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Abstract— A challenge in robot manipulation is how to learn
tasks efficiently. We combine learning from demonstration with
data efficient exploration guided by Bayesian optimisation.
We use dynamic movement primitives to encode manipulation
actions. These permit temporal and spatial scaling of the
demonstrated trajectory. We demonstrate the effectiveness of
direct policy search for the scaling parameters with Bayesian
optimisation (BO). We evaluate BO against random search on
two real robot tasks: a ‘throw object to target’ task, and
a ‘flip object to target’ task. We are able to obtain good
policy parameters despite large amounts of noise and a weak
relationship between the parameters and the policy score.

Index Terms— Bayesian Optimisation, DMP, Policy Search

I. INTRODUCTION

A. Motivation

Direct policy search is an approach to reinforcement learn-
ing which can be useful in situations where the environment
is too difficult to model accurately. The policy search is
‘direct’ because it treats a parameterised policy as a black
box, and uses a black box optimisation algorithm to tune the
policy parameters to improve a score on a task.

Bayesian optimisation is preferred to other black box
optimisation algorithms such as random search or covariance
matrix adaptation evolutionary strategy (CMA-ES) due to its
data efficiency, allowing good parameters to be discovered
with a limited budget of trials (attempts at the task). This
is especially important when experimenting with robots in
the real world since it is costly (in time, human effort and
energy) to perform a large number of trials.

B. Bayesian Optimisation

Bayesian optimisation is a black box global optimisation
algorithm which focuses on data efficiency [1]. Black box
global optimisation is the problem of finding an input which
maps to the global minimum or maximum (depending on
the task) of a function without using any derivatives or
knowledge of its internal structure, since these may not be
available. The only possible interaction with the function is
to evaluate it for a given input and observe the result, which
may include noise if the function is stochastic.

Given an unlimited evaluation budget, a reasonable ap-
proach to global optimisation would be to evaluate randomly
chosen points in the input space and take the best. This
‘random search’ approach is in some ways optimal if nothing
is known about the function being optimised [2]. However,
for many functions encountered in the real world, prior
knowledge of the function’s structure and smoothness can be
exploited to guide the search more intelligently. In addition,
some tasks involve objective functions which are costly to
evaluate, reducing the effectiveness of random search.

A classic example of where Bayesian optimisation can
be beneficial is the optimisation of hyperparameters for

a machine learning model. Each ‘evaluation’ requires re-
training the model with the chosen hyperparameters which
can take several hours or even days.

Bayesian optimisation has been used for robotic tuning
problems and some robot policy search tasks, however, the
environments for policy search are often simulated [3][4].

Bayesian optimisation usually begins by sampling in an
‘uninformed’ manner for several trials before a surrogate
model can be used. Typically, inputs are sampled uniform-
randomly in the input space or pseudo-randomly with tech-
niques such as Latin hypercube sampling (LHS) [5]. Each
input is evaluated by the objective function f to obtain an
initial data set D = {(xi, f(xi)), . . . }. This data is used
to fit a ‘surrogate model’, a probabilistic model (typically
a Gaussian process) capable of predicting the mean and
variance (uncertainty) of f at any point in the input space.
An ‘acquisition function’ α then uses the model’s predictions
to evaluate the desirability of sampling at a particular input
with the goal of reaching a global optimum. This function
performs an exploration/exploitation trade-off and often has
a parameter to control how much exploration is desired.

For this investigation, the negative lower confidence bound
(-LCB) acquisition function was used with a gradually in-
creasing β parameter as proposed in [6] to achieve bounded
cumulative regret.

α−LCB(x;β) = −(µ(x)− βσ(x)) (1)

where µ and σ are the predicted mean and standard deviation
respectively, and β is the trade-off parameter.

The best choice of β for LCB is sensitive to the task and
often difficult to determine a priori, due to factors such as the
surrogate predicting greater uncertainty for high dimensional
x. For this reason, another acquisition function: expected
improvement (EI) was used for the higher dimensional tasks.

αEI(x; ξ)=

{
σ(x)

(
γ(x)Φ(γ(x)) + φ(γ(x))

)
If σ(x)>0

0 Otherwise

γ(x) =
(
(y+ − ξ)− µ(x)

)
/σ(x) (2)

φ(·),Φ(·) are the standard normal PDF and CDF respec-
tively. ξ is the exploration trade-off parameter which con-
trols the minimum desired improvement over the incumbent
(current best) y+. The ξ parameter is easier to set a priori
and some implementations exclude it entirely, making EI
parameter free.

The acquisition function is globally maximised over the
input space to obtain the next input xi. The input is evaluated
and another sample (xi, f(xi)) is added to the data set D.
The process then repeats with the new data set. The algorithm
terminates after a fixed number of trials or if the best value
(incumbent) does not change for a number of trials.

For this investigation, a highly configurable Bayesian opti-
misation framework: ‘turbo’, was created. It is free (GPLv3)
and available for download on github [7].



C. Dynamic Movement Primitives

Dynamic movement primitives (DMPs) [8] are a mecha-
nism for encoding the changes in a single degree of freedom
throughout an action in a way that can be generalised both
spatially and temporally. This means that a set of DMPs can
be used to encode a trajectory demonstrated to a robot, and
then the trajectory can be played back at different speeds
or with different initial/goal positions. When altering the
initial/goal positions, the trajectory retains the behaviour
of the original demonstration. For example, an action for
picking up a cup could be demonstrated and then generalised
in order to pick up a cup in a different location.

A discrete DMP encodes an action which does not re-
peat (unlike a rhythmic action such as walking) using a
combination of a point attractor and a non-linear ‘forcing
function’. The point attractor is a dynamical system which
acts like a spring-damper system to draw the value of
the DoF (degree of freedom) towards the goal state. The
forcing function imposes an arbitrary trajectory on the way
to the goal state but has its influence decreased as the
action progresses to let the attractor take over, ensuring that
the goal is always reached. The forcing function can be
learned from demonstration using a weighted set of basis
functions spread throughout the duration of the action. This
is what allows the temporal generalisability. If the duration
is scaled then the positions of the basis function scale by
the same amount, retaining the same forcing function shape.
The forcing function is multiplied by the difference between
the goal and initial values, so if either is moved then the
amplitude of the forcing function scales accordingly. This
gives the spatial generalisability.

The motion equation for the point attractor (spring
damper) is ÿ = Kp(g−y)−Kdẏ where y is the value for the
DoF, g is the goal value, and Kp and Kd are the proportional
and derivative gain terms. Rather than defining the system
in terms of time (t), an exponentially decaying ‘canonical
system’ is used instead τ ẋ = −αx =⇒ x = e−αt/τ .
Removing the dependence on time allows for temporal
generalisation by altering the time scaling factor τ , which
is the variable we are interested in optimising for a task.
The forcing function can then be defined as:

f(x) =
∑N
i=1 wiψi(x) /

∑N
i=1 ψ(x) (3)

ψi(x) = exp(−hi(x− ci)2) (4)

Where ψi is a Gaussian basis function centered at some
‘time’ (canonical system value) ci with width hi. Overall
the motion equation for the DMP dynamical system is:

τ2ÿ = Kp(g − y)−Kdẏ + x(g − i)f(x) (5)

τ ẋ = −αx =⇒ x = e−αt/τ (6)

where i is the initial value. By multiplying the forcing
function by x it is guaranteed that as time progresses, the
forcing function loses influence (since x decays to 0) and
g−i provides the spatial generalisability as described earlier.

Note that if DMPs are defined in the joint space then
spatial generalisation in terms of task space locations is lost.

Simply mapping the new task space goal into the joint space
is insufficient since the joint space trajectory to reach the
goal may be very different from the demonstration.

For this investigation, the pydmps library [9] was used to
learn DMPs from demonstration and play them back.

II. METHOD

The investigation was carried out on a Baxter robot with
an overhead camera used to detect ArUco markers in order
to determine the pose of a small box (10cm cube). A target
was placed down on a table in front of the Baxter robot,
which would attempt to move the box to the target location
using various actions.

Several experiments were carried out to evaluate the
efficacy of Bayesian optimisation for the setup being tested.
Each experiment run consists of 80 trials (attempts at reach-
ing the target) of the chosen optimisation technique, followed
by a ‘verification run’ of 10 trials with the best parameters
found during the run to evaluate the reliability of the policy.

All Bayesian optimisation runs were initialised with 20
trials1 selected with LHS, followed by 60 Bayesian optimi-
sation trials. The sum of an ARD2 Matern 5/2 kernel and
white kernel was used for the Gaussian process, which was
trained using L-BFGS-B3 with a different number of restarts
each trial (cycling between 10, 5 and 2).

Both tasks use the squared distance from the box resting
position to the target (in metres) as the objective function to
be minimised.

A. Flipping

This experiment tests the effectiveness of Bayesian op-
timisation on a simple real-world policy search task. This
experiment used the -LCB acquisition function with β =
1.5 log(n− 8) where n is the trial number.

For this task, Baxter was given a spatula to hold, and for
each trial, the box is placed onto the spatula and then flipped
in the direction of the target, which was placed approximately
1.5m from the robot. The flipping action was recorded as
joint space DMPs, meaning that the time scaling factor is
the only parameter to be optimised.

Another experiment (referred to as ‘with gains’) was
carried out to determine whether including parameters of the
PD controller which carries out the policy has any positive
effect on the search. In this experiment, the proportional and
derivative gains (Kp and Kd respectively), as well as the
tracking error threshold for the PD controller, were optimised
in addition to the time scaling factor of the DMP.

B. Throwing

This experiment compares Bayesian optimisation to ran-
dom search, as well as evaluating the performance of
Bayesian optimisation on variations of the same task. The

1except for the flipping task without gains which only used 10
2automatic relevance detection using different lengthscales in each di-

mension
3Limited-memory-Broyden-Fletcher-Goldfarb-Shanno-bounded



Bayesian optimisation runs used the EI acquisition function
with ξ = 0.001.

For this task, Baxter was given a block of wood to hold
which the box was placed on top of and then thrown to
a target placed approximately 1.5m from the robot. The
difference between this experiment and the first is that the
task of moving the box to the target is achieved with a choice
of actions, and actions which are inherently less accurate than
the flipping action due to the limitations of the robot.

For this task, three different throwing actions were
recorded as joint space DMPs. This approach was chosen
rather than utilising the spatial generalisation of a single
task space DMP to ensure that the trajectories are free from
kinematic singularities. With joint space DMPs, the trajec-
tory through joint space is identical to the demonstration,
unlike task space DMPs where it is dictated by the inverse
kinematics solver.

The choice between the n discrete actions is encoded
as a point p the continuous space [0, 1]n using choice =
argmaxi∈1..n pi (similar to a one-hot encoding). This results
in large portions of the space have the same meaning, but
this encoding is required for the Gaussian process to fit the
data since it does not accept categorical inputs.

Fig. 1. Left: The initial state for the flipping action. Right: the trajectories
of the throwing actions (red: ‘throw1’, green: ‘throw2’, blue: ‘throw3’)

III. RESULTS

A. Flipping

gains
Run No.

tim
e scaling

ctrl
kp

ctrl
kd

ctrl
err t

cost (m
2 )

N 1 2.39 5
√
0.01 0.3 3.63×10−4

N 2 2.43 5
√
0.01 0.3 4.98×10−4

N 3 2.46 5
√
0.01 0.3 1.91×10−4

Y 1 2.50 4.93
√
0.00544 0.329 1.48×10−4

Y 2 2.40 4.50
√
0.00702 0.303 1.06×10−3

1) Discussion: The results are inconclusive as to whether
including the controller parameters in the optimisation pro-
cess makes a difference, however in both cases, the er-
ror consistently decreased by several orders of magnitude
throughout the entire run. The ARD kernel determined the
Kp and Kd parameters to be unimportant, whereas the error
threshold parameter did make a slight difference. Only small
ranges around some known good gain values were used to
avoid damaging the robot, however, this may be the reason
why these parameters were deemed not useful. From earlier
testing, it is clear that increased dimensionality reduces the
effectiveness of Bayesian optimisation, so the gains may
slightly improve the search, but the increased difficulty from
more parameters cancels this out.
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Fig. 2. Top Left: minimum objective function error after each trial. Top
Right: cumulative selection time up to each trial. Bottom Left: the resting
positions of the box on the table for every trial in experiment 1. Concentric
circles mark one and two box widths from the target. Bottom Right: the
resting positions of the box on the table for every trial in the verification
runs for experiment 1.

However, this is a small sample over a single task and so
more experiments are required to draw any conclusions.

B. Throwing

Target
Run No.

tim
e scaling

action1
action2

action3
Chosen

cost (m
2 )

1 1 2.01 0.91 0.58 0.11 1 8.77×10−03

1 2 3.00 1.00 0.47 0.76 1 2.72×10−04

1 3 2.58 0.11 0.00 0.00 1 9.06×10−04

2 1 1.71 0.53 0.22 0.24 1 2.51×10−03

2 2 2.87 0.43 0.62 0.02 2 1.36×10−03

2 3 2.48 0.03 1.00 0.73 2 5.66×10−03

2 Random 1 2.27 0.05 0.51 0.17 2 5.45×10−03

2 Random 2 1.31 0.04 0.06 0.06 3 2.76×10−03

2 Random 3 2.82 0.57 1.00 0.87 2 6.51×10−03

1) Discussion: In this experiment, a small difference is
observed between the performance of Bayesian optimisation
and random search in Figure 4, with both achieving reason-
able results after only about 30 trials. For both targets, the
best policy found by Bayesian optimisation improved by an
order of magnitude over the course of the run.

Figure 4 shows both a large range of outcomes for similar
time scales and a weak relationship between the time scale
and the resting position. With the significant noise present
in the resulting resting box position, the influence of the
time scale on the position would be very hard to determine
accurately from only a few samples, especially because only
the squared distance to the target is given as feedback, rather
than the resting position.

It is clear from Figure 3 that the policy using ‘throw3’
found by experiment 2 of random search is the best in terms
of reliability since it consistently lands close to the target,
whereas all the other policies only occasionally land close.
However, the table shows that this policy did not achieve the
best cost during optimisation.
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Fig. 3. Top Left: minimum objective function error after each trial. Note
that the results from the first and second target locations cannot be directly
compared because they are essentially different tasks. Top Right: cumulative
selection time up to each trial. Bottom: The resting box positions of the
verification runs (left: BO target 1, middle: BO target 2, right: random
search target 2).

IV. CONCLUSION

The results from the flipping task demonstrates that
Bayesian optimisation can be used to obtain reliable policies
(which consistently score well) for real world tasks in a small
number of trials. The results from the throwing task show
some improvement using Bayesian optimisation over random
search in a scenario which is very challenging due to number
of factors. The throwing actions are less precise than flipping,
leading to a lot of noise in the resting position and only a
weak relationship between the input parameters and the score
of the policy.

Figure 4 shows that for any given time scale, none of
the actions reliably reached the target location, meaning it
is unlikely that any policy in the search space could achieve
very reliable performance. Despite all of these challenges,
Bayesian optimisation was able to obtain policies which
scored well in every run, indicating that the method is fairly
robust to the difficulties encountered in real world tasks.

The verification results identify a potential problem with
the approach to Bayesian optimisation used in this work.
The optimiser does not take the reliability of the policy into
account when deciding which parameters are best, since the
policy is only tested once, meaning unreliable policies may
be chosen if they happen to score well by chance. If reliable
policies are desired then the optimiser must be modified
to distinguish reliable policies from well scoring policies
which were lucky once but not reliable. Possible techniques
to investigate in future involve minimising/maximising the
surrogate mean rather than the trial costs when taking the best
parameters [10], or scoring each policy using the mean of
multiple evaluations to reduce noise in the objective function.

Future investigations could assess the performance of BO
in optimising ‘upper level policies’ (which can generalise to
different variations of a task) for use in the real world. In
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Fig. 4. Top: Projectile resting positions for each throwing action (left:
‘throw1’, middle: ‘throw2’, right: ‘throw3’), colored by time scale (brighter
is smaller time scale and therefore faster). By inspection, the influence of
time scale on the resting position is very weak. One and two box widths
from the targets are shown. Bottom Left 2: the x and y resting resting
positions as a function of the time scale. Bottom Right 2: the distances to
target 1 and target 2 as a function of the time scale respectively.

addition, evaluating the effectiveness of including controller
gains into the optimisation process was not fully explored
in this investigation, with restrictions placed on the range of
values due to safety concerns. However, there are modifica-
tions to BO which can incorporate safety constraints [11].

REFERENCES
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