πr3

3
=

4π × (53 pm)3

3
=

4π × 1.489× 10−31m3

3
= 6.24× 10−31 m3 (to 3 s.f.).

2. We can find the surface area by using the formula:

AS = 4πr2 = 4π × (53 pm)2 = 4π × 2.809× 10−21 m2 = 3.53× 10−20 m2 (to 3 s.f.).
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3.2 Trigonometry

Angles

Angle Type Size of Angle Angle Example

Acute Angle 0◦ < θ < 90◦
θ

Right angle θ = 90◦

θ = 90◦

Obtuse angle 90◦ < θ < 180◦
θ

Straight line θ = 180◦

θ = 180◦

Reflex angle 180◦ < θ < 360◦

θ

Full circle θ = 360◦

θ = 360◦
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Radians

We often use degrees to measure angles however we have another measurement of angles called radians.
Instead of splitting a full circle into 360◦, it is split into 2π radians. We must use radians in calcu-
lus (differentiation and integration), complex numbers and polar coordinates. This may seem new and
complicated at first however it is no different to thinking that we could measure length in miles or metres.

Below we have a full circle showing some angles in degree and what they are in radians.

2π

360◦
π

180◦

3π
2

270◦

π
290◦

π
4

45◦

We may wish to convert between degree and radians. In order to turn x◦ degrees into radians we use
the formula: �



�
	x◦

360◦
× 2π

In order to convert x radians into degrees we use the formula:�



�
	x

2π
× 360◦

Example: Convert the following:

1. 60◦ into radians.

2.
3π

8
radians into degrees.

Solution:

1. We need to use the formula
x◦

360◦
× 2π

x◦

360◦
× 2π =

60◦

360◦
× 2π =

π

3
radians.

2. We need to use the formula
x

2π
× 360◦.

x

2π
× 360◦ =

(
3π

8

)
2π

× 360◦ =
3

16
× 360◦ = 67.5◦
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Right-Angled Triangles

Hypotenuse

Adjacent

Opposite

θ

As shown in the diagram above when given a right-angled triangle with one of the non-right angles
labelled θ then we label the sides as follows:

� The longest side is called the hypotenuse this is always the side opposite the right angle.

� The side that is opposite the angle θ is called the opposite.

� The side that is next to the angle θ is called the adjacent.

Pythagoras’ Theorem

Pythagoras’ theorem relates only to right-angled triangles. So given a right-angled triangle such as the
one below it states:

c2 = a2 + b2

where c is the length of the hypotenuse and a and b are the lengths of the other two sides of the triangle.

c

b

a

Example: Find the length of x and y in the following triangles:

x

6

3 7

y

2

Solution:

1. Using Pythagoras’ Theorem we know that, since x is the hypotenuse, x2 = 32 + 62 =⇒ x =√
45 ≈ 6.708.

2. Using Pythagoras’ Theorem we know that 72 = y2 + 22 =⇒ y =
√

45 ≈ 6.708.
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Chemistry Example: Below is the structure of solid sodium chloride. If the distance between
the centres of adjacent chloride and sodium ions is 278 pm, what is the next shortest distance
between such ions? i.e. what is the length of the red dashed line?

Sodium

Chloride

a

b

c

d

e

Solution: First we consider the triangle from the cube lattice above with lengths a, b, c. This is a
right-angled triangle shown below so we can apply Pythagoras’ Theorem.

a

b

c

We know from the question that the distance between adjacent chloride and sodium ions is 278
pm so a = b = 278 pm. So we have using Pythagoras’ theorem c2 = 2782 + 2782 =⇒ c = 393 pm.

Now consider the triangle from the cube lattice with lengths c, d, e. This is a right-angled triangle
shown below so we can again apply Pythagoras’ Theorem.

d

c

e

We know from the question that the distance between adjacent chloride and sodium ions is 278
pm so d = 278 pm and from our previous calculations we know c = 393 pm. So we have using
Pythagoras’ theorem e2 = 2782 + 3932 =⇒ e = 481 pm.
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SOHCAHTOA

Hypotenuse

Adjacent

Opposite

θ

Given our right-angled triangle we start by defining sine, cosine and tangent before reviewing what
their graphs look like.

Note: The angle θ is measured in radians in the following graphs on the x-axis.

Sine Function

We define sine as the ratio of the opposite to the hypotenuse.

sin(θ) =
Opposite

Hypotenuse

Part of the graph of y = sin(θ) is shown below.

Cosine Function

We define cosine as the ratio of the adjacent to the hypotenuse.

cos(θ) =
Adjacent

Hypotenuse

Part of the graph of y = cos(θ) is shown below.
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Tangent Function

We define tangent as the ratio of the opposite to the adjacent.

tan(θ) =
Opposite

Adjacent

This leads to the relationship tan(θ) =
sin(x)

cos(x)
shown below:

tan(θ) =
Opposite

Adjacent
=

Opposite × Hypotenuse

Adjacent × Hypotenuse
=

(
Opposite

Hypotenuse

)
(

Adjacent

Hypotenuse

) =
sin(x)

cos(x)

The graph of y = tan(θ) is shown below.

The definitions of sine, cosine and tangent are often more easily remembered by using SOHCAH-
TOA. We can use the formulas in SOHCAHTOA to calculate the size of angles and the length of sides
in right-angled triangles.

S O H︸ ︷︷ ︸
sin(θ)= Opposite

Hypotenuse

C A H︸ ︷︷ ︸
cos(θ)= Adjacent

Hypotenuse

T O A︸ ︷︷ ︸
tan(θ)= Opposite

Adjacent

©University of Birmingham, University of Leeds 2014
57

http://creativecommons.org/licenses/by-nc-nd/4.0/


Example: Using SOHCAHTOA find the lengths x, y and z in the right-angled triangles below.

3
x

30◦

y

7
30◦ z

6

π

4

Solution: For shorthand we have used H to denote the hypotenuse, O the opposite and A the
adjacent.

1. We know the length of the hypotenuse and wish to find the opposite hence we need to use

sin(θ) =
O

H
=⇒ sin(30◦) =

O

3
=⇒ O = sin(30◦)× 3 =

3

2

Note: This question is in degrees.

2. We know the length of the adjacent and wish to find the opposite hence we need to use

tan(θ) =
O

A
=⇒ tan(30◦) =

O

7
=⇒ O = tan(30◦)× 7 =

7
√

3

3

Note: This question is in degrees.

3. We know the length of the adjacent and wish to find the hypotenuse hence we need to use

cos(θ) =
A

H
=⇒ cos

(π
4

)
=

6

H
=⇒ H =

6

cos
(π

4

) = 6
√

2

Note: This question is in radians.

Chemistry Example: A carbon-carbon bond has a length of 154 pm. If the bond is posi-
tioned at an angle of 30◦ to a surface as shown in the picture. What is the projected length of the
bond?

154 pm

Surface

projected length

30◦

C

C

Solution: To solve this we should first note that we have a right-angled triangle and can therefore
use SOCAHTOA. We know the hypotenuse which is 154 pm and want to find the projected length
which is the adjacent. So we need to use:

cos(θ) =
A

H
=⇒ cos(30◦) =

A

154 pm
=⇒ A = cos(30◦)× 154 pm = 77

√
3 pm

=⇒ Projected length = 77
√

3 pm ≈ 133 pm.
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Inverse Function and Rearranging Trigonometric Functions

We may be given the lengths of two sides of a right-angled triangle and be asked to find the angle θ
between them or be asked to rearrange an equation with a trigonometric function. In order to do these
we need to introduce the inverse trigonometric functions:

� The inverse function of sine sin(..) is sin−1(..) also can be denoted as arcsin(..).

� The inverse function of cosine cos(..) is cos−1(..) also can be denoted as arccos(..).

� The inverse function of tangent tan(..) is tan−1(..) also can be denoted as arctan(..).

We use the inverse trigonometric functions with SOHCAHTOA to find the values of angles in right-
angled triangles in which two of the lengths of the sides have been given. We do this as follows, suppose
we know that:

sin(θ) =
1

2

To find θ we can apply the inverse sine function to both sides of the equation.

sin−1(sin(θ)) = sin−1

(
1

2

)
.

=⇒ θ = sin−1

(
1

2

)
.

=⇒ θ = 30◦.

We can use a calculator to find sin−1

(
1

2

)
= 30◦ or sin−1

(
1

2

)
=
π

6
radians.

Example: Using SOHCAHTOA find the size of the angles B,C and D in the right-angled
triangles below.

5
3

B

6

5
C 11

6

D

Solution: For shorthand we have used H to denote the hypotenuse, O the opposite and A the
adjacent.

1. We know the length of the hypotenuse and the opposite.

sin(θ) =
O

H
=⇒ sin(B) =

3

5
=⇒ B = sin−1

(
3

5

)
= 36.9◦ or 0.64 radians.

2. We know the length of the adjacent and the opposite.

tan(θ) =
O

A
=⇒ tan(C) =

6

5
=⇒ C = tan−1

(
6

5

)
= 50.2◦ or 0.88 radians.

3. We know the length of the hypotenuse and the adjacent.

cos(θ) =
A

H
=⇒ cos(D) =

6

11
=⇒ D = cos−1

(
6

11

)
= 56.9◦ or 0.99 radians.
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Note: When squaring trigonometric functions such as (sin(x))2, (cos(x))2 and (tan(x))2 we use the
notation sin2(x) for (sin(x))2; cos2(x) and tan2(x) are used in the same way. This is also true more
generally for example (sin(x))n is denoted by sinn(x)

Chemistry Example: The position of certain bands in the infra-red spectrum of SO2 can
be used to determine the angle θ of the O-S-O bonds. The analysis leads to the equation:

sin2

(
θ

2

)
= 0.769

Find the value of θ in degrees.

Click here for a video example

Solution: First we can square root both sides to remove the square on the sin. This gives us:√
sin2

(
θ

2

)
=
√

0.769

=⇒ sin

(
θ

2

)
= 0.8769 . . .

We now take the inverse sin of both sides:

sin−1

(
sin

(
θ

2

))
= sin−1(0.8769)

=⇒ θ

2
= sin−1(0.8769)

=⇒ θ

2
= 61.27 . . .

=⇒ θ = 123◦ (to 3 s.f.)
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3.3 Polar Coordinates

With the usual x, y-axis we will be familiar with coordinates in the form (3, 2) meaning that we move
3 units in the x-direction (along the x-axis) followed by a move of 2 units in the y-direction. These are
Cartesian coordinates.

There is another coordinate system called Polar coordinates. These are coordinates in the form (r, θ)
where r is the distance to the point from the origin (0, 0) and θ is the angle, in radians, between the
positive x-axis and the line formed by r. This is all shown in the diagram below:

x

y

y = r sin(θ)

x = r cos(θ)

r

θ

So the point that has Cartesian coordinates (x, y) can also be described in Polar form as (r, θ). From
trigonometry and the Pythagoras theorem we have the following relationships:

� x = r cos(θ)

� y = r sin(θ)

� r =
√
x2 + y2

We can used the formulae above to allow us to convert Polar and Cartesian coordinates.

Example: A point has Polar coordinates

(
3,
−π
4

)
. What are the corresponding Cartesian

coordinates?

Solution: So r = 3 and θ =
−π
4

. So using the formulae above we have:

x = r cos(θ) = 3× cos

(
−π
4

)
=

3
√

2

2

y = r sin(θ) = 3× sin

(
−π
4

)
=
−3
√

2

2

So our Cartesian coordinates are

(
3
√

2

2
,
−3
√

2

2

)
.
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Example: A point has Cartesian coordinates (−2, 3). What are the corresponding Polar coor-
dinates?

Solution: So we have that x = −2 and y = 3. So using the formulae above we have:

r =
√
x2 + y2 =

√
(−2)2 + 32 =

√
13

Now we we can find θ.

x = r cos(θ)⇒ θ = cos−1
(x
r

)
= cos−1

(
−2√
13

)
= 2.158 · · · = 2.16 radians

So our Polar coordinates are (
√

13, 2.16).
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4 Differentiation

4.1 Introduction to Differentiation

Recall the equation of a straight line is of the form of y = mx+ c where m is the gradient and c is the in-
tercept. We can find the gradient m of a straight line using the triangle method with the formula m = ∆x

∆y .

Note: Remember that the gradient is a measure of how steep the graph is a certain point.

As the gradient of a straight line is the same at every point on the line it is easy to find. With a
curve this is not the case. Consider the graph of y = 5e−x shown below we will use the triangle method
with two different triangles and show we get two different values for the gradient.

Using the triangle method with the triangle in the graph below gives:

gradient =
∆y

∆x
=
f(x2)− f(x1)

x2 − x1
=
y2 − y1

x2 − x1
=

0.68− 1.85

3− 1
= −1.17

Now if we use the triangle method again but this time with a larger triangle as in the graph below:

gradient =
∆y

∆x
=
f(x2)− f(x1)

x2 − x1
=
y2 − y1

x2 − x1
=

0.25− 1.85

3− 1
= −0.8

We have two different values for the gradient of the curve. This is because the value of the gradient
is not the same at all points on the curve, unlike a straight line. This should be obvious as we can see
that the steepness of the graph changes along the curve. This means it is quite hard to find the gradient
of a curve using the triangle method and so we need a new method.

Differentiation allows us to find the gradient of a graph. The reason that this works is because when
we differentiate we are calculating how one variable changes due to a change in another (in other words
the rate of change). This is useful in chemistry: for example we might wish to know how the concentra-
tion of a reactant [OH–], changes with time t.
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Notation

When we use the triangle method we are finding ∆y
∆x where ∆ means ‘the difference’. Similarly when

we differentiate we are effectively drawing an infinitely small triangle to calculate the rate of change (or
gradient). This might seem quite an abstract concept and a full explanation lies beyond the scope of this
booklet where we present the main properties of differentiation. When differentiate we use the notation:

dy

dx

where the d stands for an infinitely small difference. (We don’t use ∆ anymore as this represents a larger,
not infinitely small, difference).

Example:

The derivative of x2, as you will soon learn, is 2x. Using the notation above we would write this
as:

If y = x2 then
dy

dx
= 2x

Recall how we can write either y or f(x) this leads to other notation for differentiation displayed in
the table below:

Function Derivative Pronunciation

y
dy

dx
‘d-y by d-x’ or ‘d-y d-x’

f(x) f ′(x) ‘f prime of x’ or ‘f dash of x’

f(x)
d

dx
(f(x)) ‘d by d-x of f of x’

Note: We may sometimes refer to
d

dx
as the differential operator.

Example:

So if f(x) = x2 then we can write the derivative in the following ways:

f ′(x) = 2x

OR

d

dx
(x2) = 2x

IMPORTANT: When we find dy
dx we said we are ‘differentiating y with respect to x’. Now suppose

instead that we have the equation θ = t2 then:

dθ

dt
= 2t

This works in the same way as we have seen for x and y but in this case we have it in terms of θ and t
and would say we are ‘differentiating θ with respect to t’.
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4.2 Differentiating Polynomials

A polynomial is an equation in the form

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

where

� an, . . . , a2, a1, a0 are constant coefficients.

� xn, xn−1, . . . , x2 are powers of a variable x.

A rather simple example of a polynomial is the quadratic x2 + 3x+ 1.

Differentiation finds the gradient of a curve at a given point. Suppose we want to find the gradient
of a function that is a polynomial such as y = x3 + 1 how do we find this differential?

As differentiation may be new to many readers we will begin slowly and first explain how to differ-
entiate the individual terms of a polynomial for example x2 before moving on in the section on ‘how to
differentiate a sum’ to help us differentiate polynomial sums such as 4x3 + 1.

The general rule is as follows: �



�
	If y = xn then

dy

dx
= nxn−1

The main points we should note are that:

� If y = 1 then
dy

dx
= 0 (since x0 = 1, so n = 0 here). In fact the same can be applied to any constant

not just 1. So: �



�
	If y = c for any constant c then

dx

dy
= 0.

� If we have y = x then this is the same as y = x1 so we have
dy

dx
= 1× x1−1 = 1.

� If we have y = x2 then we have
dy

dx
= 2× x2−1 = 2x.

We have only considered examples of polynomials up to the power of 2. The next example shows
that we can apply this rule to polynomials of higher powers.

Example: Differentiate y = x5.

Solution: From above we know if y = xn then
dy

dx
= nxn−1. So in this example we have that

n = 5. This gives the following answer:

dy

dx
= 5x5−1 = 5x4

We can also differentiate using this rule when x is raised to a negative power as shown in the next
example.

Example: Differentiate y = x−1.

Solution: From above we know if y = xn then
dy

dx
= nxn−1. So in this example we have that

n = −1. This gives the following answer:

dy

dx
= −1× x−1−1 = −x−2
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We can differentiate using this rule when x is raised to a fractional power as shown in the next example.

Example: Differentiate y = x
1
2 .

Solution: So using the rule if y = xn then
dy

dx
= nxn−1 we have n =

1

2
. This gives the answer:

dy

dx
=

1

2
× x 1

2−1 =
x−

1
2

2

So far we have only considered polynomials which have a coefficient of 1. But how do we differentiate
y = 4x2 where the coefficient is equal to 4? When we have a coefficient denoted a we have the rule:�



�
	If y = axn then

dy

dx
= a× n× xn−1

Note: The first rule is just a special case of the above rule when a = 1.

So going back to y = 4x2 we can see that the coefficient a = 4 and x is raised to the power of n = 2.

So using the rule if y = axn then
dy

dx
= a× n× xn−1. We have:

dy

dx
= 4× 2× x2−1 = 8x1 = 8x

IMPORTANT: When differentiating any function f(x) multiplied by some constant a, finding d
dx [af(x)],

we can take the constant a out of the derivative so:�



�
	d

dx

[
af(x)

]
= a

d

dx

[
f(x)

]
For example

d

dx
(2x3) = 2× d

dx
(x3) = 2× 3x2 = 6x2.

Example: Differentiate y = 4x−
1
2

Solution: This example combines everything we have looked at so far. So using the rule:

If y = axn then
dy

dx
= a× n× xn−1

we have a = 4 and n = −1

2
. This gives the answer:

dy

dx
= 4×−1

2
× x− 1

2−1 = −2x−
3
2

Chemistry Example: Coulomb’s Law states that the magnitude of the attractive force φ
between two charges decays according to the inverse square of the intervening distance r:

φ =
1

r2

Suppose we plot a graph of φ on the y-axis against r on the x-axis what is the gradient?

Solution: To find the gradient we find the derivative with respect to r denoted
dφ

dr
of:

φ =
1

r2
= r−2

All the examples so far have only contained x and y however in this question we have the variables

φ and r. We know y = xn then
dy

dx
= nxn−1 so with y as φ and x as r and n = −2. We have:

dφ

dr
= −2× r−2−1 = −2× r−3 = − 2

r3
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4.3 Differentiating Trigonometric Functions

Below we have the rules for differentiating trigonometric functions:�



�
	If y = sin(x) then

dy

dx
= cos(x)

�



�
	If y = cos(x) then

dy

dx
= − sin(x)

When we have constants multiplying the trigonometric functions and coefficients multiplying our x
we can use the following rules:�



�
	If y = a sin(bx) then

dy

dx
= a× b× cos(bx)

�



�
	If y = a cos(bx) then

dy

dx
= −a× b× sin(bx)

Note: These rules only work when x is being measured in radians.

Example: Differentiate:

1. y = sin(9x)

2. y = 4 cos
(x

2

)
3. y = −2 cos (−7x)

Solution:

1. Using the rule:

If y = a sin(bx) then
dy

dx
= a× b× cos(bx)

Note that we have y = sin(9x) so a = 1 and b = 9. So
dy

dx
= 9 cos(9x)

2. Using the rule:

If y = a cos(bx) then
dy

dx
= −a× b× sin(bx)

Note that we have y = 4 cos
(x

2

)
so a = 4 and b =

1

2

dy

dx
= −4××1

2
× sin

(x
2

)
= −2 sin

(x
2

)
3. Using the rule:

If y = a cos(bx) then
dy

dx
= −a× b× sin(bx)

Note that we have y = −2 cos (−7x) so a = −2 and b = −7

dy

dx
= −(−2)× (−7 sin (−7x)) = −14 sin (−7x)
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Chemistry Example: In X-ray crystallography, the Bragg equation relates the distance d
between successive layers in a crystal, the wavelength of the X-rays λ, an integer n and the angle
through which the X-rays are scattered θ in the equation:

λ =
2d

n
sin θ

What is the rate of change of λ with θ?

Solution: The question is asking us to find
dλ

dθ
. So as n and d are constants we can use the rule:

If y = a sin(bx) then
dy

dx
= a× b× cos(bx)

So we have a =

(
2d

n

)
and b = 1 with λ as y and θ as x therefore:

dλ

dθ
=

(
2d

n

)
× 1× cos θ =

2d

n
cos θ.
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4.4 Differentiating Exponential and Logarithmic Functions

Differentiating Exponentials

The exponential function ex when differentiated gives itself. This is shown is rule below:�



�
	If y = ex then

dy

dx
= ex

We can also differentiate when the x has a coefficient for example y = e4x and also when the
exponential is multiplied by a constant for example y = 3ex. We combine these into the rule below:�



�
	If y = aebx then

dy

dx
= a× b× ebx

Example: Differentiate the following with respect to x:

1. y = e2x

2. y = 8 exp
(
−x

3

)
Solution:

1. Using the rule

If y = aebx then
dy

dx
= a× b× ebx

note y = e2x so a = 1 and b = 1 hence
dy

dx
= 2e2x

2. Using the rule

If y = aebx then
dy

dx
= a× b× ebx

note y = 8 exp
(
−x

3

)
so a = 8 and b = −1

3
hence

dy

dx
= 8×−1

3
× exp

(
−x

3

)
= − 8

3
e−

x
3

Differentiating Logarithms

We differentiate logarithmic functions using the rule shown below:�



�
	If y = ln(x) then

dy

dx
=

1

x

We can differentiate when the x has a coefficient for example y = ln(4x) and also when the logarithmic
function has a coefficient for example y = 3 ln(x). We combine these into the rules below:�



�
	If y = a ln(bx) then

dy

dx
=
a

x

Note: In the above rule the b disappears and it forms a nice exercise in the practice of using the laws of
logarithms hence we have included the algebra in the next example. We do have to differentiate a sum
however so if you are unsure on that step then check out the next section for more help.
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Example: For y = a ln(bx) find
dy

dx

Solution: Using laws of logarithms we can write y = a ln(bx) as:

y = a (ln(x) + ln(b))

Now differentiating this as a sum gives:

dy

dx
=

d

dx
[a(ln(x) + ln(b))]

=⇒ dy

dx
= a

d

dx
[ln(x)] + a

d

dx
[ln(b)]

Now as
d

dx
[ln(x)] =

1

x
and

d

dx
[ln(b)] = 0 as ln(b) is a constant, so we have:

dy

dx
=
a

x

Note: The above derivation is included as it provides an advanced example of the use of the laws
of logarithms with differentiation.

Example: Differentiate:

1. y = ln(3x)

2. y = −4

5
ln

(
x

2

)
Solution:

1. We use the rule:

If y = a ln(bx) then
dy

dx
=
a

x

Note that we have y = ln(3x) so a = 1 and b = 3. Hence
dy

dx
=

1

x

2. We use the rule:

If y = a ln(bx) then
dy

dx
=
a

x

Note that we have y = − 4

5
ln

(
x

2

)
so a = − 4

5
and b =

1

2
. Hence

dy

dx
= − 4

5
× 1

x
= − 4

5x
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4.5 Differentiating a Sum

If we have multiple terms in the form of a sum for example y = x3 + 8x+ 1 then in order to find dy
dx we

apply the differential operator on each of the terms in turn. So in other words we differentiate each part
of the sum one by one.

Consider y = x3 + 8x+ 1. If we want to find dy
dx then we would apply the operator d

dx to both sides
of the equation giving us:

dy

dx
=

d

dx
(x3 + 8x+ 1) Now we apply the

d

dx
operator to each term.

=⇒ dy

dx
=

d

dx
(x3) +

d

dx
(8x) +

d

dx
(1) Now we differentiate each of the terms individually.

=⇒ dy

dx
= 3x2 + 8x+ 0 Now simplify.

=⇒ dy

dx
= 3x2 + 8x

Example: Differentiate the following:

1. y = ex + 4x6

2. y = ln(2x) +
1

3
sin(9x)

Solution:

1. To differentiate y we differentiate all of the terms individually. We use the rules for differen-
tiating exponentials and powers to get:

y = ex + 4x6 =⇒ dy

dx
= ex + 4× 6x5 = ex + 24x5

2. Same as the example before we differentiate each term.

y = ln(2x) +
1

3
sin(9x) =⇒ dy

dx
=

1

x
+

1

3
× 9 cos(9x) =

1

x
+ 3 cos(9x)

Example: Differentiate z = cos(4t) + 6et + t5 + 2t2 + 7 with respect to t.

Solution: This question is different as our equation is not in terms of y and x, but instead in terms
of z and t. We treat this in the same way as if the terms were y and x so we differentiate each
term individually.

dz

dt
= −4 sin(4t) + 6et + 5t4 + 4t

Example: The Onsager equation Λ = Λo − b
√
c describes the relationship between the conduc-

tivity Λ of a simple ionic salt in solution and the concentration c where the limiting conductivity

Λo and b are constants. Find
dΛ

dc

Solution: As with the previous example, we aren’t using x and y. we can write
√
c as the fractional

power c
1
2 . This gives us Λ = Λo − bc 1

2 . We can then differentiate this with respect to c.

dΛ

dc
=

d

dc
(Λo)− b d

dc

(
c

1
2

)
We can now differentiate each of the terms

dΛ

dc
= 0− b

(
1

2
c−

1
2

)
Then expand and simplify

dΛ

dc
= − b

2
c−

1
2
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4.6 Product Rule

Suppose we want to differentiate y = x2 sin(x) then we encounter the problem: How to differentiate a
function that is the product of two other functions, in this case x2 and sin(x).

Do do this we need the product rule:�
�

�
�

If the function y = f(x) is written as the product of two functions say u(x) and v(x) so

y = f(x) = u(x)v(x) then
dy

dx
= u

dv

dx
+ v

du

dx

So returning to our example we have f(x) = x2 sin(x) with u = x2 and v = sin(x).

First we find that
du

dx
= 2x and

dv

dx
= cos(x) then we substitute into

dy

dx
= u

dv

dx
+ v

du

dx

=⇒ dy

dx
= x2 cos(x) + sin(x)2x

=⇒ dy

dx
= x(x cos(x) + 2 sin(x))

Example: Differentiate using the product rule:

1. y = x ln(x)

Click here for a video example

2. y = 6ex cos(x)

Click here for a video example

Solution:

1. Take u = x and v = ln(x).

We can now differentiate these to find that
du

dx
= 1 and that

dv

dx
=

1

x

Using the product rule:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in the quantities

dy

dx
= x

(
1

x

)
+ ln(x)

(
1
)

Expand and simply

dy

dx
= 1 + ln(x)

2. For this take u = 6ex and v = cos(x).

Now we differentiate those find that
du

dx
= 6ex and

dv

dx
= − sin(x)

By the product rule we have:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in the quantities

dy

dx
= 6ex

(
− sin(x)

)
+ cos(x)

(
6ex
)

Expand the brackets

dy

dx
= −6ex sin(x) + 6ex cos(x) Take a factor of 6ex out

dy

dx
= 6ex

(
cos(x)− sin(x)

)
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Example: Differentiate y =
1

3
(x2 + 5x) sin(x).

Solution: This is a product of two function and we must use the product rule.

Set u =
1

3
(x2 + 5x) and v = sin(x)

We can differentiate to find that
du

dx
=

1

3
(2x+ 5) and

dv

dx
= cos(x)

We now use the product rule:

dy

dx
= u

dv

dx
+ v

du

dx
Substitute in what we’ve worked out

dy

dx
=

1

3
(x2 + 5x)

(
cos(x)

)
+ sin(x)

(1

3
(2x+ 5)

)
Simplify by taking a factor of

1

3
out

dy

dx
=

1

3

(
(x2 + 5x) cos(x) + (2x+ 5) sin(x)

)
The end result looks complicated and ugly but it is nicer than having all the brackets expanded.
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4.7 Quotient Rule

A quotient looks like a fraction with one function being divided by another function for example:

y =
x3

e3x

When we have a function in the form of a quotient we differentiate it using the quotient rule:�

�

�

�
If the function f(x) is written as a quotient so

y =
u(x)

v(x)
then

dy

dx
=
v
du

dx
− udv

dx
v2

So returning to y =
x3

e3x
we have u = x3 and v = e3x.

Hence
du

dx
= 3x2 and

dv

dx
= 3e3x and v2 = e6x. Then substitute into quotient rule

dy

dx
=
v
du

dx
− udv

dx
v2

=⇒ dy

dx
=
e3x3x2 − x33e3x

e6x

=⇒ dy

dx
= 3x2e−3x(1− x)

Example: Differentiate y =
sin(x)

3 ln(x)
.

Solution: Just like the previous example we have u to be the numerator and v to be the denominator

of the fraction so u = sin(x) and v = 3 ln(x). We can now differentiated these to get
du

dx
= cos(x)

and
dv

dx
=

3

x
. Using the quotient rule we get that:

dy

dx
=
v
du

dx
− udv

dx
v2

Substitute in what we have

dy

dx
=

3 ln(x)× cos(x) − sin(x)× 3

x(
3 ln(x)

)2 We can simplify

dy

dx
=

3 ln(x) cos(x) − 3 sin(x)

x
9 ln(x)2

A factor of 3 can be taken out

dy

dx
=

ln(x) cos(x) − sin(x)

x
3 ln(x)2
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Example: Differentiate y =
x

e2x

Click here for a video example

Solution: We have a function x divided by a function e2x so to find the derivative the quotient

rule needs to be used. So u = x and v = e2x and therefore
du

dx
= 1 and

dv

dx
= 2e2x. We can now

employ the quotient rule to get:

dy

dx
=
v
du

dx
− udv

dx
v2

Substitute what we know in

dy

dx
=
e2x × 1− x× 2e2x

(e2x)2
Simplifying this by taking a factor of e2x out

dy

dx
=
e2x(1− 2x)

(e2x)2
The e2x on top cancels with one on the bottom

dy

dx
= e−2x(1− 2x)

Chemistry Example: During the reaction N2O4
−−⇀↽−− 2 NO2 the partial pressure of N2O4 is

given by the expression p(N2O4) =
1− ζ
1 + ζ

. Find
dp

dζ
.

Solution: We notice that p is the quotient of two functions involving ζ this means that we should
use the quotient rule when differentiating. So we have u = 1 − ζ and v = 1 + ζ. Differentiating

gives us
du

dζ
= −1 and

dv

dζ
= 1. We then utilise the quotient rule to find that:

dp

dζ
=

v
du

dζ
− udv

dζ

v2
So we first substitute.

dp

dζ
=

(1 + ζ)× (−1) − (1− ζ)× 1

(1 + ζ)2
Expand the brackets.

dp

dζ
=
−1− ζ − 1 + ζ

(1 + ζ)2
Simplifying the numerator.

dp

dζ
=

−2

(1 + ζ)2
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4.8 Chain Rule

When we have one function inside another function (this is called a composite function) we differentiate
using the chain rule. An example of a composite function is y = sin(x2 + 1). There are two functions
sin(..) and x2 + 1. We are applying the sin function to x2 + 1, thus making it a function inside a function
or a composite function.

The general form of a composite function is:�� ��y = f(g(x))

where f and g are both functions. In the above example y = sin(x2+1) we would have f(g(x)) = sin(g(x))
and g(x) = x2 + 1.

y = sin(x2 + 1︸ ︷︷ ︸ )

Outer function, f(..) Inner function, g(x)

To use the chain rule we use the following steps:

1. Introduce a new variable u to be equal to u = g(x).

2. Substitute u = g(x) into the expression y = f(g(x)) so that y = f(u).

3. Find
dy

du
and

du

dx
.

4. The derivative
dy

dx
can be found by this equation

dy

dx
=

dy

du
× du

dx
and then substitute back in

u = g(x).

The chain rule is summarised in the box below:�
�

�
�

If y = f(g(x)) let u = g(x) hence y = f(g(x)) = f(u)

then
dy

dx
=
dy

du
× du

dx

Below we follow the steps of the chain rule to differentiate y = sin(x2 + 1):

1. Introduce a new variable u to be equal to g(x) (the inside function). For this example u = x2 + 1.

2. Substitute u = g(x) into the expression y = f(g(x)) so that y = f(u). As u = x2 + 1 this would
make y = sin(u).

3. Find
dy

du
and

du

dx
. In this example we have:

y = sin(u) =⇒ dy

du
= cos(u)

and

u = x2 + 1 =⇒ du

dx
= 2x

4. The derivative
dy

dx
can be found by this equation

dy

dx
=

dy

du
× du

dx
and then substitute back in

u = g(x).

=⇒ dy

dx
= cos(u)× 2x = 2x cos(x2 + 1)
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Example: Differentiate y = (x2 + 2)3 using the chain rule:

Click here for a video example

Solution: We take u = x2 + 2 and therefore y = u3.

Then we differentiate each of those to find:

du

dx
= 2x

dy

du
= 3u2

From the chain rule:

dy

dx
=
dy

du
× du

dx
Substitute in what we know for

dy

du
and

du

dx

dy

dx
= 3u2 × 2x Substitute that u is x2 + 2

dy

dx
= 6x(x2 + 2)2

Example: Given y = ln(x3) find
dy

dx

Click here for a video example

Solution: We take u = x3 which means that y = ln(u).

Then differentiate to find that:

du

dx
= 3x2 dy

du
=

1

u

From the chain rule
dy

dx
=
dy

du
× du

dx
we can see that:

dy

dx
=

1

u
× 3x2 Substitute that u is x3

dy

dx
=

1

x3
× 3x2 Simplify further

dy

dx
=

3

x

Note: A faster solution would have been to use the laws of logarithms to notice that ln(x3) =
3 ln(x) and then differentiate avoiding the use of the chain rule.

Example: Differentiate y = cos(e2x)

Solution: Let u = e2x therefore y = cos(u).

Differentiate to find:

du

dx
= 2e2x and

dy

du
= − sin(u)

Using the chain rule
dy

dx
=
dy

du
× du

dx
we can show that:

dy

dx
= − sin(u)× 2e2x Substitute that u = e2x

dy

dx
= −2e2x sin(e2x)
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Chemistry Example: The Maxwell Boltzmann Distribution is a probability distribution of
finding particles at certain speed v in 3 dimensions. It has the form of:

f(v) = Av2e−Bv
2

where A and B are positive constants. Using the chain rule and the product rule find
d

dv
f(v).

Solution: This example involves two steps, first of all the product rule is required to differentiate
whole thing as f(v) is a product of two functions. The chain rule is also needed to differentiate

the exponential. Lets call P = Av2 and Q = e−Bv
2

, thus making f(v) = P ×Q. From the product
rule:

d

dv
f(v) = P

dQ

dv
+Q

dP

dv

We have
dP

dv
= 2Av but we will need to use the chain rule to find

dQ

dv
.

We let u = −Bv2, making Q = eu. We can then calcuate that
du

dv
= −2Bv and that

dQ

du
= eu.

From here the chain rule tells us that:

dQ

dv
=
dQ

du
× du

dv
We put in what we have for

dQ

du
and

du

dv

dQ

dv
= eu × (−2Bv) Substitute u = −Bv2

dQ

dv
= −2Bv · e−Bv2

Substituting into the previous equation (shown below) gives us:

d

dv
f(v) = P

dQ

dv
+Q

dP

dv
Substitute in what we have found

d

dv
f(v) = Av2(−2Bv × e−Bv2) + e−Bv

2 × 2Av This can be simplified

d

dv
f(v) = −2ABv3e−Bv

2

+ 2Av e−Bv
2

Take a factor of 2Av e−Bv
2

out

d

dv
f(v) = 2Av e−Bv

2

(1−Bv2)

Note: This example is complex since we are using multiple rules. Not all problems will be this hard,
but it’s important to know how to combine the rules of differentiation. An application of this derivative
would be to find the modal speed of a gas.
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4.9 Stationary Points

Stationary points occur when we have
dy

dx
= 0; this represents when the gradient of a curve is horizontal

we have three type of stationary points:

1. Local maximum

We can see that when we pass through a maximum at the gradient goes from being positive
(f ′(x) > 0 or dy

dx > 0) to being negative (f ′(x) < 0 or dy
dx < 0).

2. Local minimum

We can see that when we pass through a minimum the gradient goes from being negative i.e.
f ′(x) < 0 (or dy

dx < 0) to being positive i.e. f ′(x) > 0 (or dy
dx > 0).

3. Point of inflection

Finally when we pass through point of inflection we should note that the gradient remains of the
same sign (so either positive both sides or negative both sides).
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Example: Find the stationary point of y = x2

Solution: From the graph of y = x2 we can see that there is a minimum at x = 0 however we need
to find this algebraically.

−6 −4 −2 −0 2 4 6

10

20

30

x

y

First we need to find when
dy

dx
= 0. Now

dy

dx
= 2x and therefore

dy

dx
= 0 when x = 0.

So we know we have a stationary point at x = 0 in the next section we will discuss how to decide
whether this is a maximum, minimum or point of inflection.

Classifying Stationary Points

We now need to introduce the second derivative denoted:

d2y

dx2
or f ′′(x)

This means that we differentiate a function twice so for example if we have y = x3 we would first find:

dy

dx
= 3x2

which we would then differentiate again to find:

d2y

dx2
= 6x

First Test

The second derivative is used to decide whether a stationary point is a maximum or a minimum. If
we have the value of x of a stationary point then we substitute this value into the second derivative, if:

�

d2y

dx2
> 0 so positive we have a minimum.

�

d2y

dx2
< 0 so negative we have a maximum.

Unfortunately this test fails if we find that
d2y

dx2
= 0. In this case we could have a maximum, minimum

or point of inflection and we must carry out the following further test in order to decide:

Second Test

First find two x values just to the left and right of the stationary point and calculate f ′(x) for each.
Let use denote the x value just to the left as xL and the one to the right as xR then if:

� f ′(xL) > 0 and f ′(xR) < 0 we have a maximum.

� f ′(xL) < 0 and f ′(xR) > 0 we have a minimum.

� f ′(xL) and f ′(xR) have the same sign (so both are either positive or negative) then we have a point
of inflection.
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Example: Find and classify the stationary points of y =
x4

4
− x2

2

Click here for a video example

Solution: First we find when
dy

dx
= 0 to find where the stationary points are.

dy

dx
= x3 − x = 0

=⇒ x(x2 − 1) = 0

=⇒ x(x− 1)(x+ 1) = 0

Therefore we have stationary points at x = 0, x = 1 and x = −1 to classify them we first must
find the second derivative:

d2y

dx2
= 3x2 − 1

Now we substitute our x-values for the location of the stationary point into
d2y

dx2
.

� Now when x = 0 we have
d2y

dx2
= −1 hence

d2y

dx2
< 0 (negative) so this is a maximum.

� Now when x = 1 we have
d2y

dx2
= 2 hence

d2y

dx2
> 0 (positive) so this is a minimum.

� Now when x = −1 we again have
d2y

dx2
= 2 hence

d2y

dx2
> 0 (positive) so this is a minimum.

Example: Find and classify the stationary points of y = x3

Solution: First we find when
dy

dx
= 0 to find where the stationary points are.

dy

dx
= 3x2 = 0

=⇒ x = 0

Therefore we have one stationary point at x = 0. To classify this point we need to find the second
derivative:

d2y

dx2
= 6x

Now when x = 0 we have
d2y

dx2
= 0 hence our test has failed and we must carry out the further

test.

Now we need to pick x values close to either side of the stationary point at x = 0. So a x value
just to the left would be xL = −0.5 and one just to the right would be xR = 0.5.

Now as
dy

dx
= f ′(x) = 3x2 we have that:

� f ′(xL) = 3(xL)2 = 3×−0.52 = 0.75 > 0

� f ′(xR) = 3(xR)2 = 3× 0.52 = 0.75 > 0

So both f ′(xL) > 0 and f ′(xR) > 0 are positive so are of the same sign. Hence the stationary
point at x = 0 is a point of inflection.
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Chemistry Example: The Lennard-Jones potential decribes the potential energy V between
two helium atoms separated by a distance R. The equation and graph of this function are shown
below:

V (R) =
A

R12
− B

R6

V (R)

R

where A and B are constants. The two particles are at their equilibrium separation when the
potential is at a minimum (V is at a minimum). By differentiating this equation with respect to
R find the equilibrium separation.

Click here for a video example

Solution: To find the minimum V we need to differentiate it and then set it equal to zero (find
dV
dR = 0). Then that value of R will be where the potential is a minimum. Differentiating V with
respect to R gives:

dV

dR
=
−12A

R13
+

6B

R7

We need to find when
dV

dR
= 0 so need to solve the equation:

−12A

R13
+

6B

R7
= 0 Add

−12A

R−13
to both sides

6B

R7
=

12A

R13
Multiply each side by R13 and divide by 6B

R13

R7
=

12A

6B
Simplify both of the fractions

R6 =
2A

B
Take the 6th root of both sides

R =

(
2A

B

) 1
6

Hence at the equilibrium separation R =

(
2A

B

) 1
6

.
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4.10 Partial Differentiation

Often we encounter quantities that depend on more than one variable. For example the enthalpy H of a
system depends on pressure P and temperature T . Another case is the ideal gas equation as seen below:

p =
nRT

V

The pressure p of a gas depends on its volume V and the temperature T it is at. We often find it useful
to calculate how one variable changes with one other while the remaining variables are seen to be constant.

Recall we can use the notation y = f(x, z) to mean that y is a function of x and z where x and z are
independent variables. For example:

y = x2 + zx

We use partial derivatives to differentiate functions with multiple variables. We do this by differentiating
with respect to one variable and treating all other variables as constants. So for y = f(x, z) the partial
derivative of a y with respect to x is denoted: (

∂y

∂x

)
z

The curvy symbol ∂ informs us that we perform partial differentiation with respect to x while the
subscript variable in this case z is being considered as a constant.

Note: Some books just use the notation
∂y

∂x
, taking it as understood that all other variables except

x are taken as constant.

Example: So going back to our example y = x2 + zx. Find

(
∂y

∂x

)
z

Click here for a video example

Solution: We note:

� The curvy symbol ∂ informs us that we perform partial differentiation.

� We are differentiating y with respect to x.

� We treat z as a constant.

So we differentiate the x2 term as usual to get 2x. Then we differentiate the zx term treating z as
a constant so this gives z. Hence: (

∂y

∂x

)
z

= 2x+ z
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Example: For y = 2 ln(z) + sin(zx) find

(
∂y

∂x

)
z

and

(
∂y

∂z

)
x

Solution: For

(
∂y

∂x

)
z

we treat z as a constant and differentiate with respect to x.

(
∂y

∂x

)
z

=
∂

∂x
2 ln(z) +

∂

∂x
sin(zx) Treating z as a constant(

∂y

∂x

)
z

= 0 + z cos(zx) = z cos(zx)

For

(
∂y

∂z

)
x

we treat x like a constant and then differentiate with respect to z.

(
∂y

∂x

)
z

=
∂

∂z
2 ln(z) +

∂

∂z
sin(zx) Treating x as a constant(

∂y

∂x

)
z

=
2

z
+ z cos(zx)
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Chemistry Example: The ideal gas equation is pV = nRT . Find:

1.

(
∂V

∂T

)
p

2.

(
∂T

∂p

)
V

Click here for a video example

Solution:

1. To be able to find

(
∂V

∂T

)
p

we must first make V the subject in the equation. This is done

by dividing both sides by p to produce V =
nRT

p
.

Now we differentiate with respect to T taking p to be a constant.(
∂V

∂T

)
p

=
∂

∂T

(
nRT

p

)
Note

nR

p
is a constant.

(
∂V

∂T

)
p

=
nR

p

This is Charles’s law, at constant pressure, the volume of a gas is directly proportional to
the temperature.

2. We do the same process to find

(
∂T

∂p

)
V

. First make T the subject by dividing both sides

by nR to make T =
PV

nR
.

As before we then differentiate, treating V as a constant this time to get:(
∂T

∂p

)
V

=
∂

∂p

(
pV

nR

)
Note

V

nR
is a constant

(
∂T

∂p

)
V

=
V

nR

This is Gay-Lussac’s (or the pressure) law: under fixed volume the pressure is proportional
to the temperature.
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5 Integration

5.1 Introduction to Integration

Integration is the opposite of differentiation so it helps us find the answer to the question:

‘Suppose we have
dy

dx
= 2x then what is y?’

From the previous section we know the answer is x2 + C where C is a constant. So we would say that
2x integrated is x2 + C.

Note: We have an infinite number of solutions to above question as the constant C could be any number!

Graphically we know differentiation gives us the gradient of a curve. Integration finds the area be-
neath a curve.

x

y

a b

Suppose we wish to find the area under the curve between the x values a and b shaded in the graph
above. Then we could find an approximate answer by creating the dashed rectangles above and summing
their area. Now we can see this does not give a perfect answer however the smaller the width of the
rectangles the lower the error in our answer would be.

So if we could use rectangles of an infinitely small width we would find an answer with no error. This
is what integration does. It creates an infinite number of rectangles under the curve all with an infinitely
small width and sums their area to find the area under the curve.

y

x

So integration could be used to find the area shaded on the graph of y = x2 − 2 above. Note that
when the curve is below the x-axis integration finds the area bounded between the curve and the x-axis.

Note: If the area we are finding is below the x-axis then we get a negative answer when we integrate.
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Notation

We use the fact that 2x integrated is x2 + C to help introduce the following notation for integration. If
we want to integrate 2x we write this as: ∫

2x dx = x2 + C

� The

∫
tells us we need to integrate.

� The dx tells use to integrate with respect to x. So we could write

∫
2z dz = z2 + C but in this

case we have integrated with respect to z.

� We call

∫
2x dx = x2 + C the integral.

Another notation often used is the following if we have the function f(x) then we write this integrated
as F (x). So if f(x) = 2x then F (x) = x2 + C.

Integration finds the area under the curve. So if we want to find the area between two points (called
limits) on the x-axis, say a and b, we use the following notation:∫ b

a

f(x) dx

This tell us we want to find the integral of f(x) and then use that information to find the area under
the curve between a and b. We find this area by using the formula below:�

�
�


∫ b

a

f(x) dx = F (b)− F (a)

Note: This is explained in detail in the section on definite integrals.

� When we are given limits the we have a definite integral.

� When we are not given limits the we have a indefinite integral.

Rules for Integrals

1. We can split integrals over a sum. For example

∫
(x3 + 2x+ 7) dx =

∫
x3 dx+

∫
2x dx+

∫
7 dx.

2. We can take constants out of the integral. For example

∫
6x4 dx = 6

∫
x4 dx.
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5.2 Integrating Polynomials

When we are differentiating xn we multiply by n and then reduce the power on x by 1. When integrating
we do the opposite first we add 1 to the power, then divide by this new power. In general we have the
rule: �

�
�


∫
xn dx =

xn+1

n+ 1
+ C

Note: This rule works for all values of n apart from n = −1. If we were to use the rule with n = −1

we would have x0

0 + C. This would have us dividing by 0 which is forbidden. The integral of x−1 is
discussed on the next page.

Example: Find the integrals of the following:

1. x2

2. 2x+ 6x2

3. x(x+ 3)

Solution:

1. We are being asked to find

∫
x2 dx so using the rule

∫
xn dx =

xn+1

n+ 1
+ C

∫
x2 dx =

x2+1

2 + 1
+ C This can be simplified

=
x3

3
+ C

2. We are being asked to find

∫
(2x+ 6x2) dx.

When integrating multiple terms we do each of them one in turn. This means that:∫
(2x+ 6x2) dx =

∫
2x dx+

∫
6x2 dx Constants are taken out of the integral

= 2

∫
x dx+ 6

∫
x2 dx We can now integrate

= 2
x1+1

1 + 1
+ 6

x2+1

2 + 1
+ C This can be simplified

= x2 + 2x3 + C

3. First we expand the brackets to produce x2 + 3x. Then we would integrate this gives:∫
(x2 + 3x) dx =

x2+1

2 + 1
+ 3

x1+1

1 + 1
+ C This can be simplified

=
1

3
x3 +

3

2
x2 + C
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Integrating x−1

We recall that if we differentiate ln(x) we get x−1. Since integration is the opposite of differentiation,
when we integrate x−1 we get ln(x). �



�
	

∫
x−1 dx = ln |x|+ c

Note: The | signs either side of the x mean the modulus (or the absolute value) of x. It makes sure our
x value is positive. For example |5| = 5 and | − 5| = 5. It is important in this integral as we can input a
negative value of x into x−1 however we cannot take the log of a negative x.

Example: Find the following integral:∫
x2 + 2x3 − 4x4

x3
dx

Solution: The fraction can be simplified, by dividing each term on the denominator by x3. This
reduces the original integral into:∫

x2 + 2x3 − 4x4

x3
dx =

∫ (
1

x
+ 2− 4x

)
dx Integrate each term individually

= ln |x|+ 2x+
−4

2
x2 + C Simplify the terms

= ln |x|+ 2x− 2x2 + C
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5.3 Integrating Exponentials

We can recall that: �



�
	If y = eax then

dy

dx
= a× eax

So when we are differentiating eax we multiply the exponential by the coefficient of the power. When
integrating we do the opposite so we divide by the coefficient of the power. In general we have:�



�
	

∫
eax dx =

eax

a
+ C

Example: find the following:

1.

∫
e6x dx

2.

∫
(ex + 4e−3x ) dx

3.

∫
9e3z dz

Solution:

1. Using the rule

∫
eax dx =

eax

a
+ C and dividing by the coefficent of the power we find:

∫
e6x dx =

e6x

6
+ C

2. First we should break up the integral across the sum:∫
(ex + 4e−3x) dx =

∫
ex dx+ 4

∫
e−3x dx

Now we can apply the rule above to get:∫
ex dx+ 4

∫
e−3x dx =

ex

1
+ 4× e−3x

−3
+ C = ex − 4e−3x

3
+ C

3. Using the rule above but this time with respect to z we find:∫
9e3z dz = 9

∫
e3z dz = 9×

(
e3x

3
+ C

)
= 3e3x + C ′

where C ′ = 9C.
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5.4 Integrating Trigonometric Function

We can recall that: �



�
	If y = sin(ax) then

dy

dx
= a cos(ax)

�



�
	If y = cos(ax) then

dy

dx
= −a sin(ax)

When integrating we do the opposite of differentiation so e:�



�
	

∫
cos(ax) dx =

sin(ax)

a
+ C

�



�
	

∫
sin(ax) dx =

− cos(ax)

a
+ C

Example: find the following:

1.

∫
cos(4x) dx

2.

∫
6 sin(3x) dx

3.

∫ (
5 cos(−x) + sin(3x)

)
dx

Solution:

1. Using the rule

∫
cos(ax) dx =

sin(ax)

a
+ C a we find:

∫
cos(4x) dx =

sin(4x)

4
+ C

2. First we should note

∫
6 sin(3x) dx = 6

∫
sin(3x) dx

Now we can apply the rules above to get:∫
6 sin(3x) dx = 6

∫
sin(3x) dx = 6× − cos(3x)

3
+ C = −2 cos(3x)

3. Splitting up the integral and extracting constants gives:∫ (
5 cos(−x) + sin(3x)

)
dx = 5

∫
cos(−x) dx+

∫
sin(3x) dx

Now by applying the above rules we get:∫
5 cos(−x) + sin(3x) dx = 5

∫
cos(−x) dx+

∫
sin(3x) dx

= 5× sin(−x)

−1
+
− cos(3x)

3
+ C

= −5 sin(−x)− cos(3x)

3
+ C
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5.5 Finding the Constant of Integration

In the integrals so far we have always had a constant of integration denoted +C at the end. Consider
the functions y = x2, y = x2 + 2 and y = x2− 5, as shown on the graph below. These all differentiate to
2x. So when integrating 2x we don’t know whether the actual answer is y = x2, y = x2 + 2 or y = x2− 5
so we give the general answer of y = x2 + C.

−4 −3 −2 −1 1 2 3 4

−6

−4

−2

2

4

6

8

10

12

0

y

x

If we are given the gradient of a curve and a point that the curve goes through, we can find full
equation of the curve and therfore a value of C.

Example: A curve of gradient 4x5 passes through the point (1, 2). What is the full equation
of the line?

Solution: We know the gradient is 4x5 meaning
dy

dx
= 4x5. Hence we have:

y =

∫
4x5 dx Now can integrate

y =
4

6
x6 + C Simplify the fraction

y =
2

3
x6 + C

We now have an expression for y in terms of x however it has a constant C in it. Since we know a
point (1, 2) that the curve passes through we can find this constant. So when x = 1 we have y = 2
substituting this into the equation gives:

2 =
2

3
× 16 + C Rearrange to find C

4

3
= C

We now substitute the value of C into the equation from before to find our answer:

y =
2

3
x6 +

4

3
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5.6 Integrals with Limits

Integrals represent the area under a graph. The probability of finding an electron between two points or
the energy needed to separate two atoms can be represented as the area under the curve and we can use
integration to find their value. Definite integrals are ones evaluated between two values (or limits):�

�
�


∫ b

a

f(x) dx =

[
F (x)

]b
a

= F (b)− F (a)

� The braces

[
..

]b
a

with a and b signify that we will evaluate the integral between these two limits.

� The numerical answer produced by F (b)− F (a) represents the area under the curve.

Below is a function f(x) integrated between the limits a and b with the shaded area being

∫ b

a

f(x) dx

a b

y = f(x)

x

y

Note: There is no need to find C when doing this since they cancel out. When evaluating between the
two points we will have

(
F (b) + C

)
−
(
F (a) + C

)
= F (b)− F (a) + C − C = F (b)− F (a)

Example: Calculate

∫ 4

0

x dx

Solution: We first integrate with respect to x.∫ 4

0

x dx =

[
1

2
x2

]4

0

Substitute the limits in[
1

2
x2

]4

0

=

[
1

2
× 42

]
−
[

1

2
× 0

]
= 8

We can verify this answer by seeing that the area in question is a triangle below.

1 2 3 4

1

2

3

4

0

y

x

We could have easily found the area of the triangle without integration but when we have more
complicated functions then we must use integration.
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Example: Find

∫ π

0

sin(x) dx

Click here for a video example

Solution: To begin we will integrate the function:∫ π

0

sin(x) dx =

[
− cos(x)

]π
0

Evaluate this at the limits[
− cos(x)

]π
0

=
(
− cos(π)

)
−
(
− cos(0)

)
Put those cosines into numbers(

− cos(π)
)
−
(
− cos(0)

)
= −(−1) + 1 = 2

The integral is 2, which means that the area under the curve from 0 to π is 2 as shown below.

x

y

π1
2
π

Chemistry Example: 2.0 moles of an ideal gas is compressed isothermally to half of it’s
initial volume. This process happens at 300K. The work done on the gas is given by the equation:

Won = −
∫ V2

V1

P dV

where V1 and V2 are the initial and final volumes respectively. By using the ideal gas equation and
integration, find the amount of work done on the gas.

Click here for a video example

Solution: We start by relating the initial and final volumes. Since the end volume is half that of
the start we can write V1 = 2V2. This will be important later on.

Now we tackle this integral in which P is being integrated with respect to V hence we need to find
an expression for P in terms of V . From the ideal gas equation we know PV = nRT so we make
P the subject of the formula. Dividing through by V gives:

P =
nRT

V

Substituting this and our limits into the integral gives:

Won = −
∫ V2

2V2

nRT

V
dV The constants can be taken outside of the integral

Won = −nRT
∫ V2

2V2

1

V
dV Integrate

1

V
in the limits

Won = −nRT
[

ln(V )

]V2

2V2

Evaluate the integral between the limits

Won = −nRT
[

ln(V2)− ln(2V2)

]
Using the laws of logs this simplifies to a single log

Won = −nRT ln

(
V2

2V2

)
Simplify further

Won = −nRT ln( 1
2 ) Put the numbers in to get a final answer

Won = −2.0× 300× 8.31× ln( 1
2 ) = 3.456 . . .× 103 J = 3.5× 103 J (to 2 s.f.).
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5.7 Separating the Variables

A differential equation is an equation of the form:�



�
	dy

dx
= f(x, y)

where f(x, y) is a function of x and y. The method of separating the variables works by getting our
differential equation into the form: �� ��f1(y) dy = f2(x) dx

so we have all the ys on the left hand side of the equation and the xs on the right hand side then we can
integrate as below. �



�
	

∫
f1(y) dy =

∫
f2(x) dx

Example: If
dy

dx
= 4x3 then use the method of separation of variables to integrate with respect

to x.

Solution: So first we need to get the differential equation into the correct form with all the x’s on
the right hand side and all the y’s on the left. Multiplying both sides by y2 gives:

dy = 4x3 dx

We can now integrate both sides, the left with respect to y and the right with respect to x:∫
dy =

∫
4x3 dx Complete the integrals

y =
4x4

4
+ C Simplify

y = x4 + C

Example: If
dy

dx
=

sin(−x) + e4x

y2
then use the method of separation of variables to find an

expression for y in terms of x.

Solution: So first we need to get the differential equation into the correct form will all the x’s on
the right hand side and all the y’s on the left. So we have:

y2 dy =
(

sin(−x) + e4x
)
dx

We can now integrate both sides, the left with respect to y and the right with respect to x:∫
y2 dy =

∫ (
sin(−x) + e4x

)
dx Split up the integral on the right

∫
y2 dy =

∫
sin(−x) dx+

∫
e4x dx Integrate both sides

y3

3
= cos(−x) +

e4x

4
+ C Multiply both sides by 3

y3 =
3

4
e4x + 3 cos(−x) + 3C Take the cube root of both sides

y =

(
3

4
e4x + 3 cos(−x) + C ′

) 1
3

Where C ′ = 3C
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Chemistry Example: In a reaction mixture at a fixed temperature the concentration of a
reactant [A] varies with time t according to the differential equation:

d[A]

dt
= −2k[A]

2

Integrate the equation with the boundary limits that when t = 0 and [A] = [A]0 to get the following
equation.

1

[A]
− 1

[A]0
= 2kt

Solution: First we need to put all the [A]’s on the left and t’s on the right to give:

1

[A]
2 d[A] = −2k dt

We can now apply the integral both sides:∫
1

[A]
2 d[A] =

∫
−2k dt Change

1

[A]
2 to [A]

−2

∫
[A]
−2
d[A] =

∫
−2k dt Integrate both sides

−[A]
−1

= −2kt+ C

Now we can substitute in our limits to find C. When t = 0 and [A] = [A]0 we have:

−[A]0
−1

= −2k × 0 + C Simplify

C = −[A]0
−1

Substituting this C back into our equation obtained by the integral gives:

−[A]
−1

= −2kt− [A]0
−1

Rearrange to get it into the form required

1

[A]
− 1

[A]0
= 2kt
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Chemistry Example: In electrochemistry the Cottrell equation:

I = nFAc

√
D

π
t−

1
2

describes the current I at a time t after an electrode is immersed in solution. Current is defined
as the rate of change of charge Q so:

I =
dQ

dt
.

Using this find an expression for charge.

Solution: Since I =
dQ

dt
we can substitute this into the equation involving t to form a differential

equation:

dQ

dt
= nFAc

√
D

π
t−

1
2 Multiply both sides by dt

dQ = nFAc

√
D

π
t−

1
2 dt Integrate both sides of the equation∫

dQ =

∫
nFAc

√
D

π
t−

1
2 dt Since n, F,A, c and D are constants they can be taken

out of the integral∫
dQ = nFAc

√
D

π

∫
t−

1
2 dt Integrate both sides

Q = nFAc

√
D

π
× t−

1
2 +1

− 1
2 + 1

+ C Then simplify

Q = nFAc

√
D

π
2t

1
2 + C
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Chemistry Example: The force between two particles is modelled to be:

F =
12ε

a0

[(
a0

r

)13

−
(
a0

r

)7
]

Given that force is the negative derivative of potential, i.e. F = − d

dr
U , and at r = a0, U = −ε

calculate the potential between the two particles.

Solution: This is a problem of seperating variables so first we set up the problem:

− d

dr
U =

12ε

a0

[(
a0

r

)13

−
(
a0

r

)7
]

Turn this into a nicer form with negative powers

− d

dr
U =

12ε

a0

[
a13

0 r−13 − a7
0 r
−7

]
Multiply by dr and integrate both sides

−
∫
dU =

∫
12ε

a0

[
a13

0 r−13 − a7
0 r
−7

]
dr Take the constant

12ε

a0
out of the integral

−U =
12ε

a0

∫ [
a13

0 r−13 − a7
0 r
−7
]
dr Now integrate the right hand side

−U =
12ε

a0

(
− a13

0

12
r−12 +

a7
0

6
r−6

)
+ C This simplifies down

U = ε
(
a12

0 r−12 − 2a6
0 r
−6
)

+ C

Now find C by substitution (r = a0, U = −ε)

−ε = ε
(
a12

0 a−12
0 − 2a6

0 a
−6
0

)
+ C Simplify this

−ε = ε
(
1− 2

)
+ C

−ε = −ε+ C

0 = C

Back into our equation we get, U = ε
(
a12

0 r−12 − 2a6
0 r
−6
)
.

Note: This is another form of the Lennard-Jones 6-12 potential, with a0 being the equilibrium
seperation and ε being the energy needed to move the particles apart to infinity.

©University of Birmingham, University of Leeds 2014
98

http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Vectors

6.1 Introduction to Vectors

When describing some quantities just a number and units aren’t enough. Say we are navigating a ship
across the ocean and we are told that the port is 5km away we don’t know in which direction we have
to sail. 5km due east would give us all the information that we need. This is an example of a vector, a
quantity that has magnitude and direction.

� Some chemistry related vector quantities are velocity, force, acceleration, linear and angular mo-
mentum and electric and magnetic fields.

� Quantities that have just a magnitude are scalars. Examples of these are temperature, mass and
speed.

Note: To distinguish vectors from scalars we write them with a line under them, e.g. F is used as the
symbol for a force vector. Some books will use bold font for this e.g. F.

Vectors in 2-D Space

A vector in 2-D space can be written as a combination of 2 base vectors, i being a horizontal vector (in
the x direction) and j being a vertical vector (in the y direction). They are both unit vectors meaning
that their length (magnitude) is 1. For an example the vector v = 2i+ 3j is shown below:

−2 −1 1 2 3

−2

−1

1

2

3

v

i

j

Note: The vector v above also describes all vectors that move 2 i units and 3 j units, they don’t have
to start at the origin. All the vectors in the graph below are exactly the same:

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

i

j

v

v

v

i

i

j

j

Writing a general 2-D vector u as a combination of the unit vectors would give:�
�

�


u = ai+ bj

Where a and b are real numbers
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Vectors in 3-D Space

Any vector in 3-D space can be written as a combination of 3 base vectors; i, j and k each being the
unit vector in the x, y and z directions. Below is a graph of the 3 axes with their respective unit vectors:

x

y

z

i
j

k

Writing a general vector v as a combination of the unit vectors would give:�
�

�


v = ai+ bj + ck

Where a, b and c are real numbers

Representation of Vectors

A vector v can be written in the following forms:

1. Unit vector notation: �� ��v = ai+ bj + ck

The vector is displayed as the clear sum of it’s base vectors. In 3-D space those are the i, j and k
vectors.

2. Ordered set notation: �� ��v = (a, b, c)

The vector is in the same form as unit vector notation (a, b and c are the same numbers) but it is
more compact.

3. Column notation: �
�

�
�v =

 a
b
c


This is identical to ordered set notation apart from it being vertical. This form makes some
calculations easier to visualise, such as the dot product.

For example, the 2-D vector u shown below can be written as u = 4i+ 3j or u = (4, 3) or u =

(
4
3

)

−1 1 2 3 4

−1

1

2

3

0

u
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Magnitude of Vectors

If we know the lengths of each of the component vectors we can find the length (or magnitude) of the
vector using Pythagoras: �

�
�


For a vector v = ai+ bj + ck

Magnitude of v = | v | =
√
a2 + b2 + c2

For vector u = 4i+3j above we can calculate the magnitude |u | to be
√

42 + 32 =
√

16 + 9 =
√

25 = 5

Example: Find the magnitude of the following vectors:

1. (2, 6, 3)

2. i+ 7j + 4k

3.

√2√
2

0


Solution:

1. | (2, 6, 3) | =
√

22 + 62 + 32 =
√

4 + 36 + 9 =
√

49 = 7

2. |i+ 7j + 4k | =
√

12 + 72 + 42 =
√

1 + 49 + 16 =
√

66

3.

∣∣∣∣∣
√2√

2
0

∣∣∣∣∣ =

√√
2

2
+
√

2
2

=
√

2 + 2 =
√

4 = 2

Chemistry Example: A helium atom is moving with a velocity v of 20i − 15j m/s. What
is it’s speed?

Solution: Since speed is the magnitude of velocity, we take the magnitude of the velocity vector.
This gives:

| 20i− 15j | =
√

202 + 152 =
√

625 = 25

The particle’s speed is 25 m/s
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6.2 Operations with Vectors

Scalar Multiplication

Scalar multiplication is when we multiply a vector by a scalar. We do this by multipling each component
of the vector by the scalar. This can be expressed as:�

�
�


λ× (x, y, z) = (λx, λy, λz)

Where λ is a real number

Note: Scalar multiplication only changes the magnitude of the vector while the direction stays the same.

Example: Simplify 7(−12, 4)

Solution: We multiply each component of the vector by 7 giving:

(7×−12, 7× 4) = (−84, 28)

Vector Addition and Subtraction

When we add or subtract two vectors we add or subtract each of the individual compoments of the
vectors. This can be expressed as:�

�
�


(a, b, c) + (x, y, z) = (a+ x, b+ y, c+ z)

Where (a, b, c) and (x, y, z) are both vectors using i, j and k.

IMPORTANT: If the vectors have a different number of base components, for example (3, 6) + (1, 0, 7)
we can not complete the addition. For all vector on vector operations both vectors need to have the
same number of base components.

Example: Calculate the following:

1. (2, 2, 0) + (5,−1, 3)

2. 3(a, 4a, 0)− a(7, 0,−1)

3. (1, 3, 8) + (2, 1,−5) + (−1, 2,−1)

Solution:

1. (2, 2, 0) + (5,−1, 3) = (2 + 5, 2− 1, 0 + 3) = (7, 1, 3)

2. 3(a, 4a, 0)−a(7, 0,−1) = (3a, 12a, 0)− (7a, 0,−a) = (3a−7a, 12a−0, 0 +a) = (−4a, 12a, a)

3. (1, 3, 8) + (2, 1,−5) + (−1, 2,−1) = (1 + 2− 1, 3 + 1 + 2, 8− 5− 1) = (2, 6, 2)
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Vector Multiplication: Dot Product

There are two ways of multiplying two vectors together. The first is the dot (or scalar) product which is
defined to be: �

�
�


A ·B = |A | |B | cos θ

Where θ is the angle between vectors A and B

IMPORTANT: Taking the dot product of two vectors produces a scalar quantity.

Given two vectors, the dot product can also be calculated in the following way:�
�

�
�

 a
b
c

 •
x
y
z

 = ax + by + cz

Note: The dot product can be thought of how much one vector is pointing in the direction of the other.

θ

A

B

A cos θ

The part of A that goes in the same direction as B has a length of |A| cos θ, making the dot product
the length of B times the length of A that is in the same direction as B

Example: Calculate the following:

1.

 3
9
1

 •
 1
−2
10


2.

(
1
0

)
•
(√

2√
2

)
Solution:

1.

 3
9
1

 •
 1
−2
10

 = 3× 1 + 9× (−2) + 1× 10 = 3− 18 + 10 = −5

2.

(
1
0

)
•
(√

2√
2

)
= 1×

√
2 + 0×

√
2 =
√

2
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Chemistry Example: An ion moving through solution has 2 forces acting upon it, a resistive
force from the medium with a vector of (3,

√
7, 3) and an electromagnetic force from an electric

field with a vector of (−5, 3, 4). What is the angle between these two vectors?

Solution: To calculate this we find the dot product of the two vectors and then employ the definition
of the dot product to find the angle. The dot product of the two vectors is: 3√

7
3

 •
−5

3
4

 = 3× (−5) +
√

7× 3 + 3× 4 Simplify this

= −15 + 3
√

7 + 12 = −3 + 3
√

7 = 3(
√

7− 1) ≈ 4.937

Using the definition A · B = |A | |B | cos θ we can now find out what θ is. First we must find the
magnitudes of the two vectors:

|(3,
√

7, 3)| =
√

32 + 7 + 32 =
√

25 = 5 For the first vector

|(−5, 3, 4)| =
√

(−5)2 + 32 + 42 =
√

50 = 5
√

2 For the second vector

Putting all this information into the equation A ·B = |A | |B | cos θ gives us:

3(
√

7− 1) = 5× 5
√

2 cos θ Rearrange for cos θ

3(
√

7− 1)

25
√

2
= cos θ Take the arccos of both sides

θ = arccos(0.1396 . . . ) = 81.97◦ · · · = 82.0◦ to 3 s.f.

Chemistry Example: What is the work done w by the vector force F = (3ti + 3j) N on a

particule of velocity v = (5i− tj) ms−1 in the time interval 0 < t < 3 s given that:

w =

∫ 3

0

F · v dt

Solution: First we must find the dot product F · v.

F · v = (3ti+ 3j) · (5i− tj) = 3t× 5 + 3× (−t) = 12t

Now we have found the dot product we can substitute it in the integral and solve.

w =

∫ 3

0

F · v dt

=

∫ 3

0

12t dt

=

[
6t2
]3

0

=

[
6× 32

]
−
[
6× 02

]
= 54 J
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Vector Multiplication: Cross Product

The cross product (or vector product) is defined to be:�

�

�

�
A×B = |A | |B | sin θ n̂

Where θ is the angle between the two vectors

and n̂ is the unit vector in the direction of the new vector.

IMPORTANT: The cross product takes two vectors and produces a new vector. This new vector is
in the direction perpendicular to the plane that A and B are in. It is only possible to take the cross
product of two 3-D vectors (and technically 7-D vectors as well).

The cross product is also dependent on the order of the vectors appear in the product. If we change
the order of the vectors in a cross product then our answer becomes negative. The vector points in the
opposite direction. �� ��a× b = −b× a

The right hand rule determines which way the vector produced will point. We use the rule as follows:
curl your fingers from the first vector in the cross product to the second vector and the direction your
thumb points is the direction of the vector produced by the cross product.

b

a
θ

In this case, a× b will point out of the page and b× a will point into the page.

Calculating the Cross Product

When using the standard base vectors of î, ĵ and k̂, we can calculate the cross product by considering
the cross product of the base vectors with each other:�� ��i× i = j × j = k × k = 0�� ��i× j = −j × i = k�� ��j × k = −k × j = i�� ��k × i = −i× k = j

Taking the cross products of two vectors is just like expanding brackets. The cross product two
general vectors,

(
ai+ bj + ck

)
×
(
xi+ yj + zk

)
, would give ax(i× i) + ay(i× j) + az(i× k) + . . . Fully

expanded and simplified gives:�
�

�


(
ai+ bj + ck

)
×
(
xi+ yj + zk

)
=
(
bz − cy

)
i+
(
cx− az

)
j +

(
ay − bx

)
k

Where a, b, c, x, y and z are real numbers
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Example: Calculate the following cross product: 3
1
−2

×
 2
−1
1


Solution: So to find this we use the formula below:(

ai+ bj + ck
)
×
(
xi+ yj + zk

)
=
(
bz − cy

)
i+
(
cx− az

)
j +

(
ay − bx

)
k

Now we can write the vectors in the question in the form of the rule so
(
ai+bj+ck

)
=
(
3i+1j−2k

)
and

(
xi+ yj + zk

)
=
(
2i− 1j + 1k

)
Hence a = 3, b = 1, c = −2, x = 2, y = −1 and z = 1 and therefore:(

3i+ 1j − 2k
)
×
(
2i− 1j + 1k

)
=
(
1× 1− (−2)× (−1)

)
i+
(
(−2)× 2− 3× 1

)
j +

(
3× (−1)− 1× 2

)
k

= −1i− 7j − 5k

This could also be written:  3
1
−2

×
 2
−1
1

 =

−1
−7
−5
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7 Complex Numbers

7.1 Imaginary Numbers

Imaginary numbers allow us to find an answer to the question ‘what is the square root of a negative
number?’ We define i to be the square root of minus one.�� ��i =

√
−1

We find the other square roots of a negative number say −x as follows:�� ��√
−x =

√
x×−1 =

√
x×
√
−1 =

√
x× i

Example: Find the square root of:

1.
√
−9

2.
√
−13

Solution:

1.
√
−9 =

√
9×−1 =

√
9×
√
−1 = 3i

2.
√
−13 =

√
13×−1 =

√
13×

√
−1 =

√
13 i

7.2 Complex Numbers

A complex number is a number that has both a real and imaginary component. They can be written in
the form: �� ��a+ bi

where a and b are real numbers and i =
√
−1.

We often denote complex numbers by the letter z so z = a+ bi.

� a is the real part of z we denote this Re(z) = a.

� b is the imaginary part of z we denote this Im(z) = a.

� z∗ = a− bi is called the complex conjugate of z = a+ bi

Just as we have a number line for real numbers we can draw complex numbers on an x, y axis called
an Argand diagram with imaginary numbers on the y-axis and real numbers on the x-axis. We have
drawn 2 + 3i on the Argand diagram below.

Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i 2 + 3i
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Example: Find the imaginary and real parts of the following complex numbers along with their
complex conjugates.

1. z = −3 + 5i

2. z = 1− 2
√

3 i

3. z = i

Solution:

1. For z = −3 + 5i we have Re(z) = −3, Im(z) = 5 and z∗ = −3− 5i

2. For z = 1 + 2
√

3 i we have Re(z) = 1, Im(z) = −2
√

3 and z∗ = 1 + 2
√

3 i

3. For z = i we have Re(z) = 0, Im(z) = 1 and z∗ = −i

Different Forms for Complex Numbers

When a complex number z is in the form z = a+ bi we say it is written in Cartesian form. We can also
write complex numbers in:

� Polar form: r(cos(φ) + i sin(φ))

� Exponential form: reiφ

where the magnitude |z| (or modulus) of z is the length r.�� ��|z| = r =
√
a2 + b2

and the argument of z is the angle φ (this must be in radians).�
�

�
arg(z) = φ = tan−1

(
b

a

)
This argument φ is usually between −π and π. Expressed mathematically this is −π < φ ≤ π.

We can see on an Argand diagram the relationship between the different forms for representing a
complex number.

Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i 2 + 3i

b

a

r

φ
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Example: Find the modulus and argument of the following complex numbers:

1. 3 + 3i

2. −4 + 3i

3. −3i

4. 4

Solution:

1. For 3 + 3i we have |z| =
√

32 + 32 =
√

18 and arg(z) = tan−1

(
3

3

)
=
π

4
radians.

2. For −4 + 3i we have |z| =
√

(−4)2 + (3)2 = 5 and arg(z) = tan−1

(
3

−4

)
= −0.64 radians.

3. For −3i we have |z| =
√

02 + (−3)2 = 3 and arg(z) = tan−1

(
−3

0

)
This calculation does not make sense since we can’t divide by zero. However from plotting

−3i on an Argand diagram the argument is clearly arg(z) =
−π
2

radians.

Re(z)

Im(z)

−3

−3i

−2

−2i

−1

−1i

1

1i

2

2i

3

3i

0− 3i

4. For 4 we have |z| =
√

42 + 02 = 4 and arg(z) = tan−1

(
0

4

)
= 0 radians.

Example: Express 4− 5i in polar and exponential form.

Solution: First we need to find the modulus and argument.

|z| = r =
√

42 + (−5)2 =
√

41 and arg(z) = φ = tan−1

(
−5

4

)
= −0.90 radians

So in polar form r(cos(φ) + i sin(φ)) we have
√

41(cos(−0.90) + i sin(−0.90)).

In exponential form reiφ we have
√

41e−0.90 i.
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Chemistry Example: Written in Exponential form the radial wave function for a 2p orbital
of hydrogen is:

ψ2p = ∓ 1√
2
r sin(θ)e±iφf(r)

Write this in Polar form.

Solution: A complex number in Exponential form: reiφ has Polar form: r(cos(φ) + i sin(φ)).

Because of the ∓ and ± signs in this question we have either:

r =
1√
2
r sin(θ)f(r) and φ = −φ

OR

r = − 1√
2
r sin(θ)f(r) and φ = φ

Hence in Polar form we have either:

r =
1√
2
r sin(θ)f(r)(cos(−φ) + i sin(−φ))

OR

r = − 1√
2
r sin(θ)f(r)(cos(φ) + i sin(φ))

Applications

When using the quadratic formula:

−b±
√
b2 − 4ac

2a

we would not have known what to do if b2 − 4ac was negative however now we are able to solve this
square root using imaginary numbers.

Example: Solve the equation x2 + 3x+ 12 using the quadratic formula

Solution: So we have that a = 1, b = 3 and c = 12 so the quadratic formula gives:

−b±
√
b2 − 4ac

2a
=
−3±

√
32 − 4× 1× 12

2× 1

=
−3±

√
−39

2

=
−3± i

√
39

2

This gives us x =
−3 + i

√
39

2
and x =

−3− i
√

39

2
.

Note: The two roots are complex conjugates of each other.
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7.3 Arithmetic of Complex Numbers

If we have two complex numbers a+ bi and c+ di then we have the following rules for the arithmetic of
complex numbers:

1. Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Add the real parts and add the complex parts separately.

2. Subtraction: (a+ bi)− (c+ di) = (a− c) + (b− d)i

Same as addition but with subtraction.

3. Multiplication: (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Treat it as 2 set of brackets and use FOIL. Remember that i2 = −1.

4. Division:
a+ bi

c+ di
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

Multiply the numerator and denominator by the conjugate of the denominator. This makes the
denominator a real number and the numerator the multiplication of two complex numbers.

Example: Find the following:

1. (2 + i) + (1− i)

2. (−4− 4i)− (−5i)

3. (1 + i)(2− 3i)

4.
1− i
2 + 3i

Solution:

1. (2 + i) + (1− i) = (2 + 1) + (1− 1)i = 3

2. (−4− 4i)− (−5i) = (−4− 0) + (−4− (−5))i = −4 + i

3. (1 + i)(2− 3i) = ((1× 2)− (1×−3)) + ((1×−3) + (1× 2))i = 5− i

4.
1− i
2 + 3i

=
(1× 2) + (−1× 3)

22 + 32
+

(−1× 2)− (1× 3)

22 + 32
i =
−1

13
− 5

13
i

Chemistry Example: A particle is described by a wavefunction Ψ. To calculate the proba-
bility of finding this particle somewhere ΨΨ∗ needs to be caclulated. When Ψ is in the form:

Ψ = a+ bi

calculate ΨΨ∗.

Solution: Since Ψ = a+ bi, this means that Ψ∗ = a− bi. Multiplying them together gives:

ΨΨ∗ = (a+ bi)(a− bi) Expand the brackets

= a2 + abi− abi− (bi)2 Simplify this

= a2 − b2i2 Simplify the i2

= a2 + b2

Note: a2 + b2 is also r2 if the complex number was in polar or exponential form. Since r is called
the modulus, ΨΨ∗ is often called the mod-squared distribution since it produces the modulus
squared.
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8 Matrices

8.1 What is a Matrix?

A matrix is defined as an array of numbers such as:(
3 1 8
0 −4 5

)
� Matrices come in different sizes. We write the size of the matirx as rows× columns. So the matrix

above is a 2× 3 matrix.

� We use capital letters such as A or B to denote matrices.

� The numbers contained in a matrix are known as matrix elements. They are denoted aij where i
represents the row and j the column in which the element is in. For example in the above matrix
a11 = 3 and a23 = 5.

� Matrices with an equal number of rows and columns are called square matrices. For example the
2× 2 matrix below: (

1 −1
0 1

)

Example: For the matrices below find the size of the matrix and the value of a21 and a33 if
possible.

1. A =


4 5 6
1 2 3
4 5 6
1 2 3



2. B =

 1
−1
40



3. C =

a b c
e d f
g h i


Solution:

1. The matrix A has 4 rows and 3 columns, hence is a 4× 3 matrix. We have that a21 = 1 and
a33 = 6.

2. The matrix B has 3 rows and 1 column, hence is a 3× 1 matrix. We have that a21 = −1 and
a33 does not exist as this is a 3× 1 matrix.

3. The matrix C has 3 rows and 3 columns, hence it is a 3 × 3 matrix (also a square matrix).
We then have that a21 = d and a33 = i

Matrices are an excellent way of expressing large amounts of information or data in a small space as
shown in the next example.
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Chemistry Example: Ignoring the hydrogens find the atom connectivity matrix of but-1-ene
shown below:

2 4

1 3

Solution: An atom connectivity matrix describes how the carbons in but-1-ene are bonded with
each other. First note that we have labelled the carbons 1-4. We use the matrix element amn (in
row m and column n) to describe how carbon m and carbon n are bonded hence we need to find
a 4× 4 matrix.

� The matrix element a12 describes how carbon 1 is bonded to carbon 2, we have a double
bond between them hence a12 = 2. This also means that a21 = 2 as this matrix element also
describes how carbon 2 is bonded to carbon 1.

� The matrix element a13 describes how carbon 1 is bonded to carbon 3, we have no bond
between them hence a13 = 0 this also means that a31 = 0.

� As there is a single bond between carbon 2 and carbon 3 we have a23 = 1 and a32 = 1

� The matrix element a11 describes how carbon 1 is bonded to carbon 1 however it does not
make sense for an atom to be bonded to itself. Hence we tend to write in the atomic number
of the atom which for carbon is 6 so a11 = 6. This is also true for a22 = 6, a33 = 6 and
a44 = 6.

So when we find the rest of the matrix elements in the same way we have that the atom connectivity
matrix of but-1-ene is: 

6 2 0 0
2 6 1 0
0 1 6 1
0 0 1 6
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8.2 Matrix Algebra

Addition and Subtraction

Matrices can only be added or subtracted if they are of the same size. Suppose we have the 2×2 matrices
below:

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
Then their sum is found by adding together corresponding matrix elements:�

�
�
A+B =

(
a11 a12

a21 a22

)
+

(
b11 b12

b21 b22

)
=

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
Subtraction works in exactly the same way:�

�
�
A−B =

(
a11 a12

a21 a22

)
−
(
b11 b12

b21 b22

)
=

(
a11 − b11 a12 − b12

a21 − b21 a22 − b22

)
In general if we are adding or subtracting two m× n matrices:
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

±

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 =


a11 ± b11 a12 ± b12 · · · a1n ± b1n
a21 ± b21 a22 ± b22 · · · a2n ± b2n

...
...

. . .
...

am1 ± bm1 am2 ± bm2 · · · amn ± bmn


Note: Matrix addition and subtraction is commutative so A+B = B +A.

Example: Calculate the following:

1.

(
1 1
4 0

)
+

(
−1 4
2 −3

)

2.

10
−3
0

−
−3

2
0



3.

(
9
−2

)
+

−9 0 1
13 13 0
9 0 9


Solution:

1.

(
1 1
4 0

)
+

(
−1 4
2 −3

)
=

(
1 + (−1) 1 + 4

4 + 2 0 + (−3)

)
=

(
0 5
6 −3

)

2.

10
−3
0

−
−3

2
0

 =

10− (−3)
−3− 2
0− 0

 =

13
−5
0


3. We can not add these matrices as they are of different sizes!
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Multiplication by a Constant

The simplest form of multiplication is where we multiply a matrix by a constant or scalar. We show
the rule on a 2× 2 matrix but it follows in the same way for any sized matrix we simply multiply every
element by the scalar. �

�
�
λA = λ

(
a b
c d

)
=

(
λa λb
λc λd

)

Example: Find the following:

1. 2

(
−1 2
0 4

)

2.

√
3

3

−9 0 3
12 12 0
3 0 3


Solution:

1. 2

(
−1 2
0 4

)
=

(
−1× 2 2× 2
0× 2 4× 2

)
=

(
−2 4
0 8

)

2.

√
3

3

−9 0 3
12 12 0
3 0 3

 =

−9×
√

3
3 0×

√
3

3 3×
√

3
3

12×
√

3
3 12×

√
3

3 0×
√

3
3

3×
√

3
3 0×

√
3

3 3×
√

3
3

 =

−3
√

3 0
√

3

4
√

3 4
√

3 0√
3 0

√
3



Matrix Multiplication

Suppose we want to find the product AB of the matrices A and B. Then:

� The number of columns of A must be equal to the number of rows of B.

� The product matrix has the same number of rows as A and the same number of columns as B.

Below we have the rule for find the product of two 2× 2 matrices:�
�

�
AB =

(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
In general if we want to find the product AB of a m× l matrix A and k × n matrix B:

A =


a11 a12 · · · a1l

a21 a22 · · · a2l

...
...

. . .
...

am1 am2 · · · aml

 and B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bk1 bk2 · · · bkn



so that AB =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn


IMPORTANT: We calculate cij to be the scalar dot product of row i and column j.
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Example: Find the following products:

1.

(
1 0
2 1

)(
3 1
2 1

)

2.

(
10 2 2
8 −1 4

)(
−5 −3
2 2

)
Solution:

1. As we are multiplying a 2 × 2 matrix by another 2 × 2 matrix the product matrix will also
be a 2× 2 matrix in the form below: (

a11 a12

a21 a22

)
We now calculate the elements of the product matrix above:

To find a11 we take the dot product of row 1 and column 1:

a11 =

(
1
0

)
•
(

3
2

)
= 1× 3 + 0× 2 = 3

To find a12 we take the dot product of row 1 and column 2:

a12 =

(
1
0

)
•
(

1
1

)
= 1× 1 + 0× 1 = 1

To find a21 we take the dot product of row 2 and column 1:

a21 =

(
2
1

)
•
(

3
2

)
= 2× 3 + 1× 2 = 8

To find a22 we take the dot product of row 2 and column 2:

a22 =

(
2
1

)
•
(

1
1

)
= 2× 1 + 1× 1 = 3

(
1 0
2 1

)(
3 1
2 1

)
=

(
3 1
8 3

)
2. The number of columns of the matrix on the left does not equal to the number of rows of

the matrix on the right hence this product can not be found!

Note: Matrix multiplication is NOT commutative so AB 6= BA

Example:

Let A =

(
1 1
4 0

)
and B =

(
−1 4
2 −3

)
Then AB =

(
1 1
−4 16

)
and BA =

(
15 −1
−10 2

)
This shows that matrix multiplication is not commutative as AB 6= BA.
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8.3 The Identity Matrix, Determinant and Inverse of a Matrix

The Identity Matrix

The Identity Matrix (or Unit Matrix) is a square matrix which is denoted I and has ‘1’ along the leading
diagonal (from top left to bottom right) with ‘0’ in all other positions.

The 2× 2 identity matrix is:

I2 =

(
1 0
0 1

)
The 3× 3 identity matrix is:

I3 =

1 0 0
0 1 0
0 0 1


In general the n× n identity matrix is:

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


The Identity matrix has the property that when multiplied with another matrix it leaves the other

matrix unchanged: �� ��AI = A = IA

Example: (
3 4
8 9

)(
1 0
0 1

)
=

(
3 4
8 9

)
=

(
1 0
0 1

)(
3 4
8 9

)

The Transpose of a Matrix

The transpose of a matrix is denoted AT and is obtained by interchanging the rows and columns of the
matrix. The rule for a 2× 2 matrix A is: �

�

�

�
A =

(
a b
c d

)

AT =

(
a c
b d

)
Note: There exists a more complex formula for 3× 3 matrices.

Example: For the matrix A below find AT .

A =

(
3 4
8 9

)
Solution:

A−T =

(
3 8
4 9

)
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The Determinant of a Matrix

The determinant of a matrix is denoted |A|. For finding the determinant of a 2 × 2 matrix A we have
the following formula: �

�
�
For A =

(
a b
c d

)
the determinant is |A| = ad− bc

Note: There exists a more complex formula for finding the determinants of 3× 3 matrices.

� A matrix whose determinant is zero so |A| = 0 is said to be singular.

� A matrix whose determinant is non zero so |A| 6= 0 is said to be non-singular.

Example: Find the determinant of the matrix A:

A =

(
1 −4
2 5

)
Solution:

|A| =
∣∣∣∣1 −4
2 5

∣∣∣∣ = (1× 5)− (−4× 2) = 13

Note: The matrix A is non-singular.

Inverse of a Matrix

Only non-singular matrices have an inverse matrix. The inverse of a matrix A is denoted A−1 and has
the following property: �� ��AA−1 = A−1A = I

To find the inverse of a 2× 2 matrix A we have the following formula:�

�

�

�
A =

(
a b
c d

)
A−1 =

1

|A|

(
d −b
−c a

)
where |A| = ad− bc 6= 0

Note: There exists a more complex formula for finding the inverses of 3× 3 matrices.

Example: Find the inverse A−1 of the matrix A.

A =

(
1 −4
2 5

)
Solution: From the previous example on determinants we know that |A| = 13. So the inverse of A
is:

A−1 =
1

13

(
5 4
−2 1

)
=

(
5
13

4
13

− 2
13

1
13

)
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