The Fate of Chiral Organochlorine Compounds and Selected Metabolites in Intraperitoneally Exposed Arctic Char

(SALVELINUS ALPINUS)

Karin Wiberg, Patrik Andersson, Peter Haglund
Environmental Chemistry, Umeå University, Sweden

Håkan Berg, University of Texas, USA
Per-Erik Olsson, Örebro University, Sweden
Chiral Compounds
α-Hexachlorocyclohexane (α-HCH)

cis-chlordane

$^{13}\text{C}_4$-heptachlor
Atropisomeric PCBs

Mirror Plane
Arctic char
(Salvelinus alpinus)

Contaminants in peanut oil
~200 ng of each per g fish
Sampling

- Control cohort
- 1 week \((n=3)\)
- 2 weeks \((n=3)\)
- 5 weeks \((n=4)\)

50 liter flow-through aquaria
aerated water at +10°C
14 h light:10 h dark cycle

Muscle and liver samples
Extraction and Clean Up

Mixing with Na$_2$SO$_4$

Column extraction
acetone:hexane 2.5:1
hexane:diethylether 9:1

Fat removal
semi-permeable membrane devices (SPMD)
cyclopentane

Florisil chromatography
Instrumental analysis

- **GC-MS**
 - EI+ and ECNI
 - SIM and full-scan

- **GC-ECD**

- **SP-5 (Supelco®)**
 - 30 m, 0.32 mm, 0.25 μm

- **Chirasil Dex (Varian, Inc.)**
 - 30 m, 0.25 mm, 0.25 μm
Metabolites

Heptachlor → Heptachlor-exo-epoxide (HEPX)
Muscle samples

\[\alpha\text{-HCH was eliminated} \]

\[\text{HEPX was formed} \]

The PCBs were assimilated differently
Increasing concentration

PCB-174 PCB-136 PCB-149 PCB-132

Decreasing K_{ow}

PCB-174 PCB-95

Peanut oil

Fish
Assimilation of PCBs

C_{max} vs $1/K_{\text{ow}} \times 10^7$

Steric effect coefficients (SECs)

Shaw and Connell, ES&T 18:18-23, 1984

PCB-95
PCB-149
0.74

PCB-132
0.65

PCB-174
0.58

PCB-136
0.54

Increasing steric hindrance
Assimilation of PCBs

Oil

Fish

ng/g muscle tissue

SEC/K_{ow} \times 10^7

C_{max}

SEC/K_{ow} \times 10^7

CB-95 CB-132 CB-149 CB-136 CB-174

0 10 20 30 40 50 60 70 80 90

0 1 2 3 4 5 6 7

0 10 20 30 40 50 60 70 80 90
Average C_{max} vs SEC/K_{ow}

- $r^2=0.86$
- $p=0.023$

Graph showing a linear relationship between SEC/K_{ow} and ng/g muscle tissue for compounds CB-174, CB-132, CB-136, and CB-95.
Half-lives 8-10 days for all compounds.

Primarily other clearance than biotransformation.

Liver samples

- **Elimination**
- **HEPX was formed**

Compound Concentrations

a-HCH
- PCB#95
- PCB#136
- PCB#149
- PCB#132
- PCB#174

op-DDT
- cCHL

HEPX
- Liver samples

<table>
<thead>
<tr>
<th>Weeks</th>
<th>ng/g liver tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks</th>
<th>ng/g liver tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks</th>
<th>ng/g liver tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weeks</th>
<th>ng/g liver tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
</tr>
</tbody>
</table>
Enantiomeric composition

Reference standards were racemic.
Did it change during the experiment?
Indication of that biotransformation occurred.

Enantiomeric Fraction (EF)

EF = Area of (+)/Area of (+) and (–)
EF = 0.50 means racemic
EF > 0.5 means excess of (+)
EF < 0.5 means excess of (–)
Chiral results

Excess of (+) $\rightarrow \alpha$-HCH

1-week 2-weeks

0.47 0.48 0.49 0.50 0.51

STDs

Muscle Liver

5-weeks

Enantioselective biotransformation
Chiral results

cis-Chlordane

Assimilation seems to be non-enantioselective
Chiral results

Muscle Formation resulted in a racemic mixture
Chiral results

o,p’-DDT

QA- Two different ionization techniques.
Different trends in liver and muscle.
Chiral results PCBs

- PCBs 95, 149 and 174, no apparent enantioselective biotransformation.

- PCB 132 increasing proportion of (+) in muscle.

- PCB 136 increasing proportion of (+) in muscle and liver.
Assimilation

- The contaminants were assimilated.
- The assimilation appeared to be non-enantioselective.
- K_{ow} and steric effects seem to influence assimilation.

Elimination

- Slow elimination in muscle with exception of α-HCH.
- Fast and similar elimination in liver of all compounds – indicate primarily other clearance than biotransformation.
Summary 2(2)

Biotransformation?
- HEPX was formed - racemic mixtures.
- Chiral time trends for some compounds.

Species specific differences?
- Enantiomeric excess vary among species.
- Enantioselective biotransformation seems to be species specific.
Thanks to:

- **My co-authors:**
 Patrik Andersson, Peter Haglund, Umeå University, Sweden
 Håkan Berg, University of Texas, USA
 Per-Erik Olsson, Örebro University, Sweden

- **Terry Bidleman**, Meteorological Service of Canada for some of the chiral analyses and for putting the GC-MS instrument at our disposal.

- **Per Byström**, Department of Ecology and Environmental Science, Umeå University, for calculations on feed and growth.

Thank you for the attention!