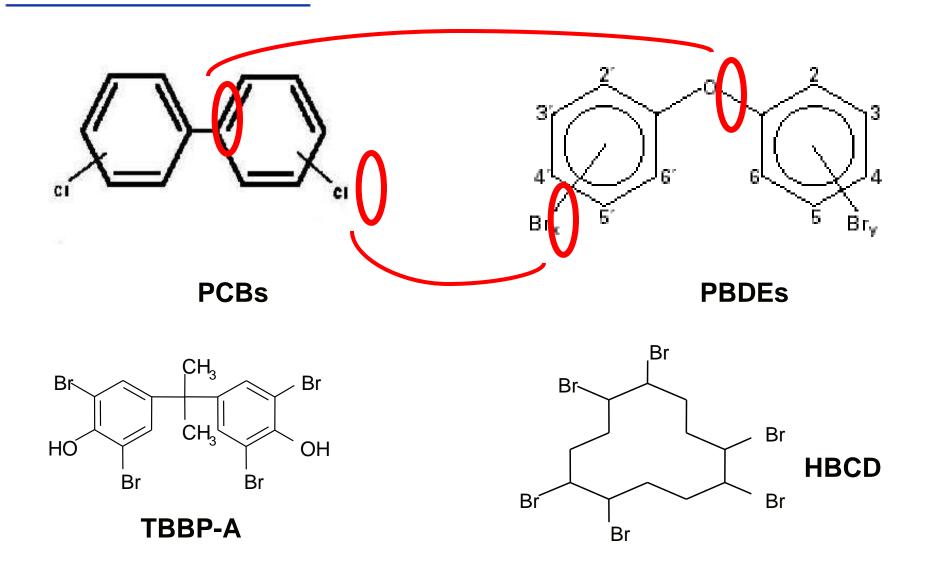
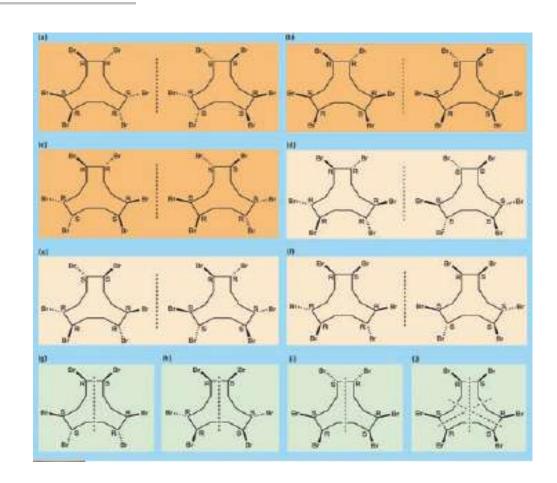
Principles of FR analysis – part 2

Sample preparation – human samples


Dr. Adrian Covaci

Toxicological Center, University of Antwerp


Structures of BFRs

Hexabromocyclododecanes (HBCDs)

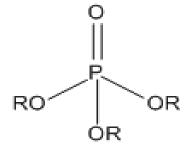
Congeners investigated in most studies

α -, β - and γ -HBCD present in the technical mixtures

Alternative BFRs

Short name	Chemical name	Technical name	Structure	Potential substitute for
NEW BFRs				
TBB + TBPH	TBB: 2-ethylhexyl 2,3,4,5- tetrabromobenzoate TBPH: 2-ethylhexyl) tetrabromophthalate	FR550	Br B	Penta-BDE
	101: (0.46. 7		* *	
ВТВРЕ	1,2-bis(2,4,6-tribromophenoxy) ethane	FR680	Br Br Br	Octa-BDE
OBIND	Octabromotrimethyl-phenylindane		Br H ₃ C CH ₃ Br Br Br	Octa-BDE
DBDPE	Decabrominated diphenyl ethane	SAYTEX 8010	Br Br Br Br Br	Deca-BDE
TBCO	1,2,5,6-tetrabromocyclooctane		Br Br	HBCD

Structure OPFRs


OPFRs:

R = alkyl: TEP,TnPP,TiBP,TnBP, TAP (IS1)

R = chloroalkyl: TCEP,TCPP,TDCPP

R = aryl: TPP, TTP, TPP-d15 (IS2)

R = ether: TBEP

E.g.: TDCPP – in PUF (replacement Penta-BDE)

Structure Chlorinated FRs

Polychlorinated parrafins (CPs)

Chlorination degree of CPs can vary between 30 and 70%.

- CPs are subdivided according to their carbon chain length:
- short chain CPs (SCCPs, C₁₀₋₁₃)
- medium chain CPs (MCCPs, C₁₄₋₁₇)
- long chain CPs (LCCPs, C_{>17})

Dechlorane Plus

Dechlorane 602

Research questions

- -Why do we want to analyse (B)FRs? (e.g. toxicological issues)
- Which (B)FRs can we analyse in human matrices? (most studies PBDEs and HBCDs), specific issues for TBBPA)
- At which concentration levels do we need to analyse these compounds (e.g. what are the currently reported/expected levels pg/ml serum!!)?
- Which matrix is the most suitable? (re: sampling, relevance for exposure, accumulation of (B)FRs)

serum, milk for PBDEs and HBCDs; urine for OPFR metabolites

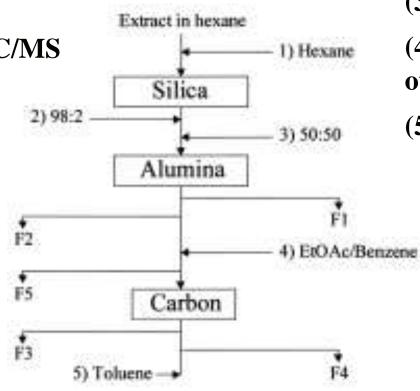
Samples

Biological samples (humans)

- serum
- milk

(these are the most used matrices for human biomonitoring) – WHY?

- fatty tissues (adipose tissue, liver, other organs)
- hair
- urine
- nails, skin, earwax
- saliva


Analysis

Chemical analysis

- (1) Sample pre-treatment
- (2) Extraction
- (3) Clean-up
- (4) Analysis: GC/MS or LC/MS
- (5) Quality Control

Information:

-Concentrations of target analytes

Clean-up

Biological assays

- (1) Sample pre-treatment
- (2) Extraction
- (3) Clean-up
- (4) Analysis: CALUX or other bioassays
- (5) Quality Control

Information:

-Effects of extracts on specific cell lines

- physical state: solid (organs, hair) or liquid (serum, milk)

Sample pre-treatment

- blood: centrifugation to obtain plasma or serum
- Serum is clearer than plasma because plasma has an additional protein (fibrinogen). Fibrinogen is not present in serum
- Serum/plasma:
 - protein precipitation (methanol or acetone- precipitation)
 - deproteinization with formic acid (or other strong acids HCl), no precipitation

- physical state: solid (organs, hair) or liquid (serum, milk)

Sample pre-treatment

- fatty tissues: homogenization, sub-sampling, dehydration with anhydrous Na_2SO_4 or freeze-drying

- hair: washing, cutting

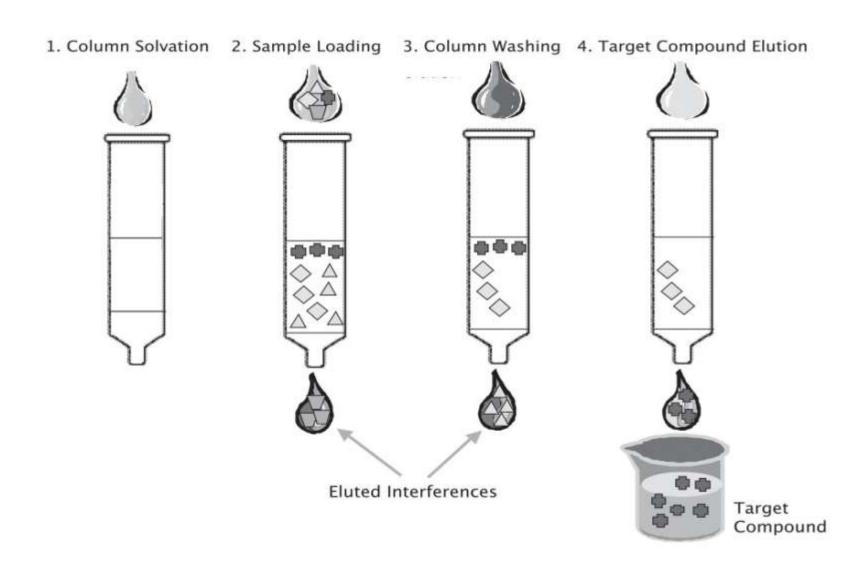
2. Extraction

- Liquid samples: serum and milk

Liquid-liquid extraction (LLE)

Solid-phase extraction (SPE)

Molecular imprinted polymers (MIP)


Solid-phase micro extraction (SPME)

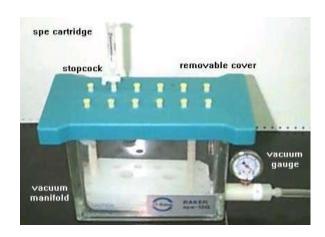
Stir bar sorptive extraction (SBSE)

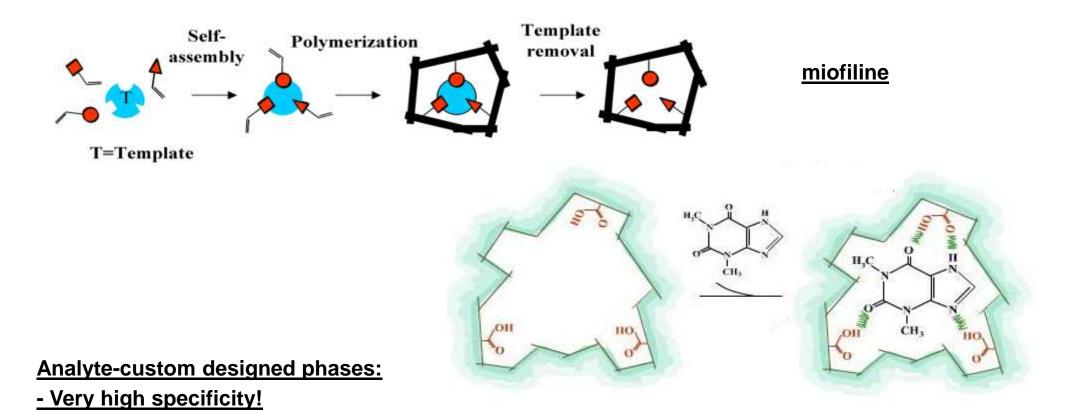
Liquid-liquid extraction (LLE)

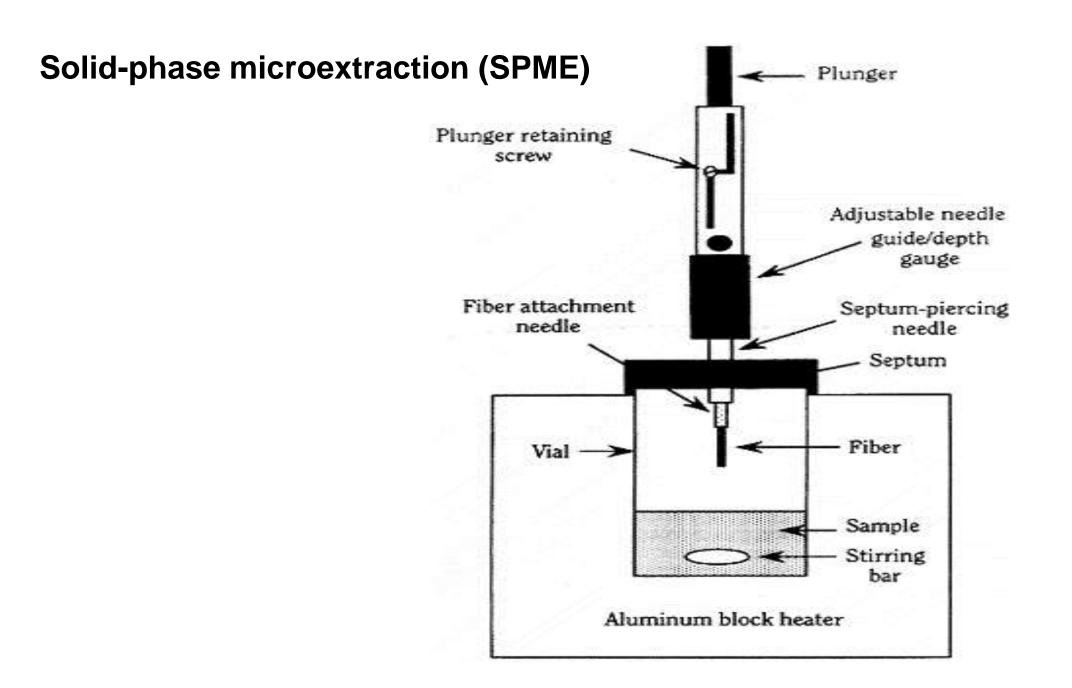
- Sample liquid (serum, milk or urine)
- Bring to appropriate pH (if needed)
- Extraction with organic solvent (or mixtures) choice depends on analytes and further clean-up
- Evaporate solvent
- Proceed to clean-up

Solid phase extraction (SPE)

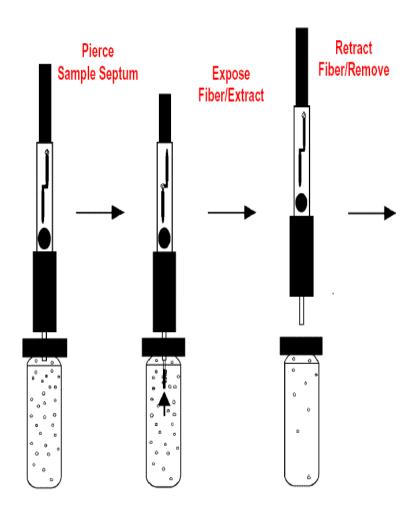
Solid phase extraction (SPE)

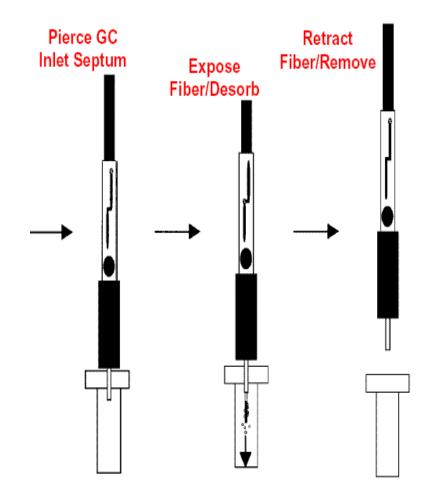

Vacuum manifold or positive pressure manifold


TYPEs of cartridges:

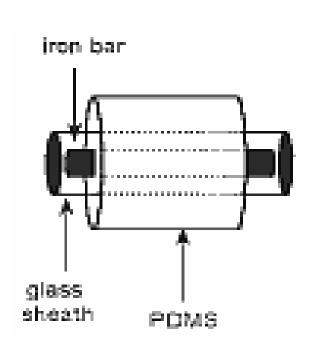

- Silica-based C18, C8, C2:
 - analytes are retained by:
 - » Non-polar interactions
 - » Van der Waals forces
 - » Secundary interactions (hydrogen bridges)
 - <u>Mixed-phase</u> cartridges :
 - » Non-polar interactions
 - » Ion exchange interactions:

Cationic or anionic exchange sorbent

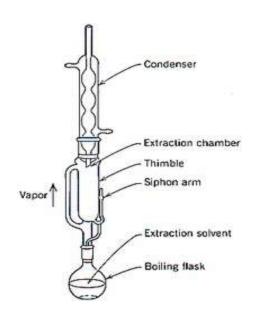

Molecular Imprinted Polymers (MIP)

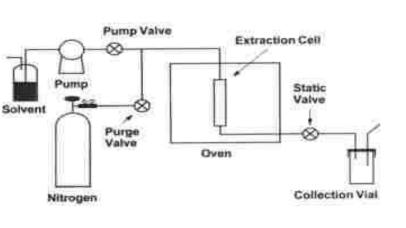


Solid-phase microextraction (SPME)


Extraction

Desorption / Injection


Stir bar sorptive extraction (SBSE)


- Solid magnetical stir bar coated with polymer (polydimethylsiloxane (PDMS)
- After stirring, the stir bar is thermally desorbed in a GC.
- Due to the much larger volume of the PDMS-phase extraction efficiency is far better than for SPME.

2. Extraction

- Fatty tissues: liquid-solid extraction techniques
 - Classical: shaking with solvent, column percolation (tissues)
 - Ultrasonication
 - Soxhlet extraction: classical (cold) or hot: 2-24 h
 - Accelerated solvent extraction (ASE): temp, pres, time reduction (<1h)
 - Microwave assisted extraction (MAE): time reduction (<1h)
 - Supercritical fluid extraction (SFE)

Accelerated solvent extraction (ASE)

Microwave – Assisted Steam Distillation

Glass tube

Sample

Water

Organic solvent

Soxhlet extraction

Microwave assisted extraction (MAE)

Extraction

Solvent: 10 mL

Time: 1 hour

Microwave

3. Treatment of the raw extract

- Extract from fatty tissues: determination of <u>lipid content</u>
 - on an aliquot of extract, evaporation of solvent at 105°C, for 1h
 - on an aliquot of sample

Bligh & Dyer method (chloroform, methanol and water extraction)

Smedes method (cyclohexane, iso-propanol and water extraction)

(mixture of polar and non-polar solvent – to extract various lipids)

- Lipid determination for serum: enzymatically!! on a separate aliquot of sample

4. Clean-up

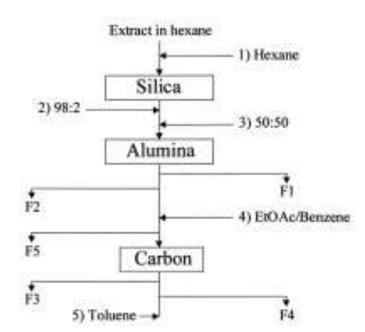
- to remove interferences, especially lipids
- non-destructive techniques:
 - adsorption chromatography: silica, Florisil, alumina, elution with non-polar solvents
 - gel permeation chromatography
 - dialysis
- destructive techniques:
 - liquid partitioning with conc. sulfuric acid or KOH
 - adsorption chromatography: acidified silica (with conc. sulfuric acid)

basic silica (with KOH)

combination of both

some compounds may be completely destroyed:

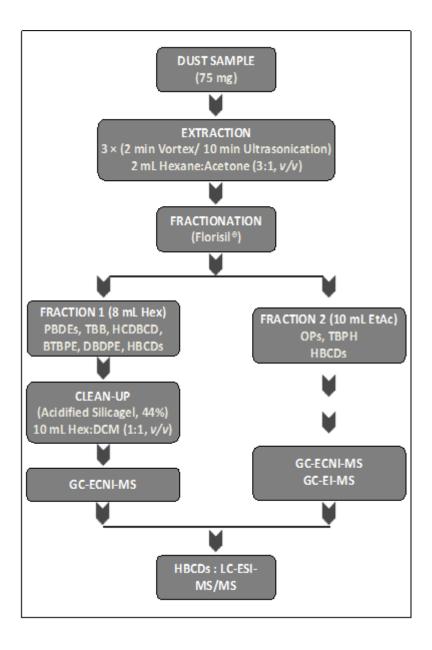
TBPH - by conc. sulfuric acid


HBCD - by KOH

5. Fractionation

- to separate the cleaned extract in specific classes

HPLC


- carbon columns: separation of bulk PCBs/PBDEs (hexane elution) from coplanar compounds (PBDDs and PBDFs) (toluene, reversed flow)
- PYE columns: separation of PCBs function of their ortho-substitution separation of chiral PCBs

5. Fractionation

Florisil (or silica)

- separation of some groups of (B)FRs

Van den Eede et al., Talanta, submitted

Application of SPE for BFRs in serum (Tox Centrum)

- 4 mL serum + 4 ml water
- + IS for PBDEs and HBCDs
- 2 ml formic acid (for deproteinization)
- Sonication
- SPE cartridges (OASIS-HLB, 500mg, 6ml) conditionned with 3 ml DCM, 3 mL MeOH en 3 mL Milli-Q water
- Bring sample onto the SPE cartridge
- Wash columns with 3 mL water
- Dry columns under vacuum
- Eluate with 3x3 ml DCM and concentrate to 1ml
- Clean-up/fractionation on silica topped with 0.5 g acidified silica and 0.1 g anh. Na₂SO₄
- Elute with 6 ml hexane (contains PBDEs) fraction 1
- Elute with 5 ml DCM (contains HBCDs) fraction 2
- Concentrate each fraction to near dryness and reconstitute in
- 100 μl ioctane/toluene (Fr1) (GC-MS analysis)
- 100 μl methanol (Fr2) (LCMS analysis)

<u>Application of solid-liquid extraction for BFRs in fatty tissues</u> <u>(Tox Centrum)</u>

- 3 g liver or 200 mg fat or 3-4 g organs)
- Mix with anh. Na₂SO₄, add IS for PBDEs and HBCDs
- Extract the mixture for 2h in a hot Soxhlet extractor
- Concentrate extract
- Lipid determination on 1/10 of the extract
- Rest of the extract <u>cleaned-up</u> with 8 g acid silica + 0.5 g anh. Na₂SO₄
- Elute analytes with 15 ml hexane and 10 ml DCM
- Concentrate eluate to 2 ml with rotavap
- Further fractionation on silica (see SPE for serum)
- <u>Concentrate</u> each fraction to dryness under stream of nitrogen and reconstitute in 100 µl ioctane (GC-MS analysis) or 100 µl MeOH (LC-MS analysis)

Specific issues

- Metabolites (mostly hydroxylated) may be present in blood and urine
 - Conjugated conjugation with glucuronic acid or sulfate
 - increased water solubility
 - TBBPA can also be conjugated !!

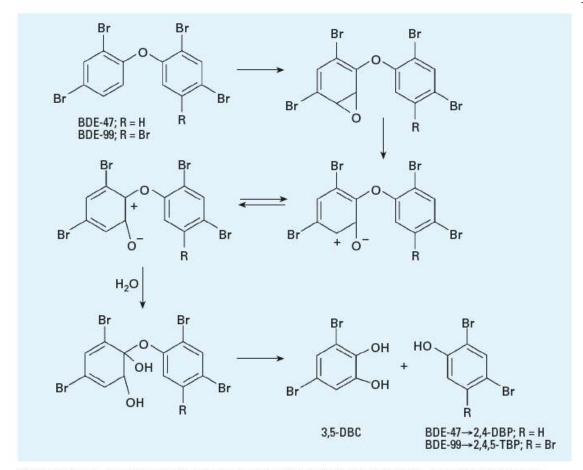


Figure 2. Proposed pathway of the cleavage of the diphenyl ether bond of BDE-47 and BDE-99 in mice.

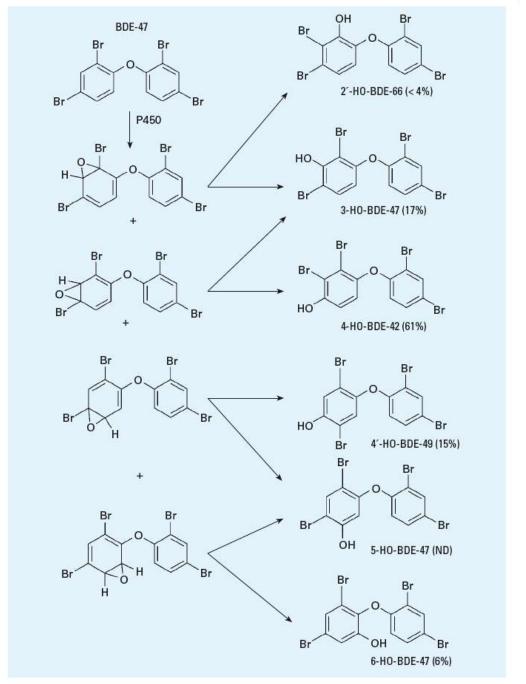


Figure 3. Proposed hydroxylation pathway of BDE-47 in mice and the percentage of metabolites based on the measurements in this study. ND, not detected.

Exposure of mice to Penta-BDE mixture

Table 1. Concentrations (ng/g wet weight) of neutral and phenolic compounds in mouse plasma.

	Oral gavage samples (n = 15)		sc injection samples (n = 14)		Blank and control samples (n = 19)
Compound/congener	Mean ± SD	Percent of total	Mean ± SD	Percent of total	Mean ± SD
Neutral compounds ^a					
BDE-28 (0.3)	4.4 ± 1.1	0.2	5.3 ± 1.6	0.5	0.6 ± 0.8
BDE-47 (36)	390 ± 100	18	360 ± 77	31	3.0 ± 6.3
BDE-85 (2.6)	57 ± 19	2.6	32 ± 5	2.8	ND
BDE-99 (44)	410 ± 120	19	330 ± 70	29	2.3 ± 3.9
BDE-100 (9.1)	140 ± 40	6.4	110 ± 20	9.2	0.4 ± 1.3
BDE-153 (4.3)	$1,100 \pm 380$	52	290 ± 80	25	0.6 ± 0.8
BDE-154 (3.3)	22 ± 7	1.0	20 ± 4	1.7	0.1 ± 0.2
Total	$2,150 \pm 410$	100	1,150 ± 130	100	
Phenolic compounds					
2,4-DBP	72 ± 23	15	62 ± 25	17	1.4 ± 3.8
2,4,5-TBP	79 ± 29	16	86 ± 40	24	0.3 ± 0.6
2,4,6-TBP	5.3 ± 3.4	1.1	6.0 ± 6.0	1.6	3.3 ± 3.2
4'-HO-BDE-17	17 ± 10	3.5	11 ± 7	3.0	ND
2'-HO-BDE-28	11 ± 6	2.3	5.2 ± 2.5	1.4	0.1 ± 0.2
4-HO-BDE-42	180 ± 120	38	120 ± 88	32	1.1 ± 2.7
3-HO-BDE-47	53 ± 25	11	33 ± 17	9.1	ND
6-HO-BDE-47	22 ± 12	4.6	8.5 ± 4.0	2.3	ND
4'-HO-BDE-49	42 ± 22	8.7	34 ± 19	9.3	0.3 ± 0.8
Total	480 ± 130	100	360 ± 104	100	

ND, not detected.
^aCongeners (percentages) found in DE-71.

Background contamination

- Lab contamination
- Air/dust in the lab may contain FRs
- dust-free

Please read further:

Covaci et al. J Chromatogr A, 1153 (1-2), 145-171 (2007).

Hair analysis

- We will discuss this topic more in details during the ATC ${\bf 2}$ in Antwerp