Real-time modelling of surface water flooding hazard and impact at countrywide scales

Steven Cole¹, Robert Moore¹, Paul Mattingley¹, Timothy Aldridge², Jon Millard^{3,4} and Stefan Laeger⁵

BHS National Symposium, University of Birmingham, 4 September 2014

What is the Natural Hazards Partnership?

Delivering coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK

Real-time Hazard Impact Model: Surface Water Flooding

Surface Water Flooding

- Surface Water Flooding (SWF)
 - Major hazard with ~4 million properties at risk in England alone (EA, 2009)
- Summer 2007 floods
 - £3 billion insurance payouts
 - 55,000 properties flooded, ~36,000 due to SWF
 - National infrastructure impacts
 - 140,000 homes without clean water for 17 days
 - 42,000 homes without power for 24 hours
 - 10,000 people trapped on M5
 - Pitt Review commissioned
 - Flood Forecasting Centre & Scottish Flood Forecasting Service formed

Surface Water Flooding Alerts: Approaches

- Rainfall-based alerts (current practice)
 - Uses national rainfall-thresholds and broad soil moisture & urban effects
 - Supports FFC Surface Water Decision Support Tool (Spreadsheet)
 - Feeds in to FFC daily Flood Guidance Statement

Surface Water Flooding Alerts: Approaches

- Rainfall-based alerts (current practice)
 - Uses national rainfall-thresholds and broad soil moisture & urban effects
 - Supports FFC Surface Water Decision Support Tool (Spreadsheet)
 - Feeds in to FFC daily Flood Guidance Statement
- Localised runoff thresholds (ongoing NHP developments)
 - G2G distributed hydrological model converts rainfall to runoff
 - G2G soil moisture conditions influence surface runoff production
 - Scientific advances to improve national SWF hazard footprint
 - G2G already used by FFC & SFFS so "quick win" potential
- New impact assessments (ongoing NHP developments)
 - Use existing national datasets on property, infrastructure & population
 - Case studies show potential for real-time hazard and impact forecasts

Grid-to-Grid (G2G) Distributed Model

- Uses spatial datasets on terrain, soil/geology, land-cover
- Responds to spatial variation of rainfall input
- Used operationally across Britain at a 1km 15 min resolution

Factors affecting G2G runoff production

G2G runoff alerts for surface flooding

- National rainfall-thresholds
 - Based on Extreme Rainfall Alert method
 - Uses FEH 30 year return period rainfalls "averaged" across 8 UK cities

G2G runoff production affected by:

- Rainfall amount plus
- Urban/suburban coverage
- Soil and geology properties
- Antecedent soil moisture conditions
- Prototype runoff threshold exceedances seem more targeted

SWF Case Study: 2-3 August 2011

- 2-3 August 2011 event
 - FFC identified event with SWF impacts
 - Peak radar accumulations of 40-60mm near York and Goole
 - Reports of flooding at Thorne and York
 - Goole badly affected including a residential home
- End-to-end case study to produce first SWF impact maps
 - Note uses radar-rainfall and not forecasts
 - Good first step guiding future development

SWF Case Study: 2-3 August 2011

- Evolution of rainfall and surface-runoff accumulation maps
- Reported flood locations highlighted (FFC data)

SWF Case Study: rainfall vs surface-runoff

Example SWF impact output

Impact Summary over time-frame of event

SWF Impact Modelling approach

Impact Library

- Pre-calculate 1km Impact Library, using uFMfSW scenarios (e.g. 30yr, 1hr storm) and national datasets on population and receptors
- Criteria based on defined set of flood impacts
 - 1. Danger to life
 - 2. Damage to Buildings
 - 3. Disruption of Key Sites and Infrastructure
 - 4. Disruption of Transport
 - 5. Disruption of Communities
- Evidence-based approach for impact assessment methodology
- 1km impact output and regional summary
- Link impact and likelihood to Flood Risk Matrix used by EA/FFC

Link G2G Hazard Footprint to impact

Probabilistic impact products

Proof-of-concept hazard impact forecast system:

- Regional impact summary for each ensemble member
- Summarise for time, space & uncertainty
- Reporting by County/Authority
- Combine impact and likelihood to calculate risk

Case study

- Proof-of-concept outputs (26-28 June 2012)
- Compared to "actual" risk as assessed by FFC
- Impact forecasts show promise

	Darlington			Durham				Northumberland				Tyne and Wear				
Forecast Origin	Minimal	Minor	Significant	Severe	Minimal	Minor	Significant	Severe	Minimal	Minor	Significant	Severe	Minimal	Minor	Significant	Severe
26 0015	12	0	0	0	12	0	0	0	12	2	0	0	12	0	0	0

Region	Post Event Impact Level	Forecast Likelihood	",
Northumberland	Significant	Medium	,
Tyne and Wear	Severe	Medium	

Summary and Next Steps

- Proof-of-concept NHP Hazard Impact Model for SWF shows potential for nationwide application
 - Supported by positive feedback from SEPA of similar system trialled during Commonwealth Games (earlier talk 2-9S)
- Targeted improvements to methodology
 - Runoff-production, impact datasets, impact calculations, ...
 - Explore closer links to high-resolution inundation modelling
- Further case studies and validation
 - Historical SWF footprint and impact data scarce
- Presentation of outputs key for end-users
- Near-operational end-to-end trial by FFC in 2015