

Measuring the flow in a small
irregular river using LS-PIV

Contents

- Definition of LS-PIV
- Field work
- Results
- Conclusions

Definition of LS-PIV

- Non-intrusive approach used to measure the 2-D velocity field on the water surface.

Definition of LS-PIV

- There are 3 types:
 - Large-scale Particle Image Velocimetry (LS-PIV)
 - Space-tome Image Velocimetry (ST-IV)
 - Controlled-surface Wave Image Velocimetry (CS-WIV)

The challenge

- Can we determine the discharge by simply looking at the patterns on the water surface?

$$k = \frac{U_d}{U_s}$$

$$\frac{U(z)}{U_s} = \frac{\alpha z^{1/7}}{\epsilon h^{1/7}} \quad \text{P} \quad k = 0.875$$

Experimental site

- “Man made” river
- Width = 5m; bank-full depth = 0.75m

Experimental site

B. Gunawan et al. / Flow Measurement and Instrumentation 24 (2012) 1–12

(a) Cross section 2.

(b) Cross section 5.

Fig. 3. Cross sectional profiles.

Data collected

- Event 1: bank-full ($Q \sim 2.0 \text{ m}^3/\text{s}$)
- Event 2: in-bank ($Q \sim 0.34 \text{ m}^3/\text{s}$)
- Event 3: over-bank ($Q \sim 4.5 \text{ m}^3/\text{s}$)

Data collected

- How does the position of maximum velocity vary with lateral distance?

ADCP & ADV data – cs 2

ADCP & ADV data – cs 5

Velocity vectors for cs 5

Secondary flow – cs 2

Secondary flow – cs 5

Surface velocity

Relationship between U_d / U_s in-bank flow

(a) Section 2.

(b) Section 5.

Relationship between U_d / U_s bank-full case

(a) Section 2.

(b) Section 5.

Relationship between U_d / U_s over-bank case

(a) Section 2.

(b) Section 5.

Average value of U_d / U_s

Event	Cross section 2	Cross section 5
Inbank (18/8/2008)	0.397	1.175
Bankfull (16/01/2008)	0.862	1.028
Overbank (10/2/2009)	0.989	1.066

(c.f. 0.875)

Quantifying the effect of second flow on U_d / U_s

Quantifying the effect of second flow on U_d / U_s

- Assume channel
can be discretized
in linear elements.

$$\Gamma = \frac{\partial}{\partial y} [H \rho (UV)_d]$$

Secondary flow vs. k

Conclusions

- The ratio of the depth averaged velocity to the surface velocity (k) can vary significantly between cross sections.
- k varies with Q and is highly dependent on the structure of the local velocity field.
- For practical purposes, a value of $k=1.0$ is not an unreasonable starting point for discharge estimation, providing that a cross section is chosen where there is significant mixing.

Roughness distributions

Roughness distributions

