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ABSTRACT Data-driven training also often ignores or contradictsfind

. . . in(t);;s of research on human speech production and percep-
Recent advances in automatic speech recognition have us.ﬁon. Speech is generated by the relatively slow, consadain

large corpora and powerful computational resources to trai ) .
- . . . and smooth movement of a small number of articulators in
complex statistical models from high-dimensional feagute .
the vocal tract. Features are therefore strongly cormtliaite

attempt to capture all the variability found in natural sgee (%ime and typically exhibit smooth, slowly-varying dynamic

Such models are difficult to interpret and may be fragile, an t has long been argued [11, 12] that speech features thus
contradict or ignore knowledge of human speech producl- '

tion and perception. We report proaress towards honemie on a low-dimensional data manifold embedded in high-
P ption. port prog P imensional acoustic space. DNN work tacitly acknowledges

recognition using @ modef of speech which employs very fev%iis through dimensionality reducing transforms applied t

parameters and which is more faithful to the dynamics an . T !
model of human speech production. Using features generatede input features (€.g. [13]), and non-linear reductiarchs

. . as relatively low-dimension bottleneck layers [14].
from a neural network bottleneck layer, we obtain recogniti Jansen [12] argues that modelling this manifold direct
accuracy on TIMIT which compares favourably with tradi- g g y

tional models of similar power. We discuss the implicationsWOLIId allow recognition to be carried out closer to the orai

" : Intent, perhaps therefore more robustly to noise and vidwiab
of these results for recognition using natural featurep s1sc . . :
. ity. It would also allow the dynamics of the signal to be taken
vocal tract resonances and spectral energies.

into account. Segmental [15, 16] and dynamical [17, 18]
Index Terms— Continuous-State HMM, phoneme recog- models attempt to model the dynamics of speech more faith-

nition, neural network, bottleneck features, formants. fully, but are hampered by computational complexity.
The Continuous State HMM (CS-HMM) [19] can be cast
1. INTRODUCTION as a type of segmental model [20]. Its iterative computation

avoid some of these problems, and it can be trained on lim-

Recent significant progress in automatic speech recognitidted data of low dimensionality. Variants have been apptited
has been achieved predominantly using statistical method®iced sounds [21] with formant-type features, and unubice
such as Deep Neural Networks (DNNs [2]) to model distribu-Sounds [23] using spectral energy features.
tions over speech features. Very large corpora and powerful We plan to integrate these models into a full recogniser
Computationa| resources (eg [3]) enab|e training Of r‘mde Wh|Ch Would probablllstlca”y Combine hypotheses from mul
with many parameters, from rich high-dimensional features tiple models and heterogeneous views on the data (see e.g.
This approach assumes training and test data drawn frof§4])- Questions remain, including how to automatically
the same distribution, and aims to model all the expecteid varchoose appropriate features for each observation, and com-
ability in speech from the target domain, to reduce the risipine scores from different feature spaces. As an internedia
of encountering novel patterns in production. With enougi$tep. in this paper we side-step these questions by build-
training data, although the model is over-trained, the empi iNg on work reported in [25] to automatically derive a low-
ical distributions of training and test samples will be elos dimensional representation of speech, valid for all speech
enough for lack of generalisation not to be a problem. sounds (as hypothesised by Jansen et al. [12]), and faithful
The cost can be inflexibility when applied to speech fromt© the assumptions of the CS-HMM. We report promising
outside the target domain. This is demonstrated by the faghoneme recognition results using these bottleneck fesitur
that research is active into recognition of accented (el]), [
children’s [5] or dysarthric [6] speech, as well as trainfog 2. CONTINUOUS-STATE HMM
low resource languages (e.g. [7, 8]), speech in noise [@], an
model adaptation [10]. Adaptation is hampered by difficultyThe CS-HMM model of speech [19, 21] aims to reflect speech
in interpreting large statistical models, the structuessmed, structure and dynamics more faithfully than conventional
and roles and behaviours of elements of the models. HMMs, reducing the assumptions that speech is a piece-wise



stationary process with temporally independent obsemwati  estimate of boundaries between dwells and transitionsnFro
and improving duration modelling. The model is inspiredthese improved boundaries, an improved set of phoneme tar-
by the Holmes, Mattingly and Shearme (HMS) [29] dwell- gets@,, and realisation covarianck can be estimated from
transition model of speech, in which stationary dwells eepr the features now marked as dwell phases. Observation eovari
sent phoneme targets and transitions the smooth movemeantceE is estimated from both dwells and transitions. Decod-
between them, corresponding to the smooth movement of thiag is then repeated with the new inventory, until convergen
human articulators. GiveiN phonemes, we estimate an in- (boundaries and parameter estimates no longer change).
ventory of phoneme ‘canonical’ targets. L&t be the target

feature vector for phoneme. Realisationr,, of ¢ will vary, 3. FEATURES

e.g. with speaker and context. We assume this variation to be

Gaussian around the target, with covariadceWe assume  |n this section we briefly outline the derivation of bottleke
also observatiory, at timet to be drawn from a Gaussian features and describe other features used in the expesment
aroundr,, with covariancel. In this work, these are global

covariances, but they could be estimated per-phoneme. Thuss 1. Low-Dimensional Bottleneck Features (BNS)

Ty~ N(6,, A), Yy ~ N(ry, E). (1) We obtain bottleneck features using a neural network clas-
sifier as described by Bai et al. [25]. Log Mel frequency fil-
terbanks (26 channels) were obtained from TIMIT audio sam-

covariances\ andE, and a timing model, which in this work led at 16kH ivsed usi 25ms H : ind ith
simply allows uniformly distributed dwell and transitioni-d peda £, analysedusing a £oms famming window wi
8ms frame rate, normalised to zero mean and unit variance

rations over a specified range. These at most several hundr% - .
P 9 ver the training set. Windows dfl features (centrat 5

parameters (see Tables 1 and 2), are estimated from data 2§ . , L
described in the next section, as is a language model. frames) were input to a 5-layer multi-layer perceptronmyi

Recognition uses a sequential branching algorithm to re? 286 neuron input layer. Hidden layers contained sigmoid-

cover the most likely sequence of alternating dwells anat-tra activation neuronsj12 in layers2 and4, with a3 or 9 neu-

sitions, the times of changes between them, and the sequer{r?é1 bottleneck in laye8. Using the Theano toolkit [27], the

of phonemes which generated them. Hypotheses are maiﬂg}twork was trained discriminatively using Stochasticdbra
tained for all possible trajectories, pruning the leasliiifor ent Descent with the cross-entropy error criterion, to futed

computational efficiency. Each hypothesis maintains desta _FI)_T&?_? mhe posterlorzgroﬁ)_ab.lllltles fromhthlcte dstatn tdhard 490$ett f
consisting of continuous componentsand discrete compo- phonemes [26]. Training was halted at the soonest o

o increasing validation set error, or at 3000 epochs. We used
nentsd,, maintained as a Baum-Welch alpha value, . - o
’ P 90% of TIMIT ‘Train’ for training, 10% for validation.
ai(z,d) = Kin(x — p,, Py), (2) We generated bottleneck features for the whole of TIMIT
) ) ) o by feeding the same input features to the trained network, an
which stores information about an infinite set of explanaio recording the activations at the bottleneck layer. Sevsstsd
of the data, as a scaled Gaussian. It represents the hy[gothegf pottleneck features were obtained from networks with the

belief of the current realisation, given the observati®ens  anove structure trained from different random initialisas.
the current hypothesised phoneme and phonetic history, and

duration of the curren? dwell or transition. : 3.2. Formants and Vocal Tract Resonances (VTRS)
On each observation, hypotheses are split to account for

the possibilities of continuing in the current dwell or ttran The HMS model was originally described in terms of for-
sition, or changing from dwell to transition or vice versa. A mants, the resonances of the human vocal tract as mainly ob-
distinguishing feature of the dwell-transition CS-HMMIlwt  served during sonorant speech. We use Wavesurfer [30] to
continuity is preserved across the segment boundaries. obtain trajectories foF}, Fy and F5 from TIMIT. Formants

are notoriously hard to estimate accurately, and not mganin
2.1. Training Procedure ful for all speech sounds [25, Fig. 4b)], while the undertyin

Vocal Tract Resonances (VTRs) manifesting as formants dur-
To estimate parameters we use a Viterbi alignment procedu[ﬁg sonorant speech are postulated as valid for all spedeh. T

[21]. Initial estimates are obtained using the TIMIT [1]ifa TR database [22] provides VTRSs for a subset of TIMIT.
scribed phoneme boundaries, to identify which features be-

long to which phoneme. This assumes that dwe.ll_s extend b%-_3_ Perceptually-Motivated Spectral Features
tween these boundaries and there are no transitions. We use
all ‘non-SA' utterances for training. Each utterance isnthe Perceptual experiments have shown that humans discrieninat
decoded with the CS-HMM decoding algorithm using a strictbetween unvoiced sounds largely on the basis of broadband
language model, the true sequence of phonemes for the utt@mergy between specific frequencies and of specific duration
ance. The most likely hypothesis returned will include & firs Between such sounds, acoustic change is abrupt, so the HMS

The trained system contains a moéglper phoneme, two



Features Phonemes Dim. Train Test Model Corr  Sub Del Ins Err  Ac #Parm

39 MFCC +6 + 46 [25] all 39  Train Core Test DS-HMM  76.2 - - - 291 709 1.4e7
9D Bottleneck [25] all 9 Train Core Test DS-HMM 744 17.8 88 .92 294 706 23e5
3D Bottleneck [25] all 3 Train Core Test DS-HMM  65.0 24.2 10841 39.1 609 7.6e4
3 Formant [25] all 3 Train Core Test DS-HMM  49.3 32.0 187 8.69.35 40.7 7.6e4

3 Formant + + §4 [25] all 9 Train Core Test DS-HMM  56.3 24.3 19.3 5.2 489 51.1 .3eB

3 VTR [21] voiced (V) 3 1 Speaker 1 Speaker CS-HMM  39.6 31.1 329. 24 628 37.2 85

9 Spectral Energies [23] unvoiced (uv) 9 Train Core Test Q@MH 73.1 195 8.2 3.2 308 69.2 245

Table 1. Phone % error (etc.) from previous phoneme recognitioreexgents. Top: ‘standard’ discrete tied-state triphoneMH@MM
(DS-HMM) (approx. 11,000 models); 13 MFCCs plus deltas and delta-deltas. Centre: monophone MBHdomparing formants and
bottleneck features. Bottom: CS-HMM, training and testingv) voiced phoneme sequences from a single-speakeni(we)ced phoneme
sequences. All results use a bigram language model. Paacweint #Parm is for the model only, excludes LM and featuteaetion.

model is not a good fit. Instead, vectors of spectral energie$.2. Bottleneck Results
between perceptually-motivated frequencies can be ugéd wi

a ‘dwell-only’ model to decode unvoiced consonants [23]. In the lower half of Table 2 we report phoneme recogni-

tion results for full TIMIT utterances (labelled ‘all’), voed

phonemes (32 vowels, liquids, aspirates, nasals and voiced
4. RESULTS fricatives and affricates, Iabelleq ‘v and u_nv0|ced pbm!as

(17 stops, closures and unvoiced fricatives and affricates

. . . . . labelled ‘uv’). Models were built for the appropriate subse
In this section we briefly review previous phoneme recog- . . .

. : . : from the ‘standard’ mapping to 49 phonemes, and scored
nition results using bottleneck features with discretaest

HMMs (DS-HMMs). and limited experiments using the CS- using the mapping to 40 [26]. The results reported are means

o ; from repeated experiments using BNs from neural networks
HMM with "natural’ features (VTRs and spectral features). trained ?rom differpent random ini?ialisations. The top tpair

the table gives results for formants and VTRs for comparison

Accuracy using BNs with the CS-HMM was not quite as
good as with the DS-HMM (Table 1) but the CS-HMM used
Using 9-dimensional bottleneck (9D BN) features, and several orders of magnitude fewer parameters. The BNs per-
‘standard’ discrete-state HMM system implemented in HTKform significantly better than formants and VTRs (in either
[28], phone accuracy was achieved almost equivalent to th&odel), suggesting that they successfully eliminate mich o
obtained with MECCs (Table 1, lines 1 and 2) [25]. Accuracythe variability in these features which the CS-HMM was un-
with the BNs was considerably better than with equivalentable to handle (Section 4.1 and [21]).
dimension formant features (lines 3-5). Visualisationg-su  Curiously, using BNs %Err was higher for voiced sounds
gested that the BNs preserved the time dynamics of spee¢han for full utterances. It is possible that features gateer
well, better and more consistently than formants, and shoulby the neural network are less consistent for voiced sounds
therefore be suitable for recognition with the CS-HMM. Very than for unvoiced. We hypothesise that this is an effectef th
little improvement was seen with higher-dimension BNs. ~ network training procedure (to predict phoneme posteyiors

Using a CS-HMM with VTRs, Houghton et al. [21] implicitly assuming a ‘dwell-only’ model (features_s_,taflio
trained and tested on sequences of voiced sounds only, for3% throughout a phoneme) rather than dwell-transitioris Th
single TIMIT speaker. The results showed the ability of theCoUld also explain the lower error for unvoiced phonemes,
training algorithm to learn from small amounts of training Wh0Se features are more stationary [23] (although this may
data, but the best phone accuracy was @l2%, using3 S|mp!y be due to fevyer classes of unvoiced phonemes).
VTRs and a bigram language model (Table 1, line 6). Extend- Finally, for unvoiced sounds, BNs performed petter than
ing to multiple speakers (Table 2, lines 4-6), errors insesa spect_ral feature_s, perhaps_ because_ no forced alignment was
significantly, suggesting that the model at present cantiot aused in the previous experiments using spectral features.
count well for the variability in the VTR trajectories. The
problem is even worse for formants (Table 2, lines 1-3). 5. DISCUSSION AND FUTURE WORK

Using perceptually-motivated spectral energies, Weber et
al. [23] obtained0.8% phone error on sequences of unvoicedThe BN results are encouraging in showing for the first time
TIMIT phonemes, trained and tested on the full TIMIT Train that speech recognition using a CS-HMM ‘segmental’ model
and Core Test. This is considerably better than obtained fas possible given appropriate features. With 9D features,
voiced sounds with VTRs and suggests that these features && 1% error is not too dissimilar from the baseline MFCC
much less sensitive to variability between speakers. result, while using significantly fewer parameters. The CS-

4.1. Previous Results



Features #Phn Corr Sub Del Ins  Err (S/E) #Parm 1.0

3 Formant all 311 35.6 334 48 73.7 163 § o5 - —
3 Formant v 204 31.2 484 16 812 112 § 1of
3 Formant uv 31.9 332349 42 723 67 2 .l
3VTR all 29.2 36.2 346 3.7 746 163 = — -
3VIR v 29.2 37.0 338 3.3 742 112 7 *° -~
3 VTR uv 322 334344 25 70.3 67 © osf = — >
3D BN all 55.7 30.1 14.2 3.6 47.9(0.07) 163 000 EET iy ThérE T sy acsranTverdow mrent
3D BN v 525 293182 34 509(0.09 112 ___ o
3D BN uv 719 17.4 10.7 2.3 30.4(0.01) 67 &
2000 |-
9D BN all 66.9 229 10.2 50 38.1(0.11) 535 gmo
9D BN v 60.9 24.6 145 3.9 43.0(0.01) 382 E'
9D BN uv 82.8 109 6.3 4.2 21.3(0.25) 247 1000¢
500

Table 2. CS-HMM phone recognition results, with formants [30] 0 Y —Th—aF— ey e ARV e
and VTRs [22] (top section) and bottleneck features (lowetiens). B304
The bottleneck results given are means over featuresSroetwork ~ g2200| 2 — -
random initialisations, giving the standard error of theam¢S/E). 52000

%'_1500

L1000}

HMM used just;35 trainable parameters (per-phoneme mear®"_ ' I
features, symmetric global realisation and observation cc o axfuwy ih erzley dx erdh ix vcld ow m
. . .. 5000 10000 15000 20000 25000

variance matrices, and four parameters for a timing model),

plus a bigram language modeb(1 parameters). Minimum  Fig. 1. Example CS-HMM recoveries (thick blue lines), showing
error was reached aftérto 5 iterations of forced alignment, realised dwells (red), inventory feature means (greenpmFtop:
after which it began to increase, suggesting that the trgini 3D BNs (magentaj [0, 1], offset to visualise), VTRs, formants.
algorithm is not yet optimal. With such improvements, and ) ] .

perhaps an improved timing model and some per-phonenf! @ccurate inventory. The difference in performance betwe

parameters, we expect to somewhat reduce the error rate. BNS for voiced and unvoiced sounds suggests an important

These results are however somehow disappointing beI|_nk between the approach to training the networks generat-

cause the same problem of lack of interpretability affects o Ing the features, and the inventory which can be trained from

neural network-derived features, as affects recognitsalts them. Thirdly, to reduce or account for parameters involved

from DNNs. Our aim is speech recognition using models" generating featgres, for example. by .showw'\g that t.he BN
enerator once trained, can be applied in multiple settings

and features interpretable in terms of human production and® < .
P P Since the CS-HMM requires many fewer parameters, we

perception. The CS-HMM fulfils this in part; the BNs at . ) .
present do not — but they outperformed ‘natural’ features i@%?r:h;?\ﬂbiﬁgﬁ;g\};?'ni::rlggslii Sstg:taatrg?:erti?zgﬁgt&:‘r;he
every case. In addition, we ignored parameters involved ir. ' Y 9 par

informed way (e.g. to encode known variants of phonemes,

generating features, approximatdl$0, 000 in the case of . , o . .
the 9D BNs (although these are only required for training theSuch as dark’ and “light' /I/s) may allow |mprovement n
feature generator, not to train or test the recogniser). _recogmtmn accuracy. One advaptagg of th? CS-HMM is that
. it provides a natural framework in which to incorporate such
Why do the BNs perform well> Figure 1 shows that thepe centyal knowledge [23]. We plan therefore to investigat

CS-HMM tends to fit the data well, but for the VTR and for- o\ 5,ch knowledge is represented in the BN, and the effects
mants the inventory frequencies (green lines) are often Ve, recognition error rates of incorporating such knowledge
similar and bear little relation to the features. The phoaem

inventory learned for BNs is more discriminatory and a bette 6. CONCLUSION
fit to the data, suggesting some of the variation not needed

for discriminating between speech sounds has been excludgge reported, for the first time, TIMIT phoneme recognition
from the BNs. The formant features are also seen, as e¥esults using a CS-HMM — a model of speech more faithful
pected, to be noisy during unvoiced sounds, but the CS-HMMo human speech production — using low dimensional ‘bottle-
has tried erroneously to fit short phonemes in these regionsneck’ features, which apparently somehow capture the true
Future work is planned in several directions. Firstly, todynamics of speech. We avoided the question of whether
improve the ability of the CS-HMM to account for the vari- these features can be interpreted in terms of human speech
ability in ‘natural’ features, for example using Vocal Ttac production and perception. Future work will therefore fecu
Normalisation techniques (which can in theory be accommoen understanding the derived representations, and onmecog
dated simply within the model). Secondly, to understand antion with the CS-HMM using perceptually-motivated featire
improve the BNs. Previous work [21] has shown criticality of such as vocal tract resonances and spectral energies.
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