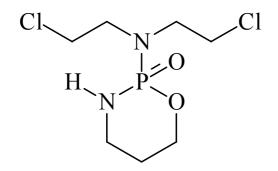
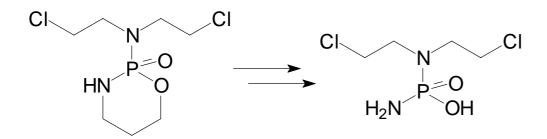
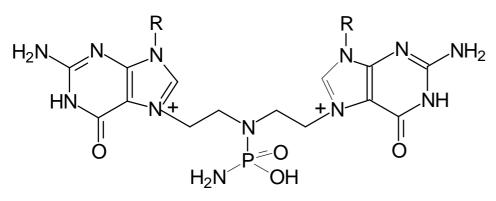
Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters

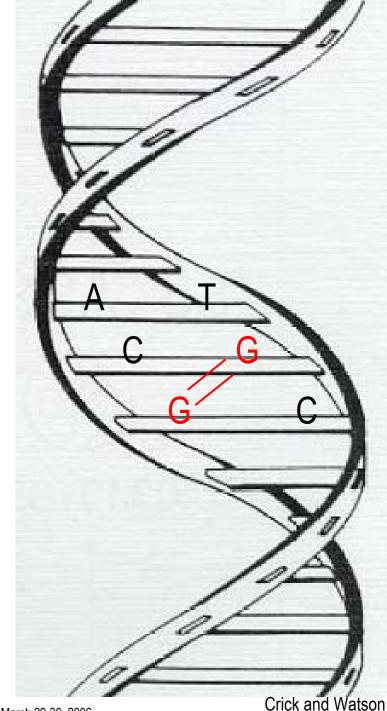
Ignaz J. Buerge, Hans-Rudolf Buser, Thomas Poiger, Markus D. Müller



Plant Protection Chemistry Swiss Federal Research Station CH-8820 Wädenswil, Switzerland

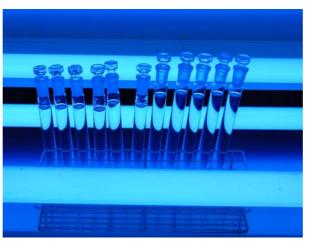

Cyclophosphamide


- cytostatic drugs
- chemotherapy of bronchial-, brest-, ovarian-cancer, lymphomas, leukaemias, etc.
- immunosuppression (rheumatoid arthritis, bone marrow transplantation)


\rightarrow metabolic activation to the mustard

\rightarrow unspecific alkylation e.g., cross-linking of guanine bases

→ errors in DNA replication → mutagenic, carcinogenic, teratogenic, and embryotoxic effects

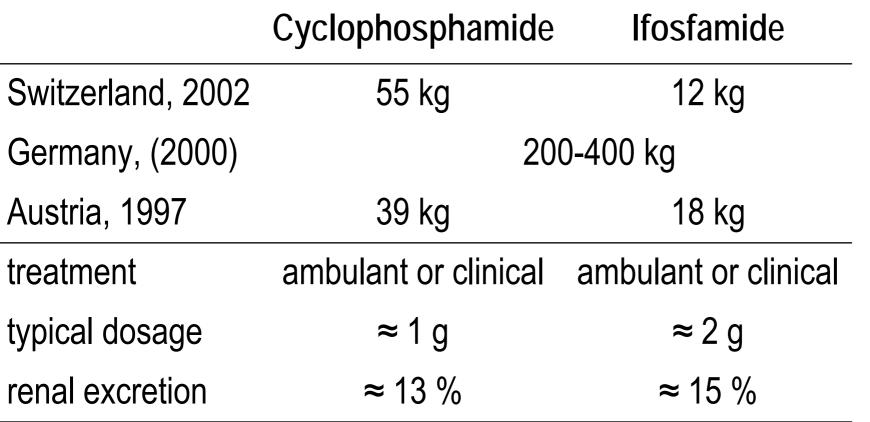


consumption/dosage

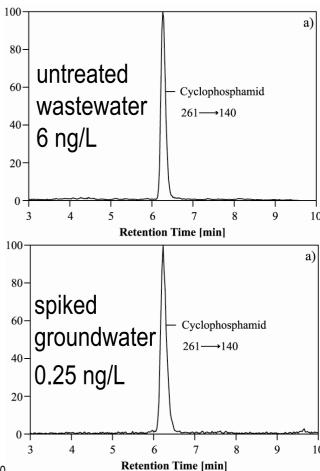
trace analysis

dissipation behavior

occurrence in wastewater



occurrence in surface waters


ecotoxicity/ risk assessment

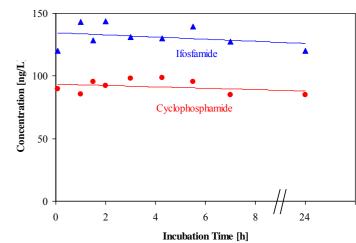
Annual Consumption/Dosage

Trace Analysis

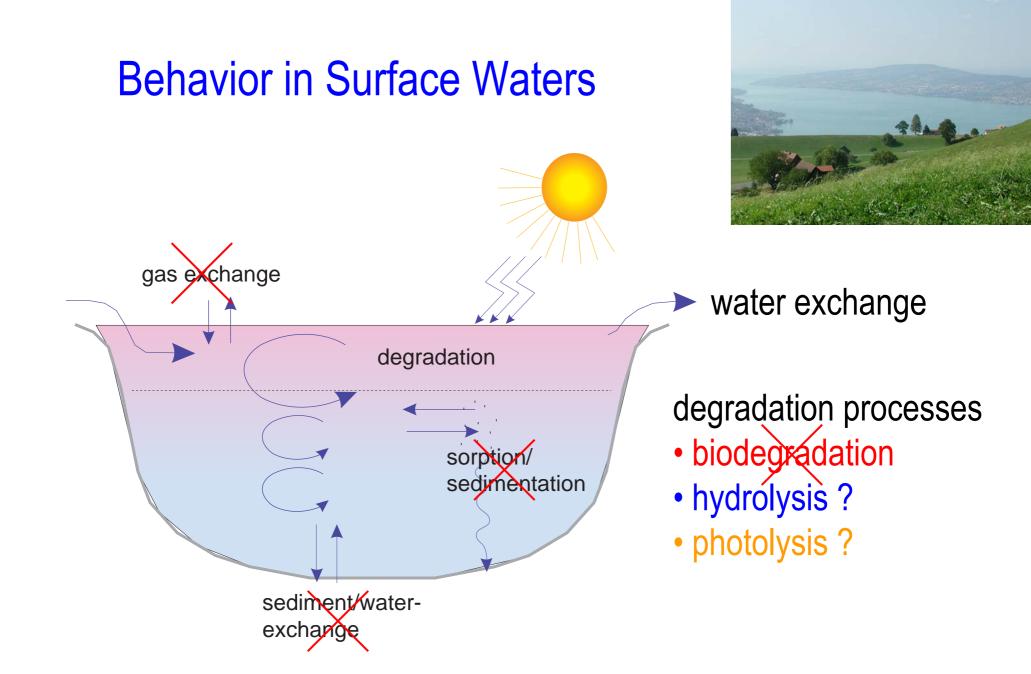
solid phase extraction analysis by LC-MS-MS

Matrix	Limit of Detection
untreated wastewater	0.2-1 ng/L
treated wastewater	0.3-0.4 ng/L
surface water	0.02-0.1 ng/L

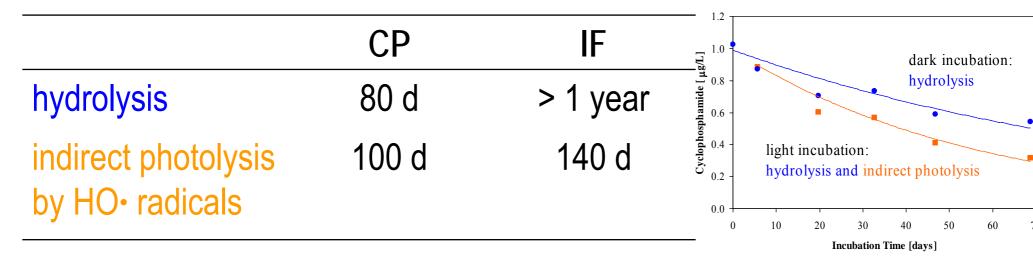
 \rightarrow extremely sensitive analytical method


Behavior in Wastewater Treatment Plants (WWTPs)

non biodegraded in activated sludge

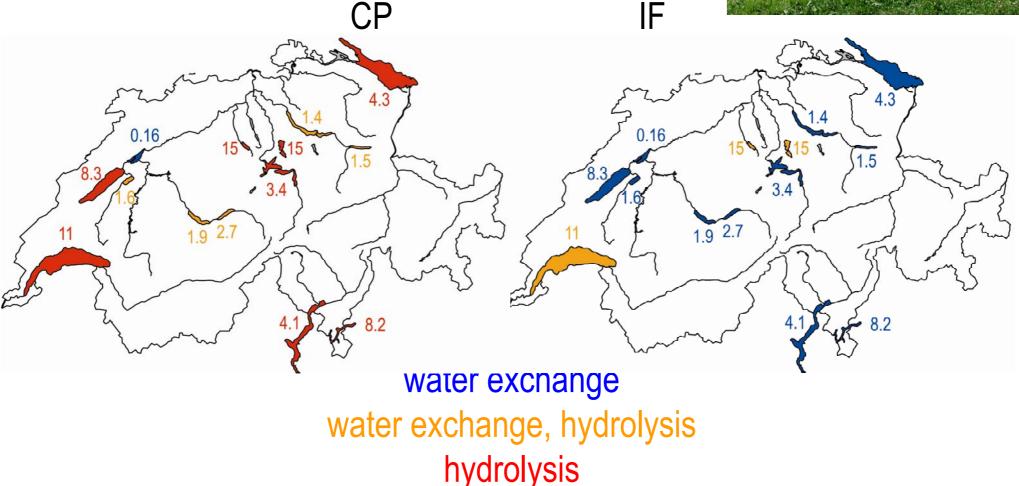

• no sorption to sewage sludge (log K_{OW} = 0.97) • no volatilization (K_{H} = 7 ·10⁻¹¹ atm L/mol)

\rightarrow high persistence in WWTPs

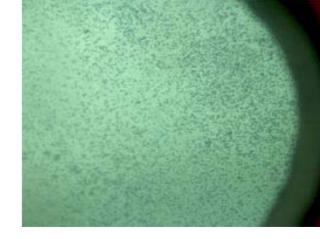


Half-Lives under Laboratory Conditions

Extrapolation to Surface Waters



	СР	IF
hydrolysis	1-2 years	several years
indirect photolysis by HO• radicals	several years	several years


\rightarrow slow degradation in surface waters primarily by hydrolysis

Comparison of Dissipation by Water Exchange and Hydrolysis

Degradation by Photochemically Formed HO[,] Radicals

- diffusion controlled reaction
- may be relevant only in shallow, clear, and nitrate-rich waterbodies
- could be further exploited for elimination of CP and IF by advanced oxidation processes, e.g., in a treatment of hospital wastewater

Predicted Concentrations (PEC) of Cyclophosphamide in WWTPs

consumption in CH	55 kg
renal excretion	13 %
water consumption CH	500 L/(person day)
degradation in sewer system	not considered
degradation in WWTPs	none
PEC untreated and treated wastewater CH	5.4 ng/L
"realistic worst case"	up to ≈ 100 ng/L

Selection of WWTPs

WWTP Männedorf

- hospital with a relatively large oncology division
- little dilution by domestic wastewater of 9000 inhabitants
- \rightarrow "realistic worst case" situation

WWTP Zürich

- several hospitals, surgeries, where cytostatic drugs are administered
- high dilution by domestic wastewater of 370000 inhabitants

 \rightarrow typical situation for urban areas

Measured Concentrations (MEC) in WWTPs

WWTP	Influent [ng/L]	Effluent [ng/L]
Zürich	2-5	2-4
Männedorf (no treatment in hospital)	≈ 4	≈ 2
Männedorf (with treatments in hospial)	11 *	10 *
PEC CH	5.4	5.4
PEC "realistic worst case"	up to 100	up to 100 -

- \rightarrow persistent in WWTPs
- \rightarrow * under dry weather conditions \thickapprox 40 ng/L

\rightarrow PEC \approx MEC

Measured Concentrations in Surface Waters

PEC treated wastewater	5.4 ng/L	
degradation in lakes	hydrolysis considered	
PEC lake Zurich	0.07-0.08 ng/L	
PEC "realistic worst case" surface water	a few ng/L	
MEC lake Zurich	∽≈ 0.05-0.07 ng/L	
MEC river Limmat below WWTP Zürich	0.15-0.17 ng/L	

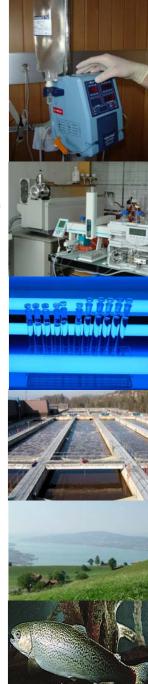
 \rightarrow PEC \approx MEC

Ecotoxicological Data: Mutagenicity to Fish

- micronucleus test with erythrozytes of *Anguilla anguilla*: 3 d exposition, highest effects at 25 mg/L
- sister chromatide exchange with Anguilla anguilla: 3 d exposition, effects in the mg/L range

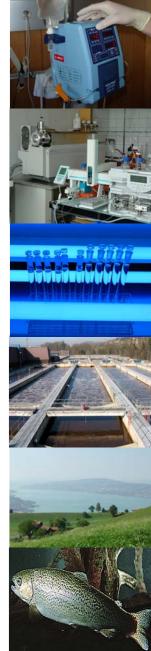
 \rightarrow toxicity-exposure ratio TER >> 1, no acute ecotoxicological risk \rightarrow no ecotoxicological studies on chronic effects to aquatic organisms

Buerge I.J. et al., 1st Network Conference on Persistent Organic Pollutants: Human Exposure and Impacts, University of Birmingham, March 29-30, 2006



Pacheco and Santos, 1996

Santos and Pacheco, 1995


Summary

- consumption CH: 55 kg CP, 12 kg IF
- extremely sensitive analytical method: LODs down to 0.02 ng/L
- persistent in WWTPs with activated sludge treatment
- elimination in lakes by water exchange and slow hydrolysis
- degradation by HO· radicals: AOP treatment of hospital wastewater
- MEC wastewater: 2-11 ng/L CP, < 0.3-6 ng/L IF "realistic worst case": up to 100 ng/L
- MEC surface waters: up to 0.17 ng/L CP, 0.14 ng/L IF "realistic worst case": a few ng/L
- no acute ecotoxicological risk, but no ecotoxicological studies on chronic effects to aquatic organisms
 Buerge et al., Environ, Sci. Technol., in prep.

Acknowledgments

- BAFU: B. Hitzfeld, U. Stämpfli, C. Studer, A. Weber
- A. Heck: Universitätsspital Zürich
 U. Strebel: Kreisspital Männedorf
 - T. Frösch: Bezirksspital Affoltern am Albis
- T. Zobrist: Baxter Oncology
- J. Weber: WWTP Männedorf P. Feusi: WWTP Werdhölzli
- Amt für Abfall, Wasser, Energie und Luft (AWEL), Zürich
- M. Langmeier, M. Reutlinger, S. Canonica : Eawag
- M.E. Balmer, A. Bächli, A. Hauser, B. Patrian: agroscope FAW

www.pch.faw.ch

