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Feasibility semidefinite programmming problem

Definition (spectrahedron)

Given symmetric matrices Q(0), . . . ,Q(n) ∈ Rm×m, the associated
spectrahedron is defined as

S = {x ∈ Rn : Q(0) + x1Q
(1) + · · ·+ xnQ

(n) is positive semidefinite} .

The semidefinite feasibility problem (SFDP) consists in deciding
whether S = ∅.

The semidefinite programming problem (SDP) consists in
minimizing a linear form over S
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SDP can be solved in polynomial time by the ellipsoid or interior
point methods in a restricted sense.

We obtain ε-approximate solutions. Complexity bounds:

Poly(n,m, log ε, logR , log r , . . . ) ,

where (R , r , . . . ) are metric estimates of the spectrahedron
(logR can be exponential in n).

S may not contain any rational points.

The SDP feasibility problem is not known to be in NP (let alone
P) in the Turing machine model.

Exact answers to SDFP can be obtained by quantifier
elimination or critical points methods.

E. de Klerk and F. Vallentin. “On the Turing model complexity of interior point
methods for semidefinite programming”. In: SIAM J. Opt. 26.3 (2016),
pp. 1944–1961
D. Henrion, S. Naldi, and M. Safey El Din. “Exact algorithms for linear matrix
inequalities”. In: SIAM J. Opt. 26.4 (2016), pp. 2512–2539
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To better understand SDP over the reals. . .

SDP over nonarchimedean fields

equivalence between nonarchimedean SDP whose input has generic
valuation and stochastic mean payoff games with perfect information
(a problem in NP ∩ coNP not known to be in P)

nonarchimedean condition number

use some metric geometry ideas
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Generalized Puiseux series

A (formal generalized) Puiseux series is a series of form

x = x(t) =
∞∑
i=1

ci t
αi ,

where the sequence (αi)i ⊂ R is strictly decreasing and either
finite or unbounded and ci are real. Includes (generalized)
Dirichlet series αi = − log i , t = exp(s). Hardy, Riesz 1915

The subset of absolutely converging (for t large enough) Puiseux
series forms a real closed field, denoted here by K.

We say that x > y if x(t) > y(t) for all t large enough. This is
a linear order on K.

L. van den Dries and P. Speissegger. “The real field with convergent
generalized power series”. In: Transactions of the AMS 350.11 (1998),
pp. 4377–4421.
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Definition (SDFP over Puiseux series)

Given symmetric matrices Q(0),Q(1), . . . ,Q(n), denote

Q(x) = Q(0) + x1Q
(1) + · · ·+ xnQ

(n) .

Decide if the following spectrahedron is empty

S = {x ∈ Kn
>0 : Q(x) is positive semidefinite}

Proposition

S 6= ∅ iff for all t large enough, the following real spectrahedron is
non-empty

S(t) = {x ∈ Rn
>0 : Q(0)(t)+x1Q

(1)(t)+· · ·+xnQ
(n)(t) is pos. semidef.}

Proof. K is the field of germs of univariate functions definable in a
o-minimal structure.
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Theorem (Allamigeon, SG, Skomra)

There is a correspondence between nonarchimedean semidefinite
programming problems and zero-sum stochastic games with perfect
information. If the valuations of the matrices Q(i) are generic,
feasibility holds iff Player Max wins the game.

X. Allamigeon, S. Gaubert, and M. Skomra. “Solving Generic
Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms”. In:
Journal of Symbolic Computation 85 (2018), pp. 25–54. doi:
10.1016/j.jsc.2017.07.002. eprint: 1603.06916.
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Take the spectrahedral cone

Q(x) :=

 tx3 −x1 −t3/4x3

−x1 t−1x1 + t−5/4x3 − x2 −x3

−t3/4x3 −x3 t9/4x2

 < 0 .

We associate with Q(x) a
stochastic game with
perfect information.

Circles: Min plays, Square:
Max plays, Bullet: Nature
flips coin, Payments made
by Min to Max

Max is winning implies that
the cone is nontrivial, and
yields a feasible point
(t1.06, t0.02, t1.13).

x3x3

x1

x2
1

23

00

9/49/4

−5/4

−1−1

1 −3/4−3/4 0

0
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Benchmark

We tested our method on randomly chosen matrices
Q(1), . . . ,Q(n) ∈ Km×m with positive entries on diagonals and no
zero entries. We used the value iteration algorithm.

(n,m) (50, 10) (50, 40) (50, 50) (50, 100) (50, 1000)
time 0.000065 0.000049 0.000077 0.000279 0.026802

(n,m) (100, 10) (100, 15) (100, 80) (100, 100) (100, 1000)
time 0.000025 0.000270 0.000366 0.000656 0.053944

(n,m) (1000, 10) (1000, 50) (1000, 100) (1000, 200) (1000, 500)
time 0.000233 0.073544 0.015305 0.027762 0.148714

(n,m) (2000, 10) (2000, 70) (2000, 100) (10000, 150) (10000, 400)
time 0.000487 1.852221 0.087536 19.919844 2.309174

Table: Execution time (in sec.) of Procedure CheckFeasibility on
random instances.
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Experimental phase transition for random

nonarchimedean SDP

n = # variables, m = size matrices
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The present work on tropical condition numbers grew to explain this
picture.
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Valuation of Puiseux series

x = x(t) =
∞∑
k=1

ckt
αk

val(x) = lim
t→∞

log |x(t)|
log t

= α1 (and val(0) = −∞) .

Lemma

Suppose that x,y ∈ Kn
>0. Then

x > y =⇒ val(x) > val(y)

val(x + y) = max(val(x), val(y))

val(xy) = val(x) + val(y).

Thus, val is a morphism from K>0 to a semifield of characteristic
one, the tropical semifield T := (R ∪ {−∞},max,+).
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Tropical spectrahedra

Definition

Suppose that S is a spectrahedron in Kn
>0. Then we say that val(S)

is a tropical spectrahedron.

How can we study these creatures?
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A S ⊂ Kn is basic semialgebraic if

S = {(x1, . . . , xn) ∈ Kn : Pi(x1, . . . , xn) � 0, � ∈ {>,=},∀i ∈ [q]}

where P1, . . . ,Pq ∈ K[x1, . . . , xn]. A semialgebraic set is a finite
union of basic semialgebraic sets.

A set S ⊂ Rn is basic semilinear if it is of the form

S = {(x1, . . . , xn) ∈ Rn : `i(x1, . . . , xn) � h(i), � ∈ {>,=},∀i ∈ [q]}

where `1, . . . , `q are linear forms with integer coefficients,
h(1), . . . , h(q) ∈ R. A semilinear set is a finite union of basic
semilinear sets.

Theorem (Alessandrini, Adv. in Geom. 2013)

If S ⊂ Kn
>0 is semi-algebraic, then val(S) ⊂ Rn is semilinear and it is

closed.

Constructive version in Allamigeon, SG, Skomra arXiv:1610.06746
using Denef-Pas quantifier elimination in valued fields.
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S := val(S) is tropically convex

max(α, β) = 0, u, v ∈ S =⇒ sup(αe + u, βe + v) ∈ S ,

where e = (1, . . . , 1)>.

Figure: Tropical spectrahedron.
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Theorem (Semi-algebraic version of Kapranov theorem, Allamigeon,
SG, Skomra arXiv:1610.06746)

Consider a collection of m regions delimited by hypersurfaces:

Si := {x ∈ Kn
>0 | P−i (x) 6 P+

i (x)}, i ∈ [m]

where P±i =
∑

α p
±
i ,αx

α ∈ K>0[x ], and let

Si := {x ∈ Rn | max
α

(val p−i ,α + 〈α, x〉) 6 max
α

(val p+
i ,α + 〈α, x〉)}

Then
val(

⋂
i∈[m]

Si) ⊂
⋂
i∈[m]

val(Si) ⊂
⋂
i∈[m]

Si

and the equality holds if
⋂

i∈[m] Si is the closure of its interior; in

particular if the valuations val p±i ,α are generic.
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Example 1.
S = {x ∈ K3

>0 | x2
1 6 tx2 + t4x2x3}

valS = {x ∈ R3 | 2x1 6 max(1 + x2, 4 + x2 + x3)}

Example 2.

Figure: This set is the closure of its
interior.
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The correspondence between stochastic mean payoff games and
nonarchimedean spectrahedra explained
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Stochastic mean payoff games

Two player, Min and Max, and a half-player, Nature, move a token
on a digraph, alternating moves in a cyclic way:

If the current state i belongs to Player Min, this player chooses
and arc i → j , and receives Aji from Player Max.

The current state j now belongs to the half-player Nature,
Nature throws a dice and next state becomes r with probability
Pjr .

The current state r now belongs Player Max, this player chosses
an arc r → s, and receives Brs from Player Max.

the current state s now belongs to Player Min, and so on.
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If Min/Max play k turns according to strategies σ, τ , the payment of
the game starting from state i ∈ [n] := {Min states} is denoted by
Rk
i (σ, τ).

v k
i is the value of the game in horizon k , starting from state i , and
σ∗, τ ∗ are optimal strategies if

ERk
i (σ∗, τ) 6 v k

i = ERk
i (σ∗, τ ∗) 6 ERk

i (σ, τ ∗), ∀σ, τ

Theorem (Shapley)

v k
i = min

j∈Nature states

(
−Aji+

∑
r∈Max states

Pjr max
s∈Min states

(Brs+v k−1
s )

)
, v 0 ≡ 0

v k = F (v k−1), F : Rn → Rn Shapley operator

F (x) = (−A>)�min,+ (P × (B �max,+ x)) = A] ◦ P ◦ B(x)
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The mean payoff vector

v̄ := lim
k→∞

v k/k = lim
k→∞

F k(0)/k ∈ Rn

does exist and it is achieved by positional stationnary strategies (coro
of Kohlberg 1980).

Mean payoff games: compute the mean payoff vector

We say that the mean payoff game with initial state i is (weakly)
winning for Max if limk v

k
i /k > 0.

Gurvich, Karzanov and Khachyan asked in 1988 whether the
determinisitic version is in P. Still open. Their argument implies
membership in NP ∩ coNP, see also Zwick, Paterson. Same is true in
the stochastic case (Condon).
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Collatz-Wielandt property / winning certificates

T := R ∪ {−∞},

Theorem (Akian, SG, Guterman IJAC 2912, coro of Nussbaum)

max
i∈n

v̄i = cw(R)

cw(F ) := max
{
λ ∈ R | ∃x ∈ Tn, x 6≡ −∞ : λe + x 6 F (x)

}
Corollary

Player Max has at least one winning state (i.e., 0 6 maxi v̄i) iff

∃x ∈ Tn, x 6≡ −∞, x 6 F (x)
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Definition

A square matrix is called a Metzler matrix if its off-diagonal entries
are nonpositive.

We suppose Q(1), . . . ,Q(n) ∈ Km×m are Metzler — the general case
will reduce to this one.

Want to decide whether

Q(x) = x1Q
(1) + · · ·+ xnQ

(n) < 0

for some x ∈ Kn
>0, x 6= 0.
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If Q < 0 is a m ×m symmetric matrix, then, the 1× 1 and 2× 2
principal minors of Q are nonnegative: Qii > 0, QiiQjj > Q2

ij .

Is there a “converse”?

Lemma

Assume that Qii > 0, QiiQjj > (m − 1)2Q2
ij . Then Q < 0.

Proof.

Can assume that Qii ≡ 1 (consider diag(Q)−1/2Q diag(Q)−1/2).
Then, |Qij | 6 1/(m− 1), and so Qii >

∑
j 6=i |Qij | implies Q < 0.

Archimedean modification of Yu’s theorem, that the image by the
nonarchimedean valuation of the SDP cone is given by 1× 1 and
2× 2 minor conditions.
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Let S := {x ∈ Kn
>0 : Q(x) < 0}

Let Sout be defined by the 1× 1 and 2× 2 principal minor conditions

Qii(x) > 0, Qii(x)Qjj(x) > (Qij(x))2
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Can we describe combinatorially valS?
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Suppose Qii(x) > 0, write Qii = Q+
ii −Q−ii .

Then
valQ+

ii (x) > valQ−ii (x)

Moreover, if
Qii(x)Qjj(x) > (Qij(x))2

then

Q+
ii (x)Q+

jj (x) + Q−ii (x)Q−jj (x) > Q+
ii (x)Q−jj (x) + Q−ii (x)Q+

jj (x)

+ (Qij(x))2

and so
valQ+

ii (x) + valQ+
jj (x) > 2 valQij(x)
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Tropical Metzler spectrahedra

Theorem (tropical Metzler spectrahedra)

For tropically generic Metzler matrices (Q(k))k the set val(S) is
described by the tropical minor inequalities of order 1 and 2,

∀i , max
Q

(k)
ii >0

(xk + val(Q
(k)
ii )) > max

Q
(l)
jj <0

(xl + val(Q
(l)
jj ))

and

∀i 6= j , max
Q

(k)
ii >0

(xk + val(Q
(k)
ii )) + max

Q
(k)
jj >0

(xk + val(Q
(k)
jj ))

> 2 max
Q

(l)
ij <0

(xl + val(Q
(l)
ij )) .

Extends the characterization of val(SDPCONE ) by Yu. .
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From spectrahedra to Shapley operators

Lemma

The set val(S) can be equivalently defined as the set of all x such
that for all k we have

xk 6 min
Q

(k)
ij <0

(
− val(Q

(k)
ij ) +

1

2

(
max
Q

(l)
ii >0

(val(Q
(l)
ii ) + xl)

+ max
Q

(l)
jj >0

(val(Q
(l)
jj ) + xl)

))
.

In other words, we have

val(S) = {x ∈ (R ∪ {−∞})n : x 6 F (x)} ,

where F is a Shapley operator of a stochastic mean payoff game. We
denote this game by Γ .
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Reading the Game on the Shapley Operator

xk 6 min
Q

(k)
ij <0

(
− val(Q

(k)
ij ) +

1

2

(
max
Q

(l)
ii >0

(val(Q
(l)
ii ) + xl)

+ max
Q

(l)
jj >0

(val(Q
(l)
jj ) + xl)

))
.

MIN wants to show infeasibility, MAX feasibility

state of MIN, xk , 1 6 k 6 n
MIN chooses {i , j}, 1 6 i 6= j 6 m or {i} with Qk

ii < 0, MAX

pays to MIN valQ
(k)
ij

NATURE throws a dice to decide whether i or j is the next state
suppose next state of MAX, i , 1 6 i 6 m,
MAX moves to xl such that Q

(l)
ii > 0, MIN pays to MAX

valQ
(l)
ii .
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Main example revisited

Q(1) :=

 0 −1 0
−1 t−1 0
0 0 0

 ,

Q(2) :=

0 0 0
0 −1 0
0 0 t9/4

 ,

Q(3) :=

 t 0 −t3/4

0 t−5/4 −1
−t3/4 −1 0

 .

x3

x1

x2
1

23

00

9/49/4

−5/4−5/4

−1−1

11 −3/4 0

0

Construction of Γ

We construct Γ as follows:
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Construction of Γ

The number of matrices (here: 3) defines the number of states
controlled by Player Min.
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Construction of Γ

The size of matrices (here: 3× 3) defines the number of states
controlled by Player Max (here: 3).
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Construction of Γ

If Q
(k)
ii is negative, then Player Min can move from state k to state i .

After this move Player Max receives − val(Q
(k)
ii ).
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Construction of Γ

If Q
(k)
ii is positive, then Player Max can move from state i to state k .

After this move Player Max receives val(Q
(k)
ii ).
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Construction of Γ

If Q
(k)
ij is nonzero, i 6= j , then Player Min have a coin-toss move from

state k to states (i , j) and Player Max receives − val(Q
(k)
ij ).
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Example

There is only one pair of optimal
policies

3 →
{

1 , 3
}
,

2 → 1 .

3

1

2
1

23

0

9/4

−5/4

−1

1 −3/4 0

0
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Corollary

The spectrahedral cone S has a nontrivial point in the positive
orthant K3

>0.
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Example

The Shapley operator is given by

F (x) = (
x1 + x3

2
, x1−1,

x2 + x3

2
+

7

8
)

and u = (1.06, 0.02, 1.13) is a
bias vector, F (u) = λe + u, λ=
value

3

1

2
1

23

0

9/4

−5/4

−1

1 −3/4 0

0

Corollary

The spectrahedral cone S has a nontrivial point in the positive
orthant K3

>0. For example, it contains the point (t1.06, t0.02, t1.13).
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Tropical analogue of Helton-Nie conjecture

Helton-Nie conjectured that every convex semialgebraic set is the
projection of a spectrahedron.

Scheiderer (SIAGA, 2018) showed that the cone of nonnegative forms
of degree 2d in n variables is not representable in this way unless
2d = 2 or n 6 2 or (n, 2d) = (3, 4), disproving the conjecture. His
result implies the conjecture is also false over K. However. . .
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Tropical analogue of Helton-Nie conjecture, cont.

Theorem (Allamigeon, Gaubert, and Skomra, MEGA2017+JSC.)

Fix a set S ⊂ Rn. TFAE

S is the image by val of a convex semialgebraic set of Kn
>0

S is the image by val of the image by proj : Rp → Rn (p > n) of
a spectrahedron of Kp

>0

S is tropically convex, closed and semilinear

There exists a stochastic game with Shapley operator
F : Rn → Rn such that S = {x ∈ Rn | x 6 F (x)} ,
There exists a stochastic game with transition probabilities
0, 1

2
, 1 and Shapley operator F : Rp → Rp, with p > n, such

that S = proj{x ∈ Rp | x 6 F (x)}
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How to solve the game in practice

Gurvich, Karzanov and Khachyan pumping algorithm (1988)
iterative algorithm with hard (discontinuous) thresholds,
generalized to the stochastic case by Boros, Elbassioni, Gurvich
and Makino (2015, hard complexity estimates)

policy iteration Hoffman-Karp 66 irreducible case, Denardo 67
discounted case (strongly polynomial by Ye, Hansen, Miltersen,
Zwick 2011), stochastic mean payoff case Akian, Cochet,
Detournay, SG (2006, 2012).

value iteration, Zwick Paterson (1996) in the deterministic case.

more refined value type iteration, special case of simple
stochastic games Ibsen-Jensen, Miltersen (2012)
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Basic value iteration

tx := maxi xi (read “top”), bx := mini xi (read “bot”)

1: procedure ValueIteration(F )
2: . F a Shapley operator from Rn to Rn

3: . The algorithm will report whether Player Max or Player Min wins
the mean payoff game represented by F

4: u := 0 ∈ Rn

5: while t(u) > 0 and b(u) < 0 do u := F (u) . At iteration `,
u = F `(0) is the value vector of the game in finite horizon `

6: done
7: if t(u) 6 0 then return “Player Min wins”
8: else return “Player Max wins”
9: end

10: end

This is what we implemented to solve the benchmarks of large scale
nonarchimedean SDP.
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Complexity analysis?

Answer: Metric geometry tool
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Funk, Hilbert and Thompson metric

C closed convex pointed cone, x 6 y if y − x ∈ C , Funk reverse
metric (Papadopoulos, Troyanov):

RFunk(x , y) := log inf{λ > 0|λx > y}

C = Rn
+, RFunk(x , y) = log maxi yi/xi (tropical sesquilinear form)

C = S+
n = positive semidefinite matrices,

RFunk(x , y) = log max spec(x−1y).

Lemma

F : intC → intC is order preserving and homogeneous of degree 1 iff

RFunk(F (x),F (y)) 6 RFunk(x , y), ∀x , y ∈ intC .
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We can symmetrize Funk’s metric in two ways

dT (x , y) = max(RFunk(x , y),RFunk(y , x)) Thompsons’ part metric

dH(x , y) := RFunk(x , y) + RFunk(y , x) Hilbert’s projective metric

(plays the role of Euclidean metric in tropical convexity Cohen, SG,
Quadrat 2004)

dH(x , y) = ‖ log x − log y‖H where ‖z‖H := max
i∈[n]

zi −min
i∈[n]

zi .
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e1 e2

e3

A ball in Hilbert’s projective metric is classically and tropically convex.
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S(F ) := {x ∈ Tn : x 6 F (x)}, T := R ∪ {−∞}

cw(F ) = max
i

v̄i , cw(F ) = min
i

v̄i

(best and worst mean payoffs).

We say that u ∈ Rn is a bias (tropical eigenvector) if

F (u) = λe + u

Then, λ = cw(F ) = cw(F ), denoted by ρ(F ) for “spectral radius”, it
is unique.

Existence of u guaranteed by ergodicity conditions, Akian, SG,
Hochart, DCSD A.
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Definition

An order-preserving and additively homogeneous self-map F of Tn is
said to be diagonal free when Fi(x) is independent of xi for all i ∈ [n].

Theorem

Let F be a diagonal free self-map of Tn. Then, S(F ) contains a
Hilbert ball of positive radius if and only if cw(F ) > 0. Moreover,
when S(F ) contains a Hilbert ball of positive radius, the supremum of
the radii of the Hilbert balls contained in S(F ) coincides with cw(F ).
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Biggest Hilbert ball in a tropical polyhedra

Extends a theorem of Sergeev, showing that the tropical eigenvalue
of A gives the inner radius of the polytropes {x | x > Ax}.
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C :=
{
x ∈ Kn : Q(0) + x1Q

(1) + · · ·+ xnQ
(n) is PSD

}
F : Tn → Tn Shapley operator of C.

P(F ) : does there exist x ∈ Tn such that x 6≡ −∞ and x 6 F (x)?

PR(F ) : does there exist x ∈ Rn such that x � F (x)?

Theorem (Allamigeon, SG, Skomra)

(i) if P(F ) is infeasible, or equivalently, S(F ) is trivial, then C is
trivial.

(ii) if PR(F ) is feasible, or equivalently, S(F ) is strictly nontrivial,
then C is strictly nontrivial, meaning that there exists x ∈ Kn

>0

such that the matrix x1Q
(1) + · · ·+ xnQ

(n) is positive definite.
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We define the condition number cond(F ) of the above problem
P(F ) by:

(inf{‖u‖∞ : u ∈ Rn , P(u + F ) is infeasible})−1 (1)

if P(F ) is feasible, and

(inf{‖u‖∞ : u ∈ Rn , P(u + F ) is feasible})−1 (2)

if P(F ) is infeasible.

u + F : Shapley operator of a game in which in state i , Max receives
an additional payment of ui .
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condR(F ) is defined as cond(F ), considering PR(F ).

Proposition

Let F be a continuous, order-preserving, and additively homogeneous
self-map of Tn. Then,

condR(F ) = |cw(F )|−1 and cond(F ) = |cw(F )|−1.
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R(F ) := inf {‖u‖H : u ∈ Rn, F (u) = ρ(F ) + u} .

If F is assumed to have a bias vector v ∈ Rn, i.e. F (v) = ρ(F ) + v ,

|ρ(F )|−1 = |cw(F )|−1 = |cw(F )|−1 = condR(F ) = cond(F ) .

Theorem (Allamigeon, SG, Katz, Skomra)

Suppose that the Shapley operator F has a bias vector and that
ρ(F ) 6= 0. Then ValueIteration terminates after

Nvi 6 R(F ) cond(F )

iterations and returns the correct answer.

Compare with log(R/r) in the ellipsoid / interior point methods.
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F = A] ◦ B ◦ P (3)

where A ∈ Tm×n, B ∈ Tm×q, integer entries, P ∈ Rq×n

row-stochastic

W := max {|Aij − Bih| : Aij 6= −∞, Bih 6= −∞, i ∈ [m], j ∈ [n], h ∈ [q]} .

Probabilities Pil rational with a common denominator M ∈ N>0,
Pil = Qil/M , where Qil ∈ [M] for all i ∈ [q] and l ∈ [n].
A state i ∈ [q] is nondeterministic if there are at least two indices
l , l ′ ∈ [n] such that Pil > 0 and Pil ′ > 0.
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Theorem

Let F be a Shapley operator as above, still supposing that F has a
bias vector and that ρ(F ) is nonzero. If k is the number of
nondeterministic states of the game, then cond(F ) 6 nMmin{k,n−1}.

Relies on an estimate of Skomra of denominators of invariant
measures, obtained from Tutte matrix tree theorem, improves Boros,
Elbassioni, Gurvich and Makino
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Theorem (Allamigeon, SG, Katz, Skomra)

R(F ) 6 10n2WMmin{k,n−1} .

We construct a bias by vanishing discount, which yields of the bound
on R(F ).

Corollary

Let F be the above Shapley operator, still supposing that it has a
bias vector and that ρ(F ) is nonzero. Then, procedure
ValueIteration stops after

Nvi 6 10n3WM2 min{k,n−1} (4)

iterations and correctly decides which of the two players is winning.
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In the deterministic case, we recover Zwick-Paterson bound.

Corollary

Let F = A] ◦ B be the Shapley operator of a deterministic game,
where the finite entries of A,B ∈ Tm×n are integers. If there exists
v ∈ Rn such that F (v) = ρ(F ) + v with ρ(F ) 6= 0, then

Nvi 6 2n2W .
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The assumption ρ(F ) 6= 0 can be relaxed, by appealing to the
following perturbation and scaling argument. This leads to a bound
in which the exponents of M and of n are increased.

Corollary

Let µ := nMmin{k,n−1}. Then, procedure ValueIteration, applied
to the perturbed and rescaled Shapley operator 1 + 2µF , satisfies

Nvi 6 21n4WM3 min{k,n−1}

iterations, and this holds unconditionally. If the algorithm reports
that Max wins, then Max is winning in the original mean payoff
game. If the algorithm reports that Min wins, then Min is strictly
winning in the original mean payoff game.

The algorithm can be also adapted to work in finite precision
arithmetic.
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Tropical homotopy

The condition number controls the critical temperature t−1
c such that

for t > tc , the archimedean SDP feasibility problem and tropical SDP
feasibility problem have the same answer.

δ(t) := max
Q

(k)
ij 6=0

∣∣|Q(k)
ij | − logt |Q

(k)
ij (t)|

∣∣ .
Theorem

Let m ≥ 2, and v be the value of the stochastic mean payoff game
associated with Q(1), . . . ,Q(n). Let λ := maxk vk , and suppose that
λ 6= 0. Take any t such that δ(t) < |λ| and

t > (2(m − 1)n)1/(2|λ|−2δ(t)) .

Then, the spectrahedron S(t) is nontrivial if and only if λ is positive.
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Concluding remarks

Showed: stochastic mean payoff games polynomial time
equivalent to feasibility of nonarchimedean semidefinite
programs with generic valuations.

Extends the equivalence between deterministic mean payoff
games and tropical linear programming, Akian, SG, Guterman.
Extends the tropicalization of the SDP cone by Yu
This leads to an algorithm for generic semidefinite feasibility
problems over Puiseux series.
Metric geometry definition of the condition number, biggest ball
in the primal or dual feasible set.
Controls the number of value iterations to decide the game
Recover complexity bound of Boros, Elbassioni, Gurvich, and
Makino, with a simpler algorithm.
Controls the critical temperature under which the SDP feasibility
problem “freezes” in its tropical state.
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Thank you !
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