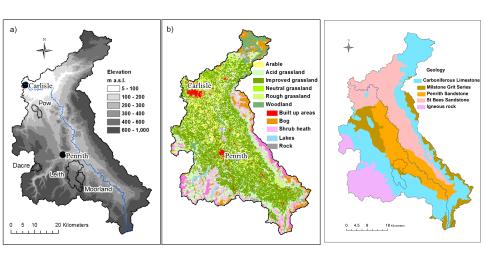
Diffuse pollution in groundwater-dominated agricultural catchments

Magdalena Bieroza & Louise Heathwaite

Lancaster Environment Centre Lancaster University

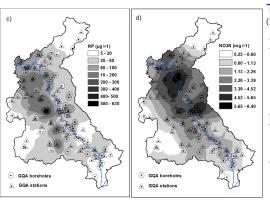
3rd September 2014
Water quality responses to
environmental change
BHS, University of Birmingham

The River Eden and the River Leith catchments


High-frequency vs. low-frequency monitoring

High temporal resolution nutrient dynamics

Implications for water quality monitoring


The River Eden and the River Leith catchments

Surface and groundwater TRP and NO₃-N concentrations

The Environment Agency routine water quality monitoring

Table: Mean TRP and NO₃-N concentrations (mgl⁻¹) for the EA sampling

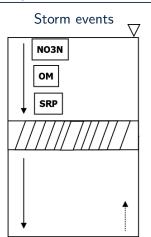
	TRP	NO_3-N	N
Surface waters	0.07	2.20	103
Improved grassland	0.05	2.25	31
Arable	0.12	2.42	19
Woodland	0.06	2.54	18
Rough grassland	0.18	3.53	11
Built-up areas	0.04	1.46	8
Other grassland	0.07	4.04	5
Other	0.08	1.52	11
Groundwaters	0.70	5.70	39
Sherwood Sandstone	0.87	13.14	2
St Bees Sandstone	0.79	7.96	11
Carboniferous Limestone	0.37	2.01	9
Penrith Sandstone	0.82	5.51	16
0-10 m	0.59	4.52	9
11-40 m	0.64	10.63	3
41-80 m	0.76	6.58	20
≥ 81 m	0.70	2.73	7

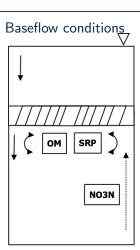
The River Leith at Cliburn

- Narrow floodplain (< 100 m)
- Riffle-pool sequences
- GW-SW interactions a gaining reach, potential importance of the hyporheic processes on in-stream biogeochemistry
- Hourly in situ monitoring since 2009 (TRP, NO₃-N, WQ)
- Environment Agency gauging station

High-frequency vs. low-frequency monitoring

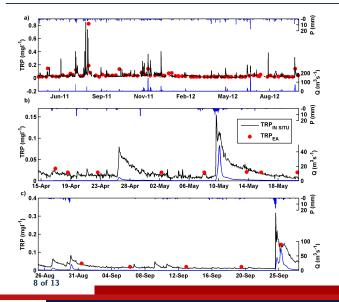
The Environment Agency routine water quality monitoring


Table : Mean TRP and NO₃-N concentrations (mgl^{-1}) for the EA and *in situ* sampling

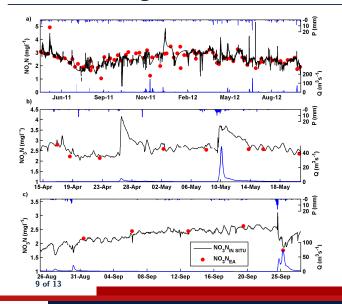

612		Start	End	N	TRP	NO_3-N
_	GQA612	1990	2013	244	0.031	2.10
	In situ	2009	2012	16521	0.037	2.57
	GQA202	1990	2013	527	0.062	3.00
	GQA261	2002	2013	59	0.060	3.20
	GQA259	2002	2003	20	0.102	3.70
	GQA258	2002	2009	20	0.120	3.70
	GQA257	2002	2009	18	0.114	3.80
	GQA614	1992	2013	214	0.455	3.20
	GQA256	2002	2003	19	1.383	5.90
	GOA255	2002	2003	19	0.201	2 50

Hyporheic exchange of nutrients

A conceptual model



Kaser et al (2009), Byrne et al (2012), Krause et al (2013)


Total Reactive Phosphorus

- Diffuse P inputs
- Episodic behaviour
- Surface and subsurface delivery pathways
- Chemical status can change from high (\leq 0.12 mgl $^{-1}$) to poor (\geq 1.0 mgl $^{-1}$)
- Coarse sampling underestimates true concentrations

- Chemostatic behaviour
- Groundwater delivery
- Dilution and concentration effects
- Narrow range of concentrations (1-5 mgl⁻¹)
- Coarse sampling underand overestimates true concentrations

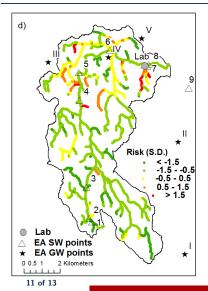

Load estimation

Table : TRP and NO₃-N load estimation for the *in situ* and EA routine monitoring time series and artificially resampled *in situ* time series to coarser resolution

	Dataset	$TRP\;(kgPyr^{-1})$	${ m NO_3-N~(kgNyr}^{-1})$	TRP (%)	NO ₃ -N (%)
	In situ	5790	143200	-	-
May 2011-Sep 2012	EA	6200	101400	7.1	-29.2
	GRAB	4760	100100	-17.8	-30.1
	In situ	260	13100	-	-
15 Apr-19 May 2012	EA	90	10100	-65.4	-22.7
	GRAB	50	8700	-80.8	-33.7
	In situ	530	11400	-	-
26 Aug-25 Sep 2012	EA	770	9900	45.3	-13.2
	GRAB	350	13200	-36.0	15.8
	In situ hourly	3720	96700	-	-
	7h	3470	95700	-6.7	-1.0
	Daily (9am)	4240	93900	14.0	-3.0
	Daily (3pm)	5530	101000	49.0	4.4
Resampled	Weekly	1330	97400	-64.2	0.7
	Fortnightly	1350	102500	-63.8	6.0
	Montlhy (1st)	2040	92200	-45.2	-4.7
	Monthly (11th)	1170	94700	-68.6	-2.1
	Monthly (21st)	1630	93100	-56.2	-3.7

Implications for water quality monitoring

Low-frequency (weekly to daily) measurements:

- $\circ \ \, \mathsf{Temporally}\mathsf{-}\mathsf{constrained}$
- Conceal the rapid response of nutrients to hydrologic events
- Underestimate nutrient concentrations during storm flows and overestimate during baseflows

• High-frequency (<daily) measurements:

- Spatially-constrained
- Reveal complex nutrients behaviour in response to hydrological forcing (C-Q hysteresis) and during the baseflow conditions (diurnal patterns)
- Underestimate particulate P concentrations

Implications for water quality monitoring

• Groundwater-fed catchments:

- Agricultural catchments with no major point sources: intensive in-stream processing and nutrient attenuation along the subsurface pathways
- However, peak nitrate loading for Penrith Sandstone in several areas of the Eden catchment including Cliburn will arrive in the next three decades
- \circ Different delivery mechanisms and differences in dominant hydrological pathways for TRP and NO3-N but subsurface pathways important for both
- o Episodic TRP vs. chemostatic NO₃-N behaviour
- \circ Implications for load estimation: large errors for TRP (\geq 60 %) and small errors for NO₃-N (\leq 6 %)
- Bieroza, MZ, Heathwaite, AL, Mullinger, NJ & Keenan, PO, 2014, Understanding nutrient biogeochemistry in agricultural catchments: the challenge of appropriate monitoring frequencies, Environmental Science: Processes & Impacts, doi: 10.1039/C4EM00100A

Paddy Keenan & Neil Mullinger

m.bieroza@lancaster.ac.uk

http://www.research.lancs.ac.uk/portal/en/people/magdalenabieroza

Thank you!