Extraction of POPs from Environmental Samples using Accelerated Solvent Extraction (ASE®)

Frank Höfler* and Khalil Divan**

*Dionex (Europe) Management AG

Solothurner Strasse 259

4600 Olten

Switzerland

**Dionex (UK) Ltd.

4 Albany Court

Camberley

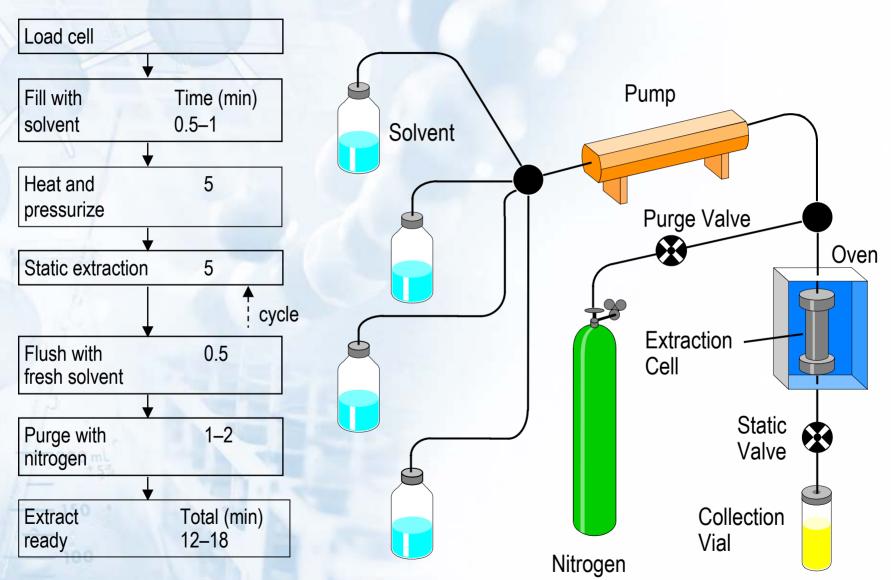
Surrey, GU16 7QL

Overview

- ♦ What is ASE?
- ♦ ASE of POPs
 - Soils, Sludges, Waste, and Sediments
 - Biological Samples
- ♦ ASE of PBDEs
- **♦** Conclusions

Principles of Extraction

- ♦ Physical chemical principles influence solid—liquid extractions
 - Diffusion
 - Viscosity
 - Surface tension
 - Solubility
 - Binding energy of physisorption/chemisorption interactions

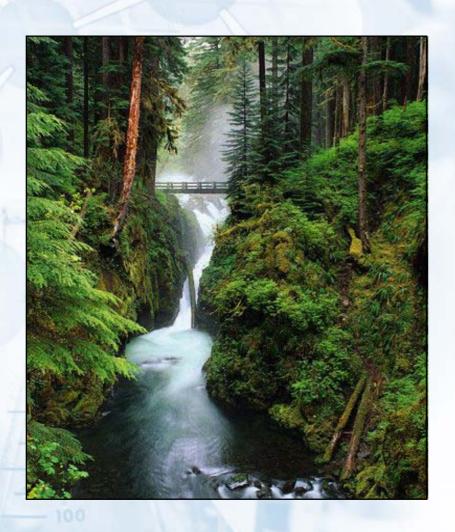

What is ASE?

- An automated extraction technique that uses liquid solvents and solvent mixtures
- ♦ Extracts solid or semisolid samples, and liquids up to 50 mL
- ♦ Uses elevated temperatures (40–200 °C) and pressures (1500–2000 psi)
- Use of elevated temperatures and pressures accelerates the extraction process

What is ASE?

- ♦ ASE uses small quantities of solvent and short periods of time
 - 15 mL and 15 min for 10-g samples
- ♦ ASE can be used with a range of sample sizes (1–100 g)
- ♦ ASE is widely used by government agencies and laboratories worldwide
 - U.S. EPA method 3545A
 - Most of the POPs are included in U.S. EPA method 3545A

ASE Schematic



NERC Knowledge Transfer Network 1st Conference on Persistent Organic Pollutants

Comparison of Extraction Techniques

	Technique	Sample Size (grams)	Solvent Used (mL)
	ASE	1–100	5–150
	Automated Soxhlet	10	50–100
	Shake	30	300–500
	Microwave	5–10	30
Personal Control of the Control of t	Sonication	30	300–500
1	Soxhlet	1–100	300–1000

Environmental Matrices Investigated

- ♦ Soils
- ♦ Sludges
- Sediments
- Plant and animal tissues
- PUF and XAD resins
- Essentially all solid or semisolid matrices analyzed for environmental contaminants

Extraction Conditions (U.S. EPA Method 3545A)

Condition	Pesticides	Hexachloro- benzene	РСВ	PCDD/F
Temperature	100 °C	100 °C	100 °C	175-200 °C
Pressure	1500 psi	1500 psi	1500 psi	1500 psi
Time	12 min	12 min	12 min	22 min
Solvent	Hexane/ acetone	DCM/ acetone	Hexane/ acetone	Toluene

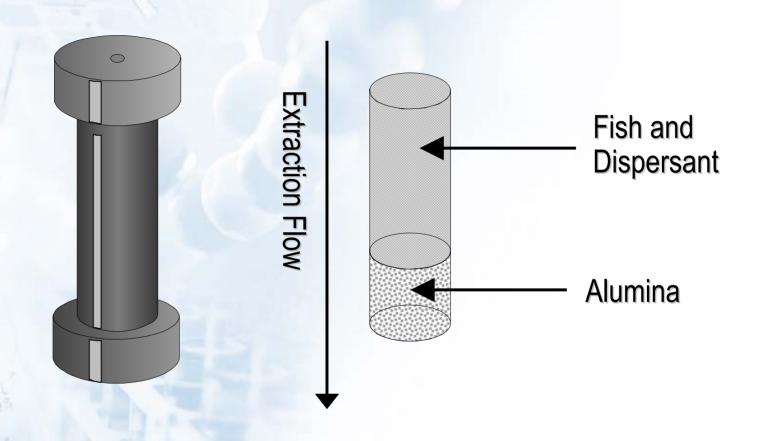
Relative Recovery of Pesticides from three soil types*-ASE compared to Automated Soxhlet and Soxhlet

Pesticide	Average Recovery
	(% of Auto. Soxhlet or Soxhlet²)
Heptachlor	88.0
Aldrin	94.9
Gamma Chlordane	99.5
Alpha Chlordane	102.0
Dieldrin	101.2
Endrin	97.2
p,p´-DDT	74.9
Hexachlorobenzene	93.7 ²
Toxaphene	94.2 ²

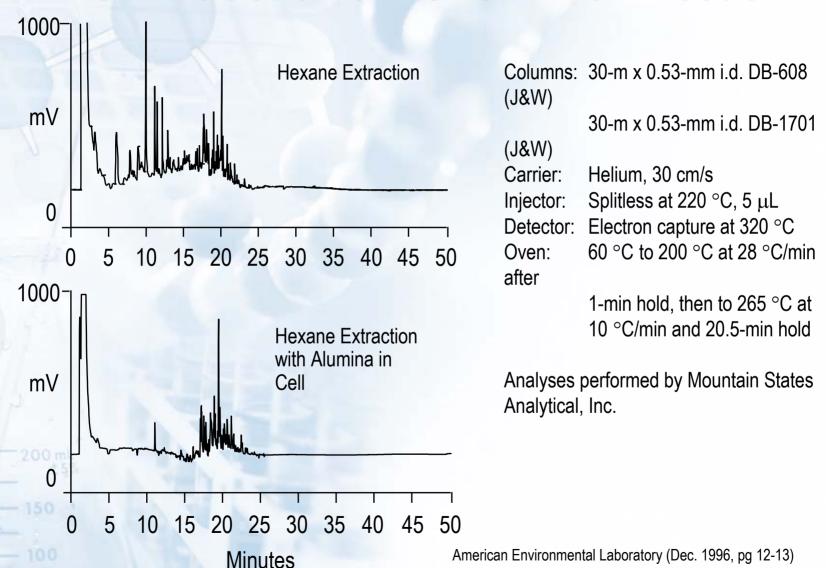
^{*}Average from extraction of sand, loam and clay soils

Recoveries of PCB from Sewage Sludge

PCB	Average Recovery (%)	RSD (%)
PCB 28	118.1	2.5
PCB 52	114.0	4.7
PCB 101	142.9	7.4
PCB 153	109.5	5.8
PCB 138	109.6	3.9
PCB 180	160.4	7.5


^{*}relativ to Soxhlet

PCB Recovery in Soil*


Sample Run	PCB [µg/kg]		
1	1290		
2	1366		
3	1283		
4	1369		
Average	1327 (99,0%)		
RSD	3.5%		

^{*1340} µg/kg certified content

Clean up in ASE Cell

ASE Extraction of PCBs in Fish Tissue

NERC Knowledge Transfer Network 1st Conference on Persistent Organic Pollutants

Dioxins and Furans Extraction Conditions (Environmental Samples)

	ASE	Soxhlet
Sample Size	4 – 10 grams	4 – 10 grams
Solvent	Toluene, 15 mL	Toluene, 250 mL
Temperature	150 -180°C	<< Boiling point
Pressure	10 MPa	Atmospheric
Time	2 x 10 min	18 hours
Analytical	GC-MS	GC-MS

Chemosphere, Vol. 34, 985–987

Comparison of Soxhlet vs. Accelerated Solvent Extraction Total* Polychlorinated Dibenzo-p-dioxins

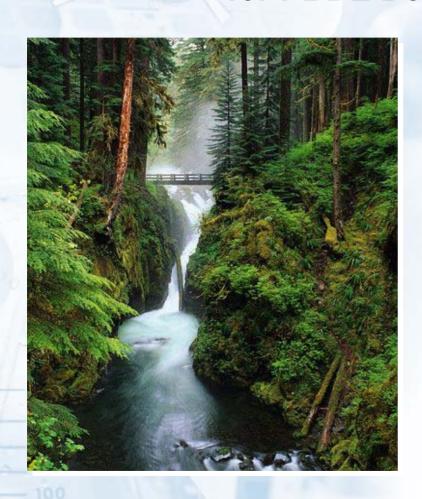
Sample Matrix	Soxhlet (ng/kg)	ASE (ng/kg)
Chimney Brick	8040	8170
Urban Dust	1110	1159
Fly Ash	93200	107900
Sediment (EC-2)	6750	6840
Sediment (HS-2)	11731	12783
Hamilton Harbor Sediment	4283	4119
Parrots Bay Sediment	2836	2444

^{*} Total of tetra, penta, hexa, hepta and octachlorodibenzo-p-dioxins

Extraction of POPs from Pine Needles and Mosses

- Samples are freeze dried
 - 10 grams mixed with 10 g Florisil/Al₂O₃ (2:1) in a 33 mL ASE cell
- ♦ ASE conditions
 - Solvent: n-hexane
 - 40 °C and 80 °C 3 x10 min extraction cycles
 - Total time 2 x 35 minutes
- ♦ Isotope labeled I.S. added, Concentrated to 2 mL
- Extract cleanup
 - Column packed with Florisil
- Analysis
 - GC/MS

Wenzel, K.-D., Analytical Chemistry, Vol. 70, No. 22, 1998


Extraction of POPs from Pine Needles and Mosses

	Inner Pine Needle Fraction		Wax Fraction of Pine Needles	
Compound	Sonication	ASE	Sonication	ASE
Sum HCH	3.23	50.8	2.31	3.48
Sum DDX	0.47	5.99	0.89	0.73
Sum CB	nd	0.62	nd	nd
SUM PCB	0.65	77.7	0.66	1.35
Sum PAH	10.7	182	15.7	24.1
Sum POP	15.05	317.11	19.56	29.66

Wenzel, K.-D., Analytical Chemistry, Vol. 70, No. 22, 1998

NERC Knowledge Transfer Network 1st Conference on Persistent Organic Pollutants

Matrices Investigated Using ASE for PBDE Determination

- ♦ Human breast milk
- Sediments
- ♦ Polymers
- ♦ Fish tissues

PBDE from Human Breast Milk

- ♦ Samples are freeze dried
 - 3.50 grams mixed with Ottawa sand in a 22 mL ASE cell with filters
- ♦ ASE conditions
 - Solvent: hexane, methylene chloride, methanol 5:2:1
 - 80 °C 3–5 min extraction cycles
 - 60% flush and 240-s purge
- Concentration by Turbovap
- Extract cleanup
 - Silica gel and GPC

Analysis of Human Breast Milk

	luman breast nilk sample		PBDE 153	PBDE 209
Mean reas a %	ecovery of spike	79.9	76.8	85.7

PBDE from Sediments

- ♦ Samples were dried prior to extraction
- ♦ ASE 200 conditions
 - Solvent: Methylene chloride
 - 100 °C 2 x 5 min static cycles
 - 60% flush 60-s purge
- Solvent exchanged to hexane
- ♦ Cleanup
 - GPC and silica gel

Analysis of PDBE from Sediments

- ♦ Analysis by GC/ECD
 - 60 m DB-5 column
 - High-temperature program
- ♦ Confirmation by GC/MS
 - Full scan electron ionization
 - Quantitation
 - » Summation of three major ions (BDE 47,99,100)

Summary of PBDE from Sediments

- ♦ Fast extractions using ASE: 18 min per sample
- Detection limit of 0.5 μg/kg
- ♦ BDE 47 detected in 22% of samples
- Bottom feeding fish (catfish) had a PBDE profile similar to river sediment

Conclusions

- ♦ ASE is faster than conventional liquid extraction procedures.
- ♦ ASE uses less solvent than conventional liquid extraction procedures.
- ♦ Recoveries are similar or superior
- ♦ ASE is an automated extraction technique
- ◆ ASE uses the same solvents currently used in conventional procedures; therefore, method development is greatly simplified.