Molecular mechanisms of carcinogenesis

Nik Hodges
School of Biosciences
N.Hodges@bham.ac.uk
Aims

What is cancer at the cellular level?

How do chemical and physical agents cause cancer?

How do we test for carcinogens?

How can understanding mechanistic inform risk assessment?
Cellular basis of cancer

- Uncontrolled and inappropriate division of cells
- Genetic damage to critical genes that regulate cell growth
- Exposure to chemical carcinogens considered important
“normal” cells
Cancer cells
What kind of genes are damaged in cancer cells?

1) Oncogenes

2) Tumour suppressor genes

e.g. p53 “the guardian of the genome”
Some Transgenic and Knock-out models

TG Model

- myc
 - Effect on cancer: ↑ (20% incidence)
- mutated ras
 - Effect on cancer: ↑ (40% incidence)
- myc + mutated ras
 - Effect on cancer: ↑↑ (100% incidence)
- myc + bcl-2
 - Effect on cancer: ↑↑

KO Model

- p53 hemizygote
 - Effect on cancer: ↑
- p53 homozygote
 - Effect on cancer: ↑↑
- Cx32
 - Effect on cancer: ↑
- Ah receptor
 - Effect on cancer: ↓ (in response to dioxin)
Hallmarks of cancer cells

Hanahan and Weinberg 2011
Where are we exposed to carcinogens?

All of the time.....
Schematic diagram of Multistage Carcinogenesis

Initiation
- DNA damage
 - Genotoxic chemicals
 - Radiation, UV, viruses
- Initiated cell

Promotion
- Pre-neoplastic lesion
- Clonal expansion
 - Growth factors
 - Non-genotoxic chemicals

Progression
- Primary malignant tumour
- Secondary tumours
- Genetic instability
 - Suppressor gene loss
 - Gene amplification
Chemical carcinogens

Genotoxic

- Possess the ability to damage DNA
- Can lead to mutations in critical genes resulting in development of cancer
- Majority of known human carcinogens are genotoxic

Non Genotoxic

- Don’t damage DNA
- Alter the balance between cellular growth and death
- Lots of non genotoxic chemicals positive in animal studies
Genotoxic carcinogens often require metabolic activation:

Some directly acting e.g. alkylating agents but often need metabolic activation:

Typically by the cytochrome P450 enzyme system:

- e.g. PAHs, aflatoxin, vinyl chloride, PhIPs, NNK many more

Other enzyme systems can also be important:

- e.g. metabolism of benzene in bone marrow

Products of metabolism are electrophilic and DNA reactive
Case study: Benzopyrene

- Important occupational and environmental carcinogen:
 - **DIET**
 - charred food
 - **OCCUPATION**
 - Coke oven workers
 - mechanics
 - **TOBACCO SMOKE**
 - **AIR POLLUTION**
 - Diesel fumes
Genetic variation in benzo[a]pyrene metabolism

- Known CYP1A1 polymorphic forms:
 - CYP1A1
 - CYP1A*2A
 - CYP1A*2B

- Known GSTm polymorphic forms:
 - GSTm*A
 - GSTm*B
 - GSTm*0
<table>
<thead>
<tr>
<th>Genotype</th>
<th>BP-DNA adducts/10^8 in WBC DNA from workers</th>
<th>Odds ratio for susceptibility to lung cancers in Japanese smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP1A1 *1/*1- GST<sub>m</sub> active</td>
<td><0.2</td>
<td>Low dose: 1.0 High dose: 7.0</td>
</tr>
<tr>
<td>CYP1A1 *m1/*m1- GST<sub>m</sub> active</td>
<td><0.2</td>
<td>~1.0: 9.3 High dose: 9.3</td>
</tr>
<tr>
<td>CYP1A1 *1/*1- GST<sub>m</sub> null</td>
<td>0.7</td>
<td>~2.0: 10.8 High dose: 10.8</td>
</tr>
<tr>
<td>CYP1A1 *m2/*m2- GST<sub>m</sub> null</td>
<td>5.8</td>
<td>~3.0: 16.3 High dose: 16.8</td>
</tr>
<tr>
<td>CYP1A1 *m1/*m1- GST<sub>m</sub> null</td>
<td>6.4</td>
<td>16.0: 20.0</td>
</tr>
</tbody>
</table>

Data taken from Nakachi et al (1996)
Vinyl Chloride
Situation is complex!!!
Reactive oxygen species (ROS)

- Highly reactive intermediates of molecular oxygen
- Produced as by product of endogenous metabolism
- Metabolism of many foreign substances also produce ROS
- Potentially genotoxic
Species variation also needs to be considered...

<table>
<thead>
<tr>
<th>Species</th>
<th>Route A</th>
<th>Route B</th>
<th>Liver Cancer?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rats</td>
<td>-/+</td>
<td>+++</td>
<td>no</td>
</tr>
<tr>
<td>Mice</td>
<td>+++</td>
<td>+</td>
<td>yes</td>
</tr>
<tr>
<td>Humans</td>
<td>+/-</td>
<td>++</td>
<td>no?</td>
</tr>
</tbody>
</table>
Testing for genotoxicity/carcinogenicity

Tiered approach

in vitro – e.g. AMES test, mouse lymphoma assay

short term *in vivo* tests – e.g. mouse micronucleus assay, SCE

long term (2 – 3 year) *in vivo* carcinogenicity assays
THE AMES TEST

TEST COMPOUND

Metabolic activation (S9)

Ultimate mutagen

His⁻ve

Salmonella typhimurium

E.g. TA98-ACC-GCC-GGC-AGG

Histidine revertant (frameshift)

-ACC-GCC-CGG-CAG-G

Histidine-deficient medium

Increased number of revertant colonies
The Comet Assay

1) CELL POPULATION
2) SLIDE PREPARATION
3) FPG TREATMENT
4) ELECTROPHORESIS
5) CELL ANALYSIS

- Extremely sensitive and robust
- Can be modified to detect specific DNA lesions (e.g. 8-oxo dG, bulky DNA adducts) - further enhances sensitivity
- Non specific re origin of DNA damage
Non genotoxic carcinogens:

Are not DNA reactive and act by other mechanisms:

Potential to alter the balance of cell growth and proliferation…

- mitogenic (mimic growth factors)
- inhibit apoptosis (phenobarbitol – rodent liver cancers)
- cause cytotoxicity and “regenerative” hyperplasia – e.g. saccharin

“Receptor” based mechanisms
- e.g. peroxisome proliferators – rodent liver cancer
 - d-limonene - male rat kidney
 - dioxins – possible human carcinogen

very often species specific and not relevant to humans

Epigenetic mechanisms – DES, arsenic, many others?
Dioxins

Acute

- Chloracne

Long-term?

- Cancer - soft tissue sarcomas, non hodgkins lymphoma ?
- Suppresion of immune system ?
Model of toxicity of dioxins

Dioxin → Ahr → Ahr:Arnt complex → DNA binding → CYP 1A1 mRNA → CYP1A1 protein
Nongenotoxic carcinogens are “tumour promoters”
<table>
<thead>
<tr>
<th>Foods Containing Chemicals Causing Cancer in Rats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsley</td>
</tr>
<tr>
<td>Parsnip</td>
</tr>
<tr>
<td>Celery</td>
</tr>
<tr>
<td>Nutmeg</td>
</tr>
<tr>
<td>Cocoa</td>
</tr>
</tbody>
</table>

BUT!!
Need to consider dose-response models

Deterministic model

Stochastic model

Severity

Dose

NOAEL

Risk

Dose

Non genotoxic carcinogens

Genotoxic carcinogens

“single hit hypothesis”
“Single-hit hypothesis” - Can a single asbestos fibre really cause mesothelioma?

This is what a stochastic model of genotoxic carcinogenesis predicts

Is it true? Impossible to test...
Asbestos production in south Africa (circa 1950)

Limpet asbestos spraying (UK, circa 1960)
Asbestos exposure and relationship with incidence of mesothelioma in the UK population: