THz sensing in front of Vehicle (Ground Profiling)

Motivation

Aim: To provide real time identification of roads’ image in complex environments (off-road, humps, kerbs) in severe weather conditions (rain, snow, spray).

Existing Sensor technologies include:
- Optical sensors
- Lidar (Lasers)
-Thermo-graphic cameras (for night vision)
-Radars at 24 GHz and 77 GHz

A fusion of technologies are usually used.

Optical sensors are most used for driver assistance/path detection. However they fail in:
- Spray/fog/smoke
- Sand/dust storm
- Snow/rain

THz sensing

- a) and c) Optical images in clear and foggy weather
- b) and d) Corresponding passive millimetre wave images

Microwave sensing in THz band provides
- High resolution
- Compact sensors/antennas

THz sensing enables optimisation of control systems including transmission, suspension, throttle mapping and torque to control vehicle progress on any terrain.

Challenges

- Atmospheric gases attenuation
- Water vapour absorption
- Oxygen absorption
- Precipitation Attenuation
- Rain
- Snow
- Foliage Blockage
- Scattering effects
- Diffused and specular reflections
- Diffraction

Obstacle detection and avoidance in Robotics

Future applications

- Autonomous vehicles
- Earth remote sensing
- Non-destructive testing of structural integrity
- Moisture content determination
- Coating thickness control
- Structural integrity
- Medical applications
- Concealed weapons detection

Average atmospheric absorption of millimetre waves

Specific attenuation due to atmospheric gases (Oxygen and water vapour)

Specific attenuation (dB/km)

Frequency (GHz)

Frequency (GHz)

Wavelength (mm)

Attenuation of moist air for frequencies below 1000 GHz at sea-level and temperatures ± 40° C

Range

Average resolution

Average attenuation

Imaging of the road ahead

Dr Marina Gashinova, gashinms@bham.ac.uk, +44(0) 121 414 7599

For more enquiries, please contact:
Dr Marina Gashinova, gashinms@bham.ac.uk, +44(0) 121 414 7599

www.eee.bham.ac.uk/misl