Monitoring dissolved organic matter using submersible tryptophan-like fluorometers

Kieran Khamis1,2, J. Sorensen3, C. Bradley2, D. Hannah2, R. Stevens1

1 RS Hydro
2 School of Geog. Earth & Env. Sci. University of Birmingham
3 British Geological Survey
Fluorescence: a form of luminescence which occurs over short time scales at the molecular/atomic level.

EEM spectroscopy

Excitation Emission Matrix (EEM)

Bench top scanning fluorometer

Humic-like compounds (terrestrial origin)

Tryptophan-like peak related to microbial activity + correlated with BOD$_5$

However… Not suitable for remote field sites or if high resolution records are required.

Fellman et al. (2012) Lim. & Oce. 55, 2452
Challenges to in-situ monitoring

- Quenching – e.g. temperature;

- Matrix interference – e.g. suspended particles in water column;

- Inner-filtering - concentration effect;

- Measurement repeatability - between/within sites and between sensors;

- To date no rigorous tests of submersible tryptophan fluorometers have been conducted.
The objectives of this study were to:

1. Test the performance of two commercially available tryptophan fluorometers in the lab;

2. Develop empirical correction factors to account for fluorescence quenching and matrix interference;

3. Undertake a field trial to assess sensor performance and test correction factors.
Minimum Detection Limit (MDL) and precision

Table

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated relation</td>
<td>(y = 0.997x - 0.133)</td>
<td>(y = 1x + 0.0009)</td>
<td>(y = 1x - 0.00007)</td>
<td>(y = 1x + 0.00006)</td>
</tr>
<tr>
<td>Relationship with Varian (ppb)</td>
<td>(y = 0.99x - 0.1255)</td>
<td>(Y = 1x + 0.0022)</td>
<td>(y = 1x + 0.0076)</td>
<td>(y = 0.99x + 0.0129)</td>
</tr>
<tr>
<td>Relationship with Varian (R.U)</td>
<td>(y = 0.002x + 0.0041)</td>
<td>(y = 0.002x + 0.0044)</td>
<td>(y = 0.002x + 0.0044)</td>
<td>(y = 0.002x + 0.0044)</td>
</tr>
<tr>
<td>MDL ± SD</td>
<td>(1.99 ± 0.53)</td>
<td>(1.92 ± 0.57)</td>
<td>(0.17 ± 0.06)</td>
<td>(0.19 ± 0.15)</td>
</tr>
<tr>
<td>Precision: CV (5ppb)</td>
<td>3.03</td>
<td>2.49</td>
<td>0.45</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>(50ppb)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(400ppb)</td>
<td>3.79(^4)</td>
<td>4.86(^4)</td>
<td>4.63(^4)</td>
</tr>
<tr>
<td>Accuracy (RMSE)</td>
<td>0.63</td>
<td>0.62</td>
<td>0.57</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Significant difference in precision at low concentration
Thermal quenching

Raw data
Turbidity interference

100 NTU

900 NTU

200 NTU
Turbidity interference (clay)

Sensor C1
95% CI overlap
> 200 NTU

Sensor C2
95% CI overlap
> 200 NTU

Sensor T1
95% CI overlap
> 200 NTU
Turbidity interference (silt)

Sensor C1

Tryptophan signal (ppb)

Sensor C2

Concentration (ppb)

Sensor T1

Tryptophan signal (ppb)

95% CI overlap

> 800 NTU

No 95% CI overlap

> 600 NTU
Turbidity correction

Clay (Fullers Earth)

Silt (glacial outwash)
Urban field test site

Urban field test site

Chelsea fluorometer and Manta 2
- Stage
- Turbidity
- EC
- Tw
- Tryptophan

ISCO pump sampler
Field trial

Event characterised

Hurricane Bertha
Field trial: raw data
Field trial: corrected data

FE = Fullers Earth (clay) GS = Glacial silt
Field trial: corrected data

R(2) = 0.92

\(m = 0.69 \pm 0.04\)

\(c = 0.91 \pm 4.53\)

R(2) = 0.88

\(m = 0.95 \pm 0.07\)

\(c = -2.41 \pm 5.90\)

R(2) = 0.91

\(m = 0.67 \pm 0.04\)

\(c = 7.95 \pm 4.38\)
Field trial: corrected data

\[R^2 = 0.77 \]
\[m = 0.80 \pm 0.09 \]
\[c = -23.0 \pm 10.84 \]

\[R^2 = 0.76 \]
\[m = 0.86 \pm 0.10 \]
\[c = -22.4 \pm 10.86 \]

\[R^2 = 0.76 \]
\[m = 0.96 \pm 0.11 \]
\[C = -2.03 \pm 8.75 \]
Borehole test

Tryptophan signal (ppb)

Depth below ground (m)

- 8.0
- 11.0
- 15.0
- 18.0
- 25.9
- 30.2
- 35.1
- 39.1

- C1
- C2
- T1
- T2
- Lab (Varian)
Spatial survey (initial result)

- All sites: $R^2 = 0.60$
- River sites: $R^2 = 0.91$

Habitat type:
- Canal
- Pond
- River
- Effluent

- River samples: $R^2 = 0.67$
- All samples: $R^2 = 0.72$
- River samples: $R^2 = 0.64$
Conclusions

- Quenching of T_1 fluorescence was identified in the lab and varied between sensors (Turner & Chelsea)

- Temperature compensation appears relatively simple but evidence of \textit{hysteresis} requires further investigation

- Sediment particle size influenced sensor response to turbidity increases (implies site specific calibrations may be necessary)

- Field tests highlight the potential to develop and apply correction factors to improve in-situ data output during both baseflow and event conditions

- Further work will improve correction factors for BOD$_5$ - T_1 fluorescence relationships
Acknowledgments

NERC and EPSRC (co-funding project)

Les Basford (Nature centre, Birmingham)

Ed Lang and James Chapman (RS Hydro)

Alex Taylor (West Country Rivers Trust)

Richard Johnson and Mel Bickerton (University of Birmingham)

Pete Williams (BGS)