

Multi-scale Analysis for Facilities for Energy Storage (Manifest)

Facilities for material characterisation at Loughborough university

Daniel Mahon Philip Eames

CREST Loughborough University

DSC

TA Instruments Discovery Differential Scanning Calorimeter (DSC)

+ RCS90 Cooling system

- Temperature range = -90-550°C
- Maximum sample size = 4mg
- Purge gas = Nitrogen
- Auto sampler with 50 sample locations
- Can conduct Modulated DSC (MDSC) experiments to separate reversing and non-reversing heat flow of samples.
- Device suitable for measuring heat flow transitions of materials with time or temperature. i.e.;
 - Phase transitions, Sensible enthalpy, Dehydration enthalpy, Glass transition, Decompositions

TGA + RGA

TA Instruments Discovery ThermoGravimetric Analyser (TGA)

+ MKS Cirrus 2 Residual Gas Analyser (RGA)

- Temperature range = Ambient 1200°C
- Maximum sample size = 4mg
- Purge gas = Nitrogen
- Auto sampler with 25 sample locations
- Device suitable for measuring mass change with time and temperature and to determine the AMU of disassociated material from the sample using the RGA i.e.;
 - Decompositions, Dehydrations

TMA

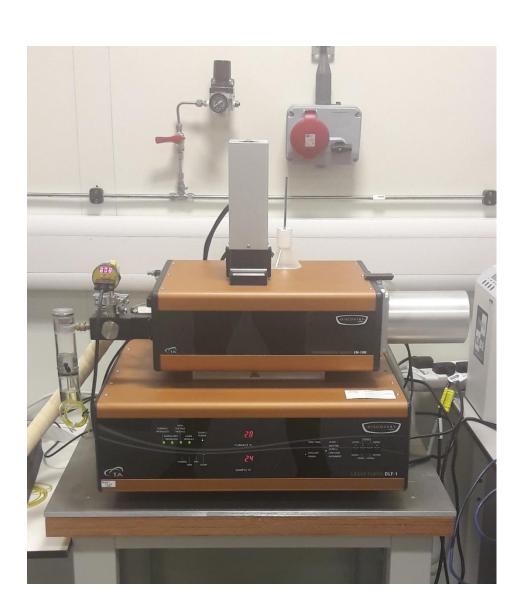
TA Instruments Q400 ThermoMechanical Analyser (TMA)

- Temperature range = -150 1000°C
- Maximum sample size = 26mm length x 10mm Diameter.
- Force range = 0.001 2N
- Purge gas = Nitrogen
- Can conduct Modulated TMA (MTMA) experiments for separate reversing and non-reversing dimension changes.
- Device suitable for measuring thermal transitions of materials with time or temperature. i.e.;
 - Thermal expansion, thermal contraction, softening point.

Dilatometer

TA Instruments Differential Dilatometer DIL 802

- Temperature range = Ambient -1700°C
- Maximum sample size = 10mm diameter, 50mm length
- Maximum change in length = 4mm
- Can test samples in a air, inert gas or vacuum
- Device suitable for measuring thermal transitions of materials with time or temperature. i.e.;
 - Thermal expansion, thermal contraction, softening point.



Laser Flash

TA Instruments Discovery Laser Flash DLF 1200

- Temperature range = Ambient 1200°C
- Maximum sample size;
 - Round = up to 25.4mm diameter
 - Square = 10mm in length
 - Maximum thickness = 10mm
- Device suitable for measuring thermal diffusivity and thermal conductivity of materials.

Rheometer

TA Instruments Discovery Hybrid Rheometer

- Used to measure deformation and flow of a material with changing environmental conditions and force.
- Temperature range = -45- 200°C (with dual Peltier plate)
- Up to 40mm diameter sample size
- Maximum Torque = 150 mN.m
- Can identify;
 - Phase transitions
 - Changing viscosity
 - Glass transition

SEM + EDX

Hitachi TM3030 table top Scanning Electron Microscope (SEM) with attached Energy Dispersive X-ray spectroscopy (EDX)

- Observation conditions = 5kV, 15kV and EDX
- Magnification = from 15x to 60,000x
- Maximum sample size = 70mm diameter,
 50mm height
- Sample stage can be moved while viewing sample.
- EDX allows for material composition characterisation via image mapping, spot mode or a line scan of changing composition.

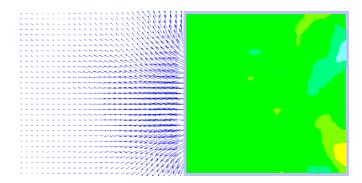


Digital Image Correlation (DIC)

Dantec dynamics Q-400 DIC system

- 3D optical non-invasive measurement system
- Real time data evaluation
- Used for determination of 3D changing material properties
 - Component testing shape, displacements, strains
 - Material testing (Young's modulus,
 Poisson's ratio, Elasto-plastic behaviour)
 - FEA validation

Deformation analysis on the corner of a carbon fibre reinforced structure



Particle Image Velocimetry (PIV)

Dantec dynamics Stereo PIC (2D3C PIV) system

- System uses a non invasive optical laser measurement method to study flow, turbulence and microfluids
- 2D3C = 2 dimensions, 3 components = Velocity measurements of a fluid in a 2D plane with 3 velocity components using a stereo camera setup
- Our system has two 4MPixel, 400fps (at full resolution) cameras for stereo PIV.
- Large interlocked enclosure for conducting large experiments (see image below)
- Velocity range = 0 supersonic (i.e. ~343m/s)
- Results calculated and presented in real time

• Results can be used to verify CFD models

Animation of vortex pair from a pump exit. The animation is generated directly from the DynamicStudio database

Heat Sources

A range of Huber heat sources available

510 Unistat with Pilot ONE

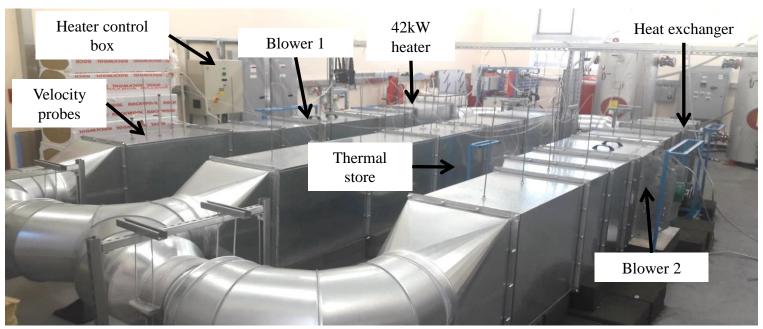
- Temperature range = -50-250°C
- Temperature stability = ± 0.01 °C
- Heating power = 6kW
- Water and air cooled systems
- Max flow rate = 105 l/min (1.5 bar)

O WIND THE

Unistat Tango with Pilot ONE

- Temperature range = -45-250°C
- Temperature stability = ± 0.01 °C
- Heating power = 0.7kW
- Air cooled system
- Max flow rate = 55 l/min (0.9 bar)

TR401 Unistat with Pilot ONE


- Temperature range = 50-400°C
- Temperature stability = +/- 0.05°C
- Heating power = 3/9kW
- Water cooled system
- Max flow rate = 26 1/min (0.8bar)

Large thermal characterisation rig

- Temperature range = Ambient-350°C
- Maximum sample size = 1 m x 0.55 m x 0.8 m.
- 42kW Air heater
- 2x air blowers
- 3 lane system for charging and discharging.
- Internal air to liquid heat exchanger for connection to water tanks for store discharge
- Two water tanks connected ORC for electricity production.

Thank You!

Any Questions?

EPSRC references : EP/N032888/1

EP/L018098/1

