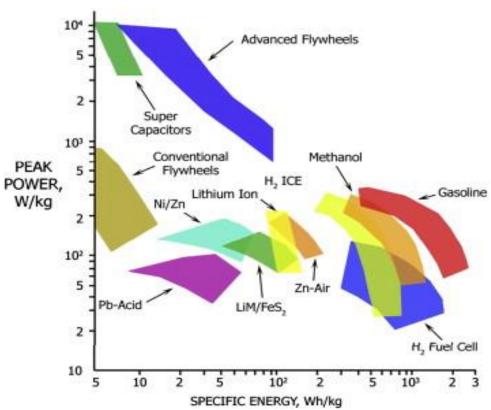


Development of pouch-scale cells supercapacitors using 2D materials

Dr. Tugrul Cetinkaya

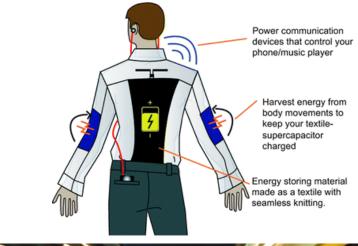
School of Chemistry, University of Manchester National Graphene Institute, Energy Lab, University of Manchester

Multiscale Analysis Facilities For Energy Storage Researcher Workshop 1 10/11/2017-University College London


The University of Manchest

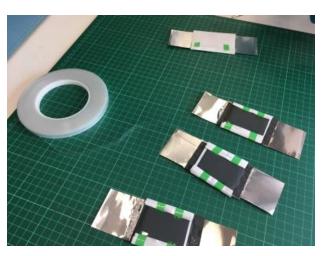
Outline

- Introduction
- Materials characterization and processing facilities
- Aim of study
- Challenges
- Experimental study
- Results and discussion
- Conclusions



Supercapacitors

Ahmed F. Ghoniem, Progress in Energy and Combustion Science 37 (2011) 15-51



Materials Processing

Materials Characterization

Morphological Characterization

- Transmission Electron Microscopy (TEM)
- Scanning Electron Microscopy
- Atomic Force Microscopy

Surface Characterization

- > BET Surface area and porosimetry measurement
- Surface profilometer

Thermal Characterization

- Thermal Gravimetric Analyser (TGA)
- Differential Scanning Calorimetry (DSC)

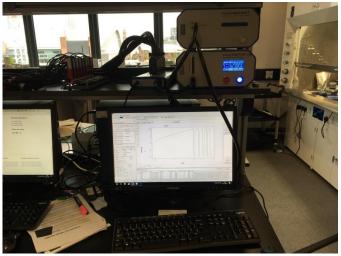
Materials Characterization

Structural Characterization

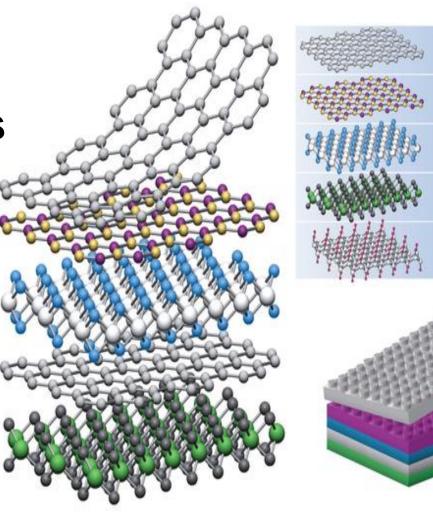
- Fourier transform infrared spectroscopy
- Raman Spectroscopy
- Near ambient pressure X-ray photoelectron spectroscopy (XPS)
- Single crystal diffractometer
- Powder X-ray diffractometer

Electrochemical Characterization

- Potentiostat /Galvanostat (Cyclic voltammetry, EIS and cycling charge/discharge)
- Multi-channel galvanostatic charge-discharge tester (for coin cells and pouch cells)
- Battery Charge/Discharge Test System 9200 (for battery packs)
- Environmental Test Chambers



Electrochemical Characterization

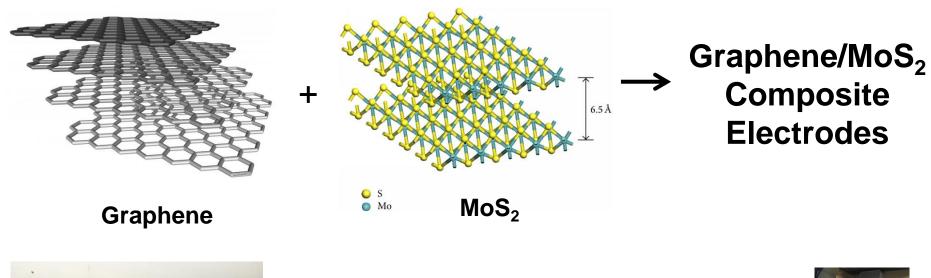

- Battery Charge/Discharge Test System
 9200 (for battery packs)
- Environmental Test Chambers (-75°C 180°C)

Supercapacitors

- Energy density
- Voltage window
- Surface Area
- Conductivity

Graphene

hBN


MoS,

WSe,

Fluorographene

Aim of Study

Challenges

- What type of Graphene?
- High amounts of exfoliated MoS₂ production
- Overcome the agglomeration of 2D materials
- Provide homogenous distribution through the electrode
- Scale up of coin cell performance
- Modify the electrode preparation
- Effect of binders on the electrochemical performance of electrodes

Experimental studies

 Modify the traditional electrode preparation method. (for 2D materials)

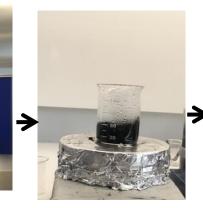
• Find out a suitable binder (at different current density)

XG-GnP (Graphene Nanoplateles): C-750

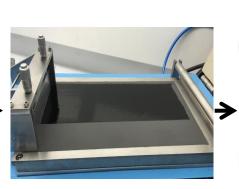
Average diameter: less than 2 micron

Thickness: approx. 2 nm

Average surface area: 750 m²/g


Experimental studies

No	Polymer binders	GnP (XG- 750)	Solvent	Organic Electrolyte	Aqueous Electrolyte
1	10 wt.% SBR/CMC (Targray)	90 wt.%	DI water	1 M Et ₄ NBF ₄ :Acetonitrile	1 M Na ₂ SO ₄ :Water
2	10 wt.% PVDF (Kynar)	90 wt.%	NMP	1 M Et ₄ NBF ₄ :Acetonitrile	1 M Na ₂ SO ₄ :Water
3	10 wt.% CMC (Sigma Aldrich)	90 wt.%	DI water	1 M Et ₄ NBF ₄ :Acetonitrile	1 M Na ₂ SO ₄ :Water
4	10 wt.% Kynar Flex (Kynar)	90 wt.%	Acetone	1 M Et ₄ NBF ₄ :Acetonitrile	1 M Na ₂ SO ₄ :Water



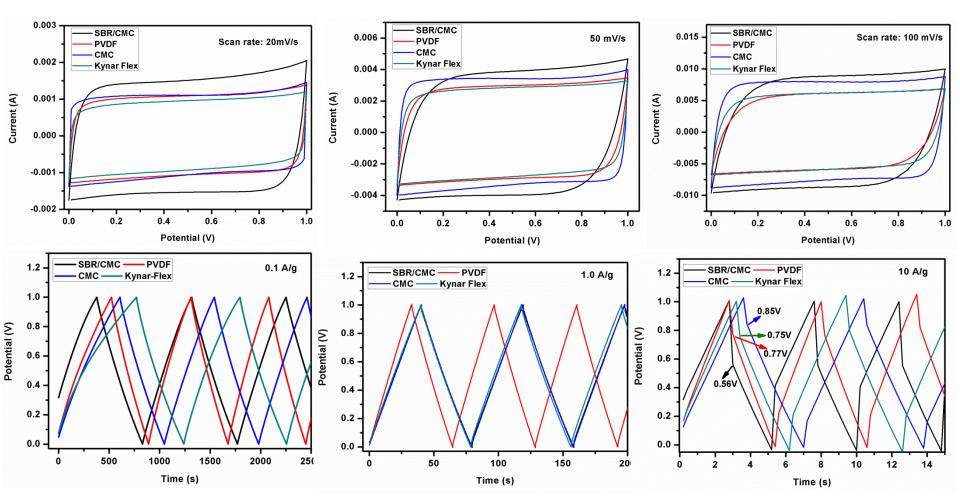
Experimental studies

Dried at 80°C in oven

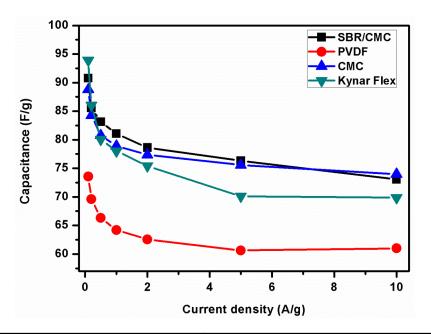
Rolling press

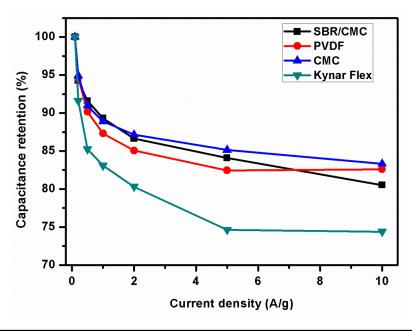
for 2h

solution

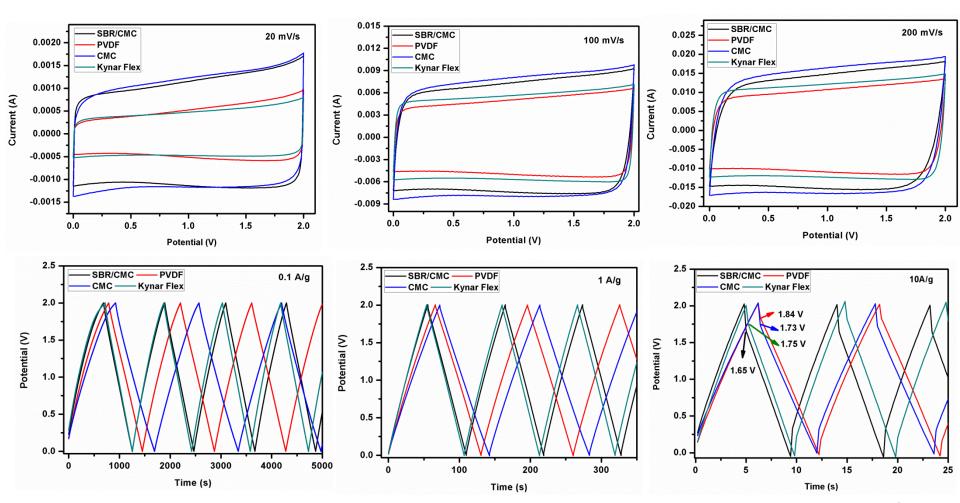

a slurry

Sonication Pour into binder Until become Coating of Graphene by tape casting

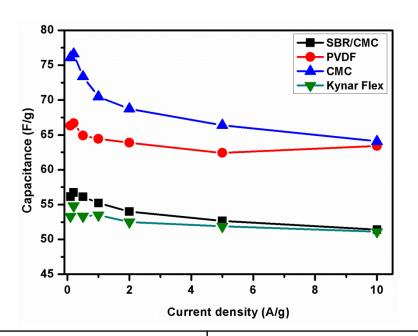


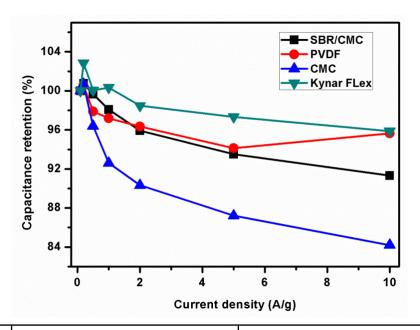

Results and Discussion (Aqueous electrolyte)

Results and Discussion (Aqueous electrolyte)



	Capacitance	Capacitance	Capacitance
Samples	(0.1 A/g)	(1 A/g)	(10 A/g)
XG750-SBR/CMC	90.77	81.07	73.09
XG750-PVDF	73.55	64.21	60.98
XG750-CMC	88.78	78.92	73.97
XG750-Kynar Flex	93.91	78.04	69.86 ¹⁵




Results and Discussion (Organic electrolyte)

Results and Discussion (Organic electrolyte)

	Capacitance (F/g)	Capacitance (F/g)	Capacitance (F/g)
Samples	(0.1 A/g)	(1 A/g)	(10 A/g)
XG750-SBR/CMC	56.13	55.22	51.41
XG750-PVDF	66.13	64.43	63.42
XG750-CMC	76.10	70.47	64.07
XG750-Kynar Flex	53.30	53.48	51.10

Conclusions

- Although, SBR/CMC shows the highest capacitance values at 0.1 A/g and 1.0A/g with 90.77 F/g and 81.07 F/g, respectively in aqueous electrolyte, it has the lowest capacitance value in organic electrolyte.
- PVDF shows the best capacitance retention depending on the current density in both electrolytes.
- While CMC indicates the highest capacitance only at high current density (10A/g) in aqueous electrolyte, it shows the highest capacitance values at all current densities in organic electrolyte.
- Kynar Flex shows the highest capacitance at low current densities in aqueous electrolyte. However, it shows the lowest capacitance at all current densities in organic electrolyte.

Acknowledgments

Prof. Robert Dryfe
School of Chemistry
The University of Manchester

Prof. Andrew Forsyth
School of Electrical and Electronic Engineering
The University of Manchester

& National Graphene Institute

