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Abstract— In this work we present an empirical approach
for solving the grasp synthesis problem for anthropomorphic
robots equipped with vacuum grippers. Our approach exploits
a self-supervised, data-driven learning approach to estimate a
suitable grasp for known and unknown objects. We employ a
Convolutional Neural Network (CNN) that directly infers the
grasping points and the approach angles from RGB-D images
as a regression problem. In particular, we split the image into a
cell grid where the CNN provides, for each cell, an estimate of
a grasp along with a confidence score. We collected a training
dataset composed of 4000 grasping attempts by means of an
automatic trial-and-error procedure, and we trained end-to-end
the CNN directly on both the grasping successes and failures.
We report a set of preliminary experiments performed by
using known (i.e., object included in the training dataset) and
unknown objects, showing that our system is able to effectively
learn good grasping configurations.

I. INTRODUCTION

Grasping is an essential task in several robotic
applications, e.g. from the classical bin-picking and
pick-and-place applications, to collaborative manufacturing
and human robot interaction. However, reliable grasping
still remains an open problem that involves challenges in
several fields such as perception, planning and control. One
of the most important topic within the grasping research
area is grasp synthesis, that is the problem of selecting
the grasping points and the position of the gripper that
maximizes some grasp quality metric. Standard approaches
rely on analytic formulations, where the involved kinematics
and dynamics are considered in determining grasps. Due
to the high number of involved constraints, often these
approaches exploits some assumptions (e.g., simplified
contact configurations and rigid-body assumption) to
simplify the formulation [14]: The reduction of the grasp
solution space is actually one of the main challenge for
such approaches.

In order to avoid the computational complexity of analyti-
cal formulations, several empirical or data-driven approaches
and tools were recently introduced to solve the grasping
problem [2], [14]. Early data-driven approaches typically
sampled a discrete number of grasp candidates using ad-
hoc simulation tools (e.g., [9]), the candidates were then
ranked by using classical metrics: unfortunately, several
works have later highlighted that often such metrics are
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Fig. 1: We face the grasp synthesis problem by means of a self-supervised,
data-driven procedure. An anthropomorphic robot self collects and labels
the data needed to train our model, which is based on a CNN that predicts
grasps by means of a set of regressions over a S × S grid. We train the
CNN taking into account both positive and negative samples.

not good predictors for grasp success in real world ap-
plications [2]. More recent approaches addressed the data-
driven grasp synthesis problem by exploiting supervised
machine learning approaches (among others, [15], [5], [11]),
achieving promising results if proper labeled training data
is available. Training data can be manually labeled [3], [5],
[11], synthetically generated and labeled [15], [4], [7], or
self-labeled [6], [10].
Following the machine learning trends, most of these em-
pirical approaches are based on deep learning architectures:
the grasp synthesis, typically for parallel-jaw or multi finger
grippers, is often faced as a classification problem1 where
a CNN receives as input candidate sub-regions of an RGB
image [10], a depth map [7] or an RGB-D image [5], [11]
of the working area.

In this work, we propose a novel self-supervised, data-
driven approach for anthropomorphic robot manipulators
equipped with vacuum grippers2 and a RGB-D camera
(Fig. 1).

1The classes are represented by a finite number of possible grasps.
2Vacuum grippers are widely used in industry, as they are very effective

for handling many different types of objects.



Given an RGB image I and the corresponding depth map
D of the working area populated with possible unknown
objects, we aim to estimate the grasp that maximizes the
probability to produce a seal between the gripper suction
cup and one of the objects included in the scene. In order
to acquire a suitable dataset, we exploit an automatic trial-
and-error acquisition procedure in which an anthropomorphic
robot performs a set of ”quasi random“ grasps: the vacuum
sensor provides an answer on the state of the grasp (succeed
or failed, i.e., the label of the example). Similarly to [11],
we cast the grasp synthesis as a set of regression problems
solved at once. A CNN, trained using both the grasping
successes and failures examples, estimates with a single pass
a set of grasps, each one related to a specific image tile.
Along with the grasping point and the approach angles, for
each image tile our method provides a confidence score that
reflects how confident the model is that such configuration
brings to a successful pick. We propose a loss function that
enables the model to learn both what is an effective grasp
and what is a surely ineffective grasp. We collected a first
dataset composed of 4000 grasp attempts: our preliminary
experiments show that, despite the reduced size of the dataset
compared to the number of objects taken into consideration,
our approach is able to synthesize grasps that lead to a 60%
success rate.

A. Related Work

The approaches proposed to face the grasp synthesis
problem can be divided into two categories: analytical
methods and empirical methods. Being an empirical
approach, in this work we revise only methods that belong
to this category, with a focus on deep learning based
methods. A comprehensive literature review about analytical
methods can be found, e.g., in [14], while a survey about
empirical methods presented in the pre-deep learning era
can be found [2].

One of the first data-driven synthesis approaches based
on learning and vision has been presented by Saxena et
al. [15]. They proposed to employ a logistic regression
model that uses visual features to predict from images
good grasping points for a manipulator equipped with a
parallel plate gripper. They synthetically generated training
images along with ground truth grasps by using a computer
graphics ray tracer. Jiang et al. [3] proposed to learn an
oriented ”grasping rectangle“ for parallel plate grippers
from RGB-D images using a Support Vector Machine
as ranking algorithm, trained on a dataset of manually
labeled images with correct and incorrect ground truth
grasping configurations. Similar data collection approaches
have been adopted in [5] and [11] to train a deep neural
architecture for grasp synthesis tasks. Lenz et al. [5] exploit
a two-step cascaded structure with two deep networks to
rank the candidate grasps. Redmon and Angelova [11]
cast the problem of grasp synthesis into a regression
problem, dividing the input RGB-D image into a cell grid,
and training the CNN for learning one predictor for each cell.

The creation of a manually labeled dataset is an extremely
time consuming activity: several recent approaches try to
overcome this issue by introducing self acquired and labeled
datasets [10], [6], or more accurate synthetically generated
datasets [4], [7]. Pinto and Gupta [10] created a large, self
acquired dataset composed of 50K trial and error grasps, and
formulated the problem of grasping with a parallel gripper as
a CNN-based, 18-way binary classification problem over im-
ages patches. Levine et al. [6] scaled up the self-supervised
learning concept by collecting a very large dataset composed
of 800,000 grasp attempts performed by a cluster of similar
robots over the course of two months. This dataset has been
then exploited to train a CNN used to determine how likely
a given motion is to produce a successful grasp.
Johns et al. [4] cast the grasp synthesis as a classification
problem over depth images, where a CNN is used to predict
the grasp score for a large set of poses of a parallel-jaw
gripper. The training data is generated by using physics sim-
ulation and depth image simulation with 3D object meshes.
Recently, Mahler et al. [7] introduced a very large synthetic
dataset that includes 6.7 million ”grasp images“, i.e., small
depth images representing parallel-jaw grasps, automatically
labeled by using analytic metrics. A CNN (called Grasp
Quality CNN) trained with this dataset is used to determine
the most robust grasp over a set of candidate grasp images.
This framework has been very recently extended to deal with
vacuum grippers [8], one of the very few works, along with
ours, that uses this type of gripper.

B. Contributions

Our method takes inspiration from the self-supervised
approaches presented above, by implementing an automatic
procedure for data acquisition and labeling that, differently
from other previous work [10], [6], exploits a robotic system
equipped with a vacuum gripper. Similarly to [11], we cast
the grasp synthesis into a grid based regression problem but,
differently from [11], a) we use a vacuum gripper: b) our
model has been improved both in architecture design and
error metric evaluation, by introducing a novel loss function
inspired by [12] that takes into account both positive and
negative samples during the training phase.

II. GRASP SYNTHESIS MODEL

We aim to solve the grasp synthesis problem for arm
manipulators equipped with vacuum grippers by employing a
self-supervised, data-driven regression approach that enables
to predict grasps for known and unknown objects. Similarly
to [10] [6], our model is trained using a dataset acquired
by means of a trial-and-error procedure. We employ a CNN
that directly learns the grasping configuration from RGB-
D images of the working area. Differently from [11], we
do not get rid of any RGB channel and adapt our network
first layers to receive the depth map as an additional input
channel. During the learning phase, the error between wrong
and correct pickup points is directly optimized and network
weights are directly updated by means of backpropagation.
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Fig. 2: The network is composed of 6 convolutional layers, 3 pooling layers and 2 fully connected layers in the very last part of the architecture. For
the first part of the network, 2 max-pooling have been used, the last pooling layer instead performs an average of the previous feature map, so we have
an avg-pooling before the input of the first fully connected layer. A ReLU activation function is used within all the convolutional layers while the fully
connected ones use a sigmoid activation function. The network predicts a candidate point for each of the S × S cells in the image grid, and the one
with the highest score (as depicted in the picture in green), or the highest four, will be taken as candidates for the final pickup (x, y, ρ, φ) end effector
configuration.

Similarly to [11], we perform a regression on the entire
image, in particular, we split the image into a cells grid in
order to achieve the estimation of a grasping configuration
and a confidence score for each cell. The confidence value
reflects how confident the model is that such configuration
brings to a successful grasp.

We introduces a new loss function inspired by the object
detection method proposed in [12]: our loss minimizes the
errors by considering positive and negative samples, giving
the network the possibility to predict both successful and fail-
ing grasping positions by means of their relative confidence
score.

A. Learning a Grasp Pose from RGB-D data

Given an RGB image I and a corresponding, registered
depth map D, we aim to estimate the grasp configuration
that maximizes the probability to produce a seal between the
vacuum gripper installed on a robot manipulator end effector
and one of the objects included in the scene. Assuming a
given hand-eye calibration, we can parametrize the grasp
by means of the grasping position and orientation of the
vacuum gripper (x, y, ρ, φ), and a confidence score C (see
Fig. 2 for some details about the system work flow): x, y
represent the image coordinates (in pixels) of the grasping
point in the image reference frame, while ρ, φ represent
respectively the gripper roll and pitch orientations relative
to the grasping point in the robot reference frame, and C
is the confidence score. The hand-eye calibration is used to
map image coordinates x, y (in pixel) to world coordinates
X,Y (in meters) in the robot reference frame; in this work,
we look-up the third 3D component (i.e., the Z-component)
of the grasping point directly from the depth image. The
confidence score is defined in the range [0, 1] and it tell us
how confident the model is about the predicted point and
orientation, how far is from an actual object in the scene,
and also how accurate this prediction is for the network. We
expect that where the score is close to 0, there should be no
objects in such position or the grasp configuration will lead
to a certain failure, conversely, when the score converges to
1, we expect that both the point belongs to an actual object

Layer Input Size Num. Filters Filter Size Stride
C1 424 × 424 16 7 1
C2 424 × 424 64 5 1
P1 424 × 424 - 2 2
C3 212 × 212 128 5 1
C4 212 × 212 256 5 1
P2 212 × 212 - 2 2
C5 106 × 106 64 5 1
C6 106 × 106 5 5 1
P3 106 × 106 - 4 4

FC1 1 × 1 320 - -
FC2 1 × 1 320 - -

TABLE I: The table shows the parameters of the layers in our model.

and the orientation is suitable for an effective object grasp.
Each cell of the grid predicts a candidate grasping point

and orientation. Although our first implementation of the
system assumed that each prediction would fall into the
limits of the cell itself, i.e. each cell just predicts a grasping
point within its boundaries, we experienced not convincing
results, due to the low accuracy of the network, far below
the initial expectations. To overcome this problem, we allow
that the predicted points and their relative roll and pitch
orientation may also be inferred by theirs neighboring cells,
namely each cell can now also predict points and orientations
within the closest neighboring cells. This change allowed to
significantly improve the accuracy of the network.

B. CNN Architecture

Our network is composed of 6 convolutional layers, 3
pooling layers and 2 fully connected layers in the very last
part of the architecture (see Fig. 2 and Tab. I for further
details on the network structure). For the first part of the
network, 2 max-pooling have been used, the last pooling
layer instead performs an average of the previous feature
map, so we have an avg-pooling (average pooling) before the
input of the first fully connected layer. A ReLU activation
function is used within all the convolutional layers while the
fully connected ones use a sigmoid activation function. We
induce the network to predict a tensor with size S × S × 5,
where S is the size of the grid (8 in our case). Given the
presence of the sigmoid activation function in the last two



dense layers, our model predicts only normalized values, in
the range [0, 1]. This is consistent with the prediction of the
confidence score, given that it should represents a probability
value, but also with the prediction of the grasping point
(x, y) in the image and its relative gripper orientations (ρ, φ).
Given a specific cell, if the x and y predicted coordinates
are in the ranges {[0, 0.5), [0, 0.5)} respectively, the network
is actually predicting a point in the upper left neighboring
cell, {[0.5, 1], [0.5, 1]} for a point in the cell itself, and
consequently for the top and right neighboring ones.

C. Grasping Loss Function

Our network architecture has been trained by minimizing
both the position error on the x and y coordinates of
the predicted point and the orientation error between the
predicted roll and pitch end effector orientations w.r.t. the
ground truth grasping configuration. We formulated the grasp
synthesis as a regression problem, based on the following
loss function:

λcoord

S2∑
i=0

[(
xi − x̂i

)2
+
(
yi − ŷi

)2]
+

λorient

S2∑
i=0

[(
ρi − ρ̂i

)2
+
(
φi − φ̂i

)2]
+

Kpos

S2∑
i=0

Iposi

(
Ci − Ĉi

)2
+

Kneg

S2∑
i=0

(1− Iposi )
(
Ci − Ĉi

)2
(1)

Eq. (1) minimizes both the position error and the ori-
entation error between the ground truth grasping position
represented by the parameters x̂i, ŷi, φ̂i, ρ̂i, and the ground
truth confidence score Ĉi, that is Ĉi = 1 for successful
grasps, Ĉi = 0 otherwise. In particular, for each cell in
the grid, we evaluate the errors both on the position and
orientation part, and on the confidence scores, trying to
minimize the loss both on positive and negative grasp in
the ground truth. Here for positive and negative grasp we
mean respectively the samples in the ground truth where the
robot actually successfully performed an object grasp or not.

In Eq. 1 the first two summations refer respectively to the
errors on the (x, y) coordinates and on the (ρ, φ) end effector
orientations. The third and fourth lines instead represent the
squared difference from the predicted confidence score Ci

with respect to the ground truth confidence score Ĉi: these
two terms are mutually exclusive and we basically enable the
right contribution by imposing the Iposi parameter equal to 0
when considering a negative pickup position and orientation
in the ground truth and to 1 when considering a positive one.

Moreover, we weight the different contributions by using a
set of gain parameters, namely λcoord and λorient for the po-
sition and orientation errors respectively. In our experiments
we set both equal to 1. In order to balance the ratio of positive
and negative samples in the dataset we also normalized them

by mean of the two gains Kpos and Kneg , and we practically
set them equal to::

Kpos = 1− #positive samples
#total samples

(2)

Kneg = 1−Kpos (3)

III. SELF-SUPERVISED DATASET

Our experimental test bed consists of a customized robotic
cell consisting of a lightweight robot arm, an RGB-D camera
(a Microsoft Kinect v2 in our case), and an aluminum chassis
that supports both the robot and the sensor.

A. Hand-Eye Calibration

Both the 3D camera sensor and the robotic manipulator
have been calibrated in order to obtain their relative position
w.r.t. each other. We performed such calibration using a
custom calibration pattern mounted as background of our
objects scene. The calibration has been performed in a single
shot computation, meaning that at each cycle of both the
acquisition and testing phases, we calculate the position
of the board by detecting the markers on it and by using
such position as reference frame for both the sensor and the
robot manipulator. In this way we compensate at every cycle
possible movements of the sensor or of the background board
during the acquisition stage.

B. Data Acquisition Protocol

We acquired our own grasps dataset by implementing
an automatic and self-supervised procedure. In particular,
the robot performed a series of attempts in order to grasp
objects within the scene. First of all, a ”quasi random“
point is chosen within a region of interest by exploiting the
region proposal module of a CNN-based object detector [13].
We then perform a security check by analyzing the depth-
map in that specific point in order to avoid any possible
collision with the environment. The 2D image point is then
transformed into the 3D robot reference frame by using
the hand-eye calibration parameters and the Z component
provided by the depth map, while generating random values
for the roll and pitch orientations. The 3D position along with
the generated orientations are sent to the robotic manipulator
that, after the pick up attempt, automatically self checks if
the grasp has been successful or not by querying the vacuum
sensor provided with the gripper; the label (i.e., successful
or failed grasp) is consequently associated to the current data
item.
The acquisition procedure has involved 30 different ob-
jects, chosen from common household objects categories.
We collected more than 4000 (positive and negative) grasp
examples.

IV. EXPERIMENTS

In this section, we present preliminary results of our
system, tested on-line in a real-world scenario.
Finding the best grasping pose for unknown objects is not
an easy task, moreover we want to estimate not only the
position but also the orientation of the end effector, and



Parameter Value
Optimizer Adam
Momentum 0.9
Decay 0.0
Learning rate 0.0001
Batch size 16

TABLE II: The parameters used during the train phase.

Test Set Successes / Tot. Attempts Successful Attempt Rate
Known Objects 61 / 100 0.61
Unknown Objects 34 / 100 0.34

TABLE III: The table shows results considering only the candidate with the
highest score among all the predictions.

it is something that intuitively cannot be directly inferred
from the 2D information given by an RGB image. What we
expect by testing our method is that the network would learn
enough to discriminate between different objects’ shapes, and
for them just try to regress over the most similar point and
orientations presented during the training phase for similar
objects.

Following this intuition, we tested our network by pre-
senting both known and unknown objects and collected
performance results using two different metrics:

1) The first best candidate: the candidate tuple of pre-
dicted x̂, ŷ, ρ̂, φ̂ that has the highest confidence score
is considered for attempting the grasping during the
test phase;

2) The four best candidates: we consider all the first 4
candidates with the highest scores and try them during
the test phase.

We implemented our model using the TensorFlow
framework [1]; we trained the network described in Sec. II-
B with the acquired dataset (see Sec. III), using the set of
parameters listed in Tab. II.

The system has been tested on 100 different scenes that in-
clude randomly placed known objects (i.e., objects included
in the training dataset) and on 100 different scenes with
randomly placed unknown objects.

A. Experiments Results

Following the aforementioned metrics, results will be
given in terms of grasping success rate. A single test is
considered a successful grasp if, given the best grasping
configuration (x, y, ρ, φ, C) predicted by the network, the
robot manages to pick up an object in such position and
end effector orientation lifting it up to a height of 30 cm
over the board. As described in Sec. II-A, the Z component
of the grasp is extracted directly from the depth map, since
our current approach is not meant for learning and predicting
also this component.

Tables III and IV show the results of our experiments.
More in detail, in Tab. III we report the performance of
our model by considering only the predicted candidate with
the highest confidence score. The test have been performed
both on the set of scenes with known objects, reporting a

success rate of 61%, and on the set of scenes with unknown
objects, reporting a success rate of 34%: these results,
even if not impressive, can be considered interesting taking
into account the reduced size of the used training dataset
with respect to other datasets normally used in similar
experiments [6], [10].
If we consider the second metric, and test the network by
performing grasping attempts by using all the four predicted
grasps with the highest confidence scores, the performance
increases achieving a 21% and 22% improvement in the
known and unknown objects cases, respectively. The fact
that several of the best ranked grasp configurations enable
successful grasps suggests that the model is learning the
task in the correct way.

In Fig. 3 we report some qualitative results of some of the
tests in order to show how the predictions are distributed. In
particular, we can see how the model learned to correctly
predict good candidates only in the area where objects
actually are present. Moreover, we showed also to which
cells each prediction relies, in blue, green, yellow and orange
we plot the points with the first, second, third and fourth
highest confidence score, respectively.

B. Discussion

Experiments denote how our model learns to predict
positions and orientations suitable for the grasping of the
objects, both in the case of known and unknown objects. The
best results obviously come from objects that are known to
the network, namely the ones it was trained with. On the
other hand, the reduced size of the acquired dataset (4000
data items) could easily bring the network to overfit the input
data: with this in mind, we believe that the behavior learned
by the network has been in line with our expectations.
Moreover, in some cases, scenarios that fail due to an
incorrect output considering only the best candidate metrics,
can be successful for some other candidates below the more
confident one (see Tab. IV and Fig. 3). This observation
opens the door to further consideration for improving the
methods, starting from data augmentation, both concerning
new acquisitions and synthetic generated approaches, coming
to network design and loss function advances.

V. CONCLUSIONS

In this paper, we presented a method for solving the
grasp synthesis problem for known and unknown objects
by employing a self-supervised, data-driven approach.
We collected training data by means of a trial-and-error
procedure using a 6 d.o.f. robotic manipulator equipped
with a vacuum gripper. We proposed to employ a CNN
that directly learns the grasping function from RGB-D
images by exploiting the image features as a regression
problem, in particular we split the image into a cell grid
to achieve the estimation of a grasping position for each
cell of the grid. Depending on the predicted confidence
score, the network is capable of producing both positive and
negative grasping positions as output, namely the method



Fig. 3: The picture shows the prediction provided by the network, in particular here we depicted the candidates with the four highest confidence scores in
different colors, with the following order (starting from the highest score): blue, green, yellow and orange. We colored with the same color also the cells
responsible for these predictions.

Known Objects Set Unknown Objects Set

Candidates Successes / Tot. Attempts Successful Attempt Rate Successes / Tot. Attempts Successful Attempt Rate
Only the First 61 / 100 0.61 34 / 100 0.34
The first 2 70 / 100 0.70 50 / 100 0.50
The first 3 78 / 100 0.78 62 / 100 0.62
The first 4 82 / 100 0.82 66 / 100 0.66

TABLE IV: The table shows results considering the 4 best candidates with the highest score among all the predictions. In particular, an attempt has been
considered successful if among the n candidates the robot actually achieved in picking up the object from the scene.

has learned to predict both correct grasping positions and
negative ones. We empirically verified that the method is
actually capable of predict a correct grasp if considering
the best 4 candidates metrics in the 82% and 66% of the
tests for scenes that include known and unknown objects,
respectively.

Further development can be done to this preliminary work.
An extension of the dataset using a multiple robots setup will
drastically reduce the data acquisition time. Moreover, data
augmentation could provide us with further improvements
in terms of saving time and resources, taking also into
consideration the synthetic generation of crucial parameters
such as vacuum gripper orientation. In addition, network
behavior should be tested with a wider range of unknown
objects, in hostile and therefore complicated scenarios such
as industrial environments where many objects are messed
up in a container and many occlusions and clutter occur.
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