Size effects in pure and alloyed metals under dynamic loading

The strength of metals and metallic alloys is usually thought to be independent of the system’s
geometry and dimensions. However, at the micron scale this ceases to be true. Broadly speaking,
systems of the size of microns become increasingly stronger the smaller they are: the yield point and
the plastic hardening rate, for instance, are known to increase with increasing system’s size. This
“smaller is stronger” behaviour is known as a “size effect”. Size effects are particularly important in
the thermal response of thin films on substrates, on indentation problems, on the plasticity at crack
tips, and in the mechanical response of nanorods and other microsystems, amongst many other
problems.

Size effects are well attested in a wide range of pure metals and alloys via experiments performed
under various loading conditions: from torsional loads [1], through bending and compression of
nanopillars [2], to nanoindentation[3,5], to the tensile testing of thin films [4,6]. Equally so, various
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Both experiment and theoretical studies of size effects tend to focus on very slow loading rates. That
is to say, the loading rate of theory and experiments displaying size effects is typically quasistatic.
Under these “low strain rate” conditions (usually below 10's™"), the number of physical mechanisms
responsible for size effects are well understood, particularly for simple metals. However, when the
loading rate increases above 10%s™", many of the physical mechanisms believed to control size effects
(e.g., dislocation starvation[10], obstacle-constrained plastic flow[1],...) become inoperative, or can
be superseded by alternative mechanisms (e.g., heterogenous or homogeneous nucleation[11],
surface sources, inertial effects in dislocation motion[12],...), so that whether or not size effects persist
at high strain rates remains an open question that may impact shear band formation and other
localisation effects. In particular, a threshold strain rate is postulated to exist (perhaps above 10°s™),
above which the time-dependencies in the plastic response completely overtake geometrical effects.
The conditions that may lead to this are far from clear: very little experimental and theoretical work
aimed at addressing the presence of size effects under high strain rate loads exists.

The aim of this project is for the student to build comprehensive understanding of the presence (or
lack theoreof) of size effects at strain rates above 10%s™, and to clarify the many issues surrounding
them under such loading. The student will use discrete dislocation dynamics (both quasistatic and
elastodynamic[11]) and molecular dynamics, and develop computational and analytical tools aimed
at unravelling size effects under high strain rates.

This project will be held at the School of Metallurgy and Materials at the University of Birmingham.
The candidate will have or be expected to obtain at least a 2:1 class degree in Materials Science,
Physics, Applied Mathematics, Engineering, or other relevant discipline. A background or interest in



computer programming and applied mathematics would be advantageous. This project is open only
to Home Students (UK applicants).

For further information, please contact Dr. Befat Gurrutxaga-Lerma at bg374@cam.ac.uk.
Application deadline is 31" October. To apply please send a two-page CV and covering letter to
bg374@cam.ac.uk
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