

References

References

References

Gerson, R., “Variation in Ferroelectric Characteristics of Lead Zirconate Titanate Ceramics Due

Graule, T. J., Gauckler, L. J. and Baader, F. H., “Direct Coagulation Casting - A New Green
Shaping Technique, Part I: Processing Principles”; pp. 1601-1608 in \textit{Ceramics: Charting the

Graule, T. J., Badder, F. H. and Gauckler, L. J., “Casting Uniform Ceramics With Direct

Fundamentals of A New Forming Process for Ceramics”; pp. 457-461 in Ceramic Transactions,

References

Hirashima, H., Onishi, E. and Nakagawa, M., “Preparation of PZT Powders From Metal

Hirata, Y., Nishimoto, A., and Ishihara, Y., “Effect of Addition of Polyacrylic Ammonium on

Hirata, Y., and Ozaki, T., “Rheology and Consolidation of Aqueous Suspension with

Hiremath, B. V., Kingon, A. I. and Biggers, J. V., “Reaction Sequence in the Formation of Lead

Horn, R. G., “Particle Interactions in Suspensions”; pp. 58-101 in *Ceramic Processing*, Ed. by

Powder for Piezoelectric Ceramics by Hydrothermal Processing Technique”, *Chem. Eng. &

References

References

Schwartz, R. W., Payne, D. A., and Eichorst, D. J., “Precipitation and Properties of PZT and

-498 in *Ultrastructure Processing of Advanced Ceramics*, Ed. by J.

Seffner, L., and Gesemann, H. J., “Preparation and Application of PZT Thick Films”; pp. 317-

Structure Determination of Local Structure in Sol-Gel-Derived Lead Titanate, Lead Zirconate

Swartz, S. L., Shrout, T. R., and Takenaka, T., “Electronic Ceramics R&D in the U.S., Japan,

Takahashi, M., “Space Charge Effect in Lead Zirconate titanate Ceramics Caused by the

Takahashi, M., “Electric Resistivity of Lead Zirconate Titanate Ceramics C

Takahashi, S., “Internal Bias Field Effects in Lead Zirconate-Titanate Ceramics Doped with

Colloidal Particle Packing via Modulation of Repulsive Lubricating Hydration Forces”,

Vesteghem, H., Lecomte, A. and Dunger, A., “Film Formation and Sintering of Colloidal
References

Yamamoto, T., Tanaka, R., Okazaki, K. and Ueyama, T., “Microstructure of Pb(Zr0.53Ti0.47)O3 Ceramics Synthesised by Partial Oxalate Method (Using (Zr0.53Ti0.47)O3 Hydrothermal Produced Powder As a Core of Pb(Zr0.53Ti0.47)O3)”, Jpn. J. Appl. Phys. Vol. 28, Supplement 28-2, 67-70 (1989).

References

