Predicting physical habitat sensitivity to abstraction

<u>Cédric Laizé</u> & Mike Acreman, CEH Megan Klaar, Worcester/EA (now Birmingham)

Research funded by the Environment Agency

Background

New version of the Rapid Assessment of Physical Habitat Sensitivity to Abstraction (RAPHSA) model

Original RAPHSA completed in 2006 for the EA; defined sensitivity to abstraction as the change in physical habitat with changes in river discharge

Several development needs identified in order to deploy the model operationally

Original and current version: 'RAPHSA 1' Alternative version: 'RAPHSA 2'

Hydrology, hydraulics, habitat

- Discharge has indirect effect on river ecosystems
- River organisms respond to hydraulics, either directly (e.g. shear stress), or via physical habitat (i.e. depth and velocity)
- Habitat created by interaction between flow and channel morphology
- Discharge—habitat association provides way to asses ecological impacts of abstraction/flow change in a river
- Several habitat–discharge models based on these concepts (for example PHABSIM)
- Depth and velocity suitability for various species or life stages collated (e.g. field observation, experiments, expert knowledge)
- Suitability of 1 for depth or velocity means that any parts of the river with such depths or velocities are suitable as habitat
- At a given cross-section, depth and velocity suitability indices are combined to give the proportion of the cross-section that is usable as function of discharge

Suitability curves for juvenile trout (0–7cm)

Sensitivity to abstraction

Juvenile trout (0–7cm); selected UK sites (each curve corresponds to a different transect)

- Steeper curve = habitat more sensitive to abstraction/flow change
- Shapes of curves are controlled by the site hydraulic characteristics
- Same abstraction can lead to different impacts depending on transect and on flow percentile

RAPHSA 1 summary

- Predicted variable: weighted usable area (WUA) standardised by bankfull wetted width (WW2) ie WUA/WW2
- WUA/WW2 = a + bn + cn²
 with n flow percentile rank (ie nth flow percentile)
- Coefficients modelled using flow-dependent variables taken at the same n for a pool of reference sites
- Reference sites: PHABSIM studies totalling 516 transects in 64 river stretches

Operational development needs

- (1) Improving representativeness of calibration dataset
- Original model using collection of PHABSIM studies totaling 516 transects at 64 river sites
- Limited geographical coverage
- Biased towards lowland permeable rivers

(2) Simplifying model

- To standardise information across sites, RAPHSA 1 uses flow percentile rank *n*
- Requires derivation of flow duration curve
- Requires numerous input variables
- Outputs as function of n; need back-transformation to be expressed as function of discharge

Selection of new calibration sites

- c. 4,000 sites with detailed panel data up to 2006 (EA)
- Matched against gauging stations => 645
 - Filtered for good hydraulics => 210
 - Filtered to keep sites capturing whole
 WUA & flow range => 90

Improved representativeness

River types

RAPHSA 2 - dash black UK rivers - solid blue

Spot Gauge v UK - BFI

Geographical coverage

RAPHSA 1 - black crosses RAPHSA 2 - green dots

Simplified model

- To avoid using flow duration curves, relation between ln(Q) and n approximated as linear; Q standardised with bankfull flow (approximated as Q2)
- $WUA/WW2 = a' + b' \ln(Q/Q2) + c' (\ln(Q/Q2))^2$
- Q/Q2 = 0 means no water; Q/Q2 = 1 (or 100%) means bankfull flow
- Q2 (and additional variables at Q2) can be estimated from one field survey only by using Manning-Strickler (providing the gauging does not occur at low flows)
- Similar model structure but simplified formulation (fewer explanatory variables)
- Output habitat curves as function of Q/Q2 (no back-transformation needed)

Model testing: MSEs

- Jackknifing procedure on RAPHSA 1, RAPHSA 2 with original sites only, RAPHSA 2
- Similar performance
- RAPHSA 2: slightly higher mean squared errors partly because of wider range of river types

	Min	5%	25%	50%	75%	95%	Max
RAPHSA 1	0.0002	0.0012	0.0033	0.0067	0.0139	0.0365	0.9400
RAPHSA 2 with RAPHSA 1 sites only	0.0001	0.0014	0.0046	0.0100	0.0213	0.0527	0.6100
RAPHSA 2	0.0003	0.0013	0.0048	0.0112	0.0253	0.0610	0.4700

Model testing: (some) habitat curves

Observed data - black line with +

RAPHSA 1 - blue

RAPHSA 2 with original sites only - red

RAPHSA 2 - green

For further information: Cédric Laizé clai@ceh.ac.uk

Thank you for your attention!

