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Fiber optics opens window on stream dynamics
John Selker,I Nick van de Giesen,2 Martijn Westhoff,2 Wim Luxemburg,2

and Marc B. Parlange’
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Fibre-optic Distributed Temperature Sensing (FO-DTS)
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Raman-Optical Time-
Domain-Reflectometry

Back scatter of
optical laser pulse

Analysis of Stokes /
anti-Stokes signal
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FO-DTS applications:

Fiber is the distriduled senacr Glass molecules
~ Lo NP
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* Hydrology Rl R T N
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Soil physics Asset Visuakzation ors e R
Civil engineering

Meteorology

[Selker et al., 2006 a,b; Tyler et al.,
2008, 2009; Henderson et al., 2009;
Steele-Dunne et al., 2010; Slater et al.,
2010; Keller et al., 2011; Suarez et al.,
2011; Krause et al., 2012 a, b, 2013; ...]

* Main applications in hydrology for detecting spatial patterns and temporal
dynamics of exchange fluxes between groundwater and surface water
(rivers and lakes), dam leakage, groundwater fluxes
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FO — Cable Design
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Fibre-modes:

Figure courtesy of LIOS
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Tracing signal:

Difference in Groundwater-Surface Water Temperatures
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Reasonable tracer for GW/SW interface fluxes

[Krause et al., 2011, Ecohydrology; Krause et al., 2012, HESS]
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Tracing step-changes in temperature
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Detecting complex flow patterns that do not affect surface water
temperatures
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Detection of low conductivity hotspots + their dynamic impact on streambed temperature

[Krause & Blume, WRR, 2013; Rose et al., WRR, 2013; Krause et al., WRR, 2014]
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FO-DTS for detecting spatial patterns & temporal dynamics
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FO-DTS - Impact of seasonal signal variation

T(°C)
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Two-way single-ended averaging mode

measurement direction

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231

[Krause & Blume, WRR, 2013; Rose et al., WRR, 2013; Krause et al., WRR, 2014]
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FO-DTS - In Terrestrial Ecology/Biogeochemistry
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DTS temperatures
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WARNING

- Variability (space and time) in signal strength
- Experimental design and monitoring mode

- Sampling resolution and ambiguity of data interpretation
(correlation between signal size and signal strength)

Stefan Krause University of Birmingham, UK s.krause@bham.ac.uk
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1. Impact of seasonal signal variation Geography, Earth and
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Seasonal variability of signal strength
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2. Impact of monitoring modes

Single-ended Monitoring Setup
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FO-DTS: Capabilities and Limitations
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3. Impact of signal strength and signal size

Setup of controlled lab-experiment:

O N
5 Fiber-optic
DTS | : cable
Instrument E : L
: : + Single-ended
__________________________________________ configuration
Reference Reference
Section 1 Section 2
o o . o ’ o o Position along
\ 0 60 80 150 200 240 260 cable (m) )

Variation of:
- Signal strength (0.25 — 0.5 x sampling resolution)

- Signal size / direction (positive / negative T-anomaly)

Rose et al., WRR, 2013
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3. Impact of signal strength and signal size
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Rose et al., WRR, 2013
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Spatial sensitivity of measurements over1(A), 0.5(B)

Signal detection close tO I below r and 0.25 (C) multiplesof—spatialresolution
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