Predicting physical habitat sensitivity to abstraction

Cédric Laizé & Mike Acreman, CEH
Megan Klaar, Worcester/EA (now Birmingham)

Research funded by the Environment Agency
New version of the Rapid Assessment of Physical Habitat Sensitivity to Abstraction (RAPHSA) model

Original RAPHSA completed in 2006 for the EA; defined sensitivity to abstraction as the change in physical habitat with changes in river discharge

Several development needs identified in order to deploy the model operationally

Original and current version: ‘RAPHSA 1’
Alternative version: ‘RAPHSA 2’
Hydrology, hydraulics, habitat

- Discharge has indirect effect on river ecosystems
- River organisms respond to hydraulics, either directly (e.g. shear stress), or via physical habitat (i.e. depth and velocity)
- Habitat created by interaction between flow and channel morphology
- Discharge–habitat association provides way to assess ecological impacts of abstraction/flow change in a river
- Several habitat–discharge models based on these concepts (for example PHABSIM)
- Depth and velocity suitability for various species or life stages collated (e.g. field observation, experiments, expert knowledge)
- Suitability of 1 for depth or velocity means that any parts of the river with such depths or velocities are suitable as habitat
- At a given cross-section, depth and velocity suitability indices are combined to give the proportion of the cross-section that is usable as function of discharge
Sensitivity to abstraction

- Steeper curve = habitat more sensitive to abstraction/flow change
- Shapes of curves are controlled by the site hydraulic characteristics
- Same abstraction can lead to different impacts depending on transect and flow percentile

Juvenile trout (0–7cm); selected UK sites (each curve corresponds to a different transect)
RAPHSA 1 summary

- Predicted variable: weighted usable area (WUA) standardised by bankfull wetted width (WW2) ie WUA/WW2

- \(\frac{WUA}{WW2} = a + bn + cn^2 \)
 with \(n \) flow percentile rank (ie \(n^{th} \) flow percentile)

- Coefficients modelled using flow-dependent variables taken at the same \(n \) for a pool of reference sites

- Reference sites: PHABSIM studies totalling 516 transects in 64 river stretches
Operational development needs

(1) Improving representativeness of calibration dataset
- Original model using collection of PHABSIM studies totaling 516 transects at 64 river sites
- Limited geographical coverage
- Biased towards lowland permeable rivers

(2) Simplifying model
- To standardise information across sites, RAPHSA 1 uses flow percentile rank n
- Requires derivation of flow duration curve
- Requires numerous input variables
- Outputs as function of n; need back-transformation to be expressed as function of discharge
Selection of new calibration sites

- c. 4,000 sites with detailed panel data up to 2006 (EA)
- Matched against gauging stations => 645
 - Filtered for good hydraulics => 210
 - Filtered to keep sites capturing whole WUA & flow range => 90
Improved representativeness

Geographical coverage
RAPHSA 1 - black crosses
RAPHSA 2 - green dots

River types
RAPHSA 2 - dash black
UK rivers - solid blue
Simplified model

- To avoid using flow duration curves, relation between \(\ln(Q) \) and \(n \) approximated as linear; \(Q \) standardised with bankfull flow (approximated as \(Q^2 \))

\[\frac{WUA}{WW^2} = a' + b' \ln\left(\frac{Q}{Q^2}\right) + c' \left(\ln\left(\frac{Q}{Q^2}\right)\right)^2 \]

- \(Q/Q^2 = 0 \) means no water; \(Q/Q^2 = 1 \) (or 100\%) means bankfull flow
- \(Q^2 \) (and additional variables at \(Q^2 \)) can be estimated from one field survey only by using Manning-Strickler (providing the gauging does not occur at low flows)
- Similar model structure but simplified formulation (fewer explanatory variables)
- Output habitat curves as function of \(Q/Q^2 \) (no back-transformation needed)
Model testing: MSEs

- Jackknifing procedure on RAPHSA 1, RAPHSA 2 with original sites only, RAPHSA 2
- Similar performance
- RAPHSA 2: slightly higher mean squared errors partly because of wider range of river types

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPHSA 1</td>
<td>0.0002</td>
<td>0.0012</td>
<td>0.0033</td>
<td>0.0067</td>
<td>0.0139</td>
<td>0.0365</td>
<td>0.9400</td>
</tr>
<tr>
<td>RAPHSA 2 with</td>
<td>0.0002</td>
<td>0.0014</td>
<td>0.0046</td>
<td>0.0100</td>
<td>0.0213</td>
<td>0.0527</td>
<td>0.6100</td>
</tr>
<tr>
<td>RAPHSA 1 sites</td>
<td>0.0002</td>
<td>0.0013</td>
<td>0.0048</td>
<td>0.0112</td>
<td>0.0253</td>
<td>0.0610</td>
<td>0.4700</td>
</tr>
<tr>
<td>only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model testing: (some) habitat curves

Observed data - black line with +

RAPHSA 1 - blue

RAPHSA 2 with original sites only - red

RAPHSA 2 - green
For further information:
Cédric Laizé clai@ceh.ac.uk

Thank you for your attention!