GCxGC-(MS) methods

Pim Leonards
Outline

• Principles of GCxGC
• Selection of detectors
• PCB, PBDE analysis
• Other examples
Principles of GCxGC

- Selection of modulator
- 6 different modulators:
 - SWEEPER
 - LMCS
 - Quad N₂ (L) jet
 - Dual CO₂ jet
 - Loop CO₂
 - CFT

Selection of proper column combination
Selection 1st and 2nd dimension GC columns

- 1st dimension
 - Apolar type phases:
 - DB-1, DB-5, CP-Sil 8 type of columns

2nd dimension

<table>
<thead>
<tr>
<th>Commercial codea</th>
<th>Stationary phase</th>
<th>Dimensions (m x mm x μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-50</td>
<td>50% liquid crystalline-methylpolysiloxane</td>
<td>0.8 x 0.1, 0.1</td>
</tr>
<tr>
<td>007-65HT</td>
<td>65% phenyl-methylpolysiloxane</td>
<td>1.0 x 0.1, 0.1</td>
</tr>
<tr>
<td>VF-23ms</td>
<td>Proprietary (high cyano containing polymer; with absolute cyano content 70–90%)</td>
<td>1.5 x 0.1, 0.1</td>
</tr>
<tr>
<td>007-210</td>
<td>50% trifluoropropyl-methylpolysiloxane</td>
<td>2.0 x 0.1, 0.1</td>
</tr>
<tr>
<td>HT-8</td>
<td>8% phenyl-methylpolysiloxane (carborane)</td>
<td>1.0 x 0.1, 0.1</td>
</tr>
<tr>
<td>SupelcoWax-10</td>
<td>Polyethylene glycol</td>
<td>1.0 x 0.1, 0.1</td>
</tr>
</tbody>
</table>
How does it work?
Cryogenic modulator
How does GCxGC work?
How does GCxGC work?
How does GCxGC work?

Separation on the 2nd dimension column
How does GCxGC work?
Principle and contour plots
Contour plot
Detectors for GCxGC systems

- Fast scanning detectors
 - Acquisition rate >20 Hz
- Low dead volume detectors

Commercial equipment
- GCxGC-FID
- GCxGC-ECD
- GCxGC-qMS
- GCxGC-ToF-MS
- GCxGC-AED not commercially available
GCxGC-μECD
GCxGC-μECD various contaminants

PCDD/Fs
PCBs
PBBs
PBDEs
PCDEs
OCPs
PCNs
PCDTs

DB-1 × LC-50
GCxGC-μECD different column combination

PBDEs
PCBs
PCNs
PCDTs
PCDEs
PBBs
PCDD/Fs
OCPs

DB-1 × 007-65HT

Toxaphene

Korytar et al., 2005. J. Chromatogr. A, 1086, 29-44
GCxGC-μECD dust sample

DB-1×007-65HT

PBDEs

Polychlorinated alkanes

Background matrix separation from dioxins

GCxGC-ECD, DB-XLB x LC-50

1st dimension retention time [min]

2nd dimension retention time [s]

GCxGC-MS
GCxGC with qMS

- Requirements
 - Fast acquisition
 - Spectral quality: no skewing
Quadrupole MS

High acquisition rates
- short Rf setup time
- fast scanning

R_f setup time: 10.4 ms
Scan rate: 10000 amu/s
Scan width (amu):
- @ 50Hz: 96
- @ 33 Hz: 195
- @ 25 Hz: 296
No skewing
mass ratio plot (m/z 330/326)

[Graph showing a plot with data points representing mass ratio versus data point number for Shimadzu qMS]
Quality of spectra

Mass range scanned

<table>
<thead>
<tr>
<th>Mass range scanned (Da)</th>
<th>Minimum inter-scan delay (s)</th>
<th>Maximum scan speed: 6700 Da/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scan time^a (s)</td>
</tr>
<tr>
<td>400</td>
<td>0.014</td>
<td>0.060</td>
</tr>
<tr>
<td>300</td>
<td>0.011</td>
<td>0.045</td>
</tr>
<tr>
<td>200</td>
<td>0.010</td>
<td>0.030</td>
</tr>
<tr>
<td>100</td>
<td>0.005</td>
<td>0.015</td>
</tr>
<tr>
<td>50</td>
<td>0.001</td>
<td>0.007</td>
</tr>
</tbody>
</table>

GCxGC-qMS

- Fast enough
- Selective enough
 - separation of coeluters
- Limited scanning range (300 Da)
- Not sensitive enough in EI
 - NCI required
Eel extract GCxGC-qMS PBDE analysis
GCxGC ToFMS

- Fast scan speed: 100-500 Hz
- No mass skewing
- Automated search
GCxGC-ToF-MS, Tern egg
Western Scheldt

Brominated compounds
Screening chemicals in household dust

GCxGC-ToFMS of an hexane extract of dust

Chlorinated and brominated compounds in house dust

- >10,000 peaks detected
- 145 compounds contain chlorine or bromine

Other compounds identified in household dust

<table>
<thead>
<tr>
<th>Compound class</th>
<th>Number found by filter</th>
<th>Plausible on review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine/bromine-containing</td>
<td>165</td>
<td>145 (93%)</td>
</tr>
<tr>
<td>Phthalates</td>
<td>52</td>
<td>33 (57%)</td>
</tr>
<tr>
<td>PAHs</td>
<td>145</td>
<td>94 (65%)</td>
</tr>
<tr>
<td>Nitro compounds</td>
<td>8</td>
<td>1 (13%)</td>
</tr>
</tbody>
</table>

Effect-directed analysis (EDA)

complex mixture of compounds

1st Fractionation

2nd Fractionation

Bioassay confirmation

Chemical identification
Combined sample treatment scheme chemical and bioassay analysis

Houtman et al. 2006
• Sediment sample from a harbour
• Bioassays
 • Dioxin like compounds (DR-CALUX)
 • Estrogenic compounds (ER-CALUX)
• Chemical identification
 • GC-MS
 • GCxGC-ToFMS

Houtman et al., 2006, Chemosphere 65, 2244–2252
Bioassay activity of the sediment

Houtman et al., 2006, Chemosphere 65, 2244–2252
Active fraction GCxGC-ToFMS

Houtman et al., 2006, Chemosphere 65, 2244–2252
Identified compounds and explained bioassay activity

• 76% of the estrogenic activity was explained by 17α-, 17β-estradiol and estrone
• 38% of dioxin-like activity explained by PAHs
Summary

• GCxGC is a powerful separation technique

• Separation of interfering compounds and matrix

• GCxGC is especially suitable for the separation of complex mixtures

• GCxGC combined with mass spectrometry can be used for the identification of “new” flame retardants