# INVESTIGATING THE MECHANISMS OF TOXICITY OF CURRENT FLAME RETARDANTS

**Boris Krivoshiev** 

Prof. Steven Husson

Prof. Ronny Blust







## Who am I?



- Boris Krivoshiev
- 25
- Born: Sofia, Bulgaria
- Home: Cape Town, South Africa
- Interests: Economics, current world events, innovation and discovery, sports, surfing, surfing, and surfing

## Introduction

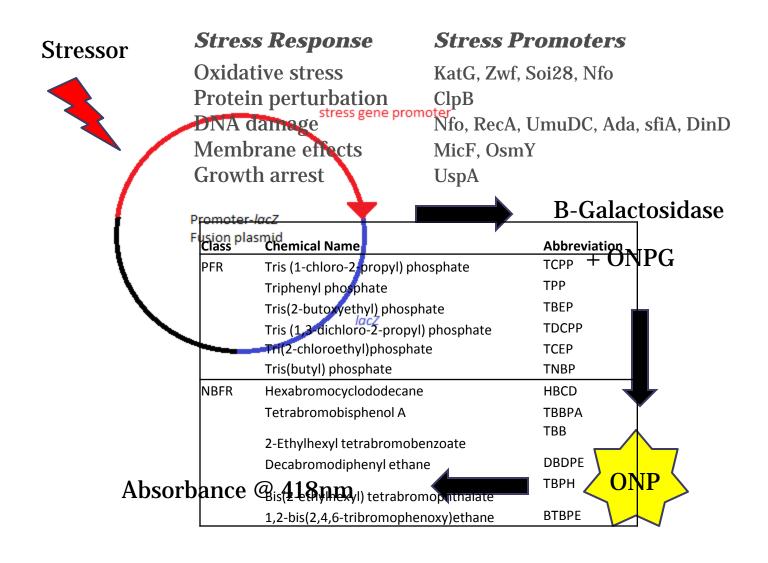
#### What do we know?

- Previously used FRs toxic and have thus been tightly regulated
- Studies showed toxicity ranging from carcinogenesis to endocrine disruption

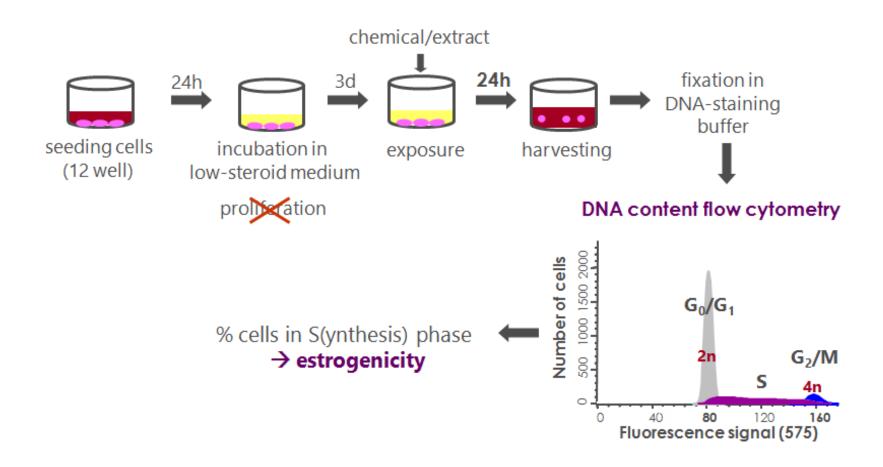
### What is lacking?

- Toxicological data for current FRs
- Mechanistic insight into how these compounds exert their toxic phenotypes

## What now?


#### **Aim**

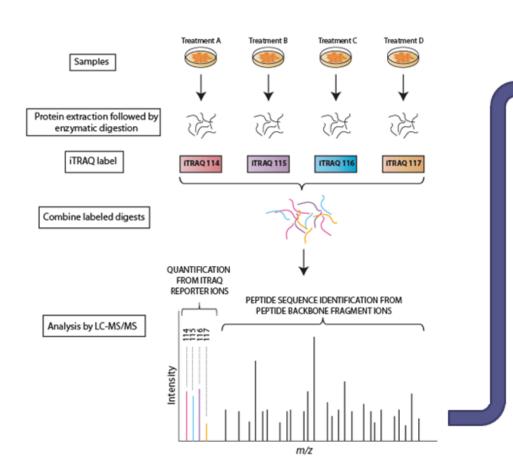
 Establish potential toxicological and mechanistic profiles of current FRs


#### How?

- Monitoring toxicological endpoints
  - Prokaryotic stress gene profiling
  - Eukaryotic stress gene profiling
  - Endocrine disruption
- Develop an unbiased mechanistic overview
  - Differential proteomics

# Prokaryotic Stress Gene Profiling




# **Endocrine Disruption**



# Differential Proteomics

- So far, monitoring toxicological endpoints for indication of toxicity. However, not much mechanistic information including in literature
- Need to develop an understanding of the modes-ofaction of these FRs to exert their toxic phenotypes
- Differential proteomics approach
  - Result in understanding what the compounds do in vitro, elucidate other toxicological effects that could not be investigated when monitoring endpoints, identification of effect biomarkers
  - Additionally, will develop structure-based profiles according to compound structure
    - Halgenated vs non-halogenated
    - Organophosphorus vs non-organophosphorus
    - Organic vs non-organic

## Differential Proteomics



- Construction of effected pathways
- Identification of other potential toxicological effects
- Identification of key proteins/other effector biomarkers

# Preliminary results- Protox

• 2-5 fold induction across the majority of stress response promoters

|        | Ox. stress |          |       |     | protein<br>dmg | DNA dmg  |          |              | membr. dmg |          | Growth arrest |
|--------|------------|----------|-------|-----|----------------|----------|----------|--------------|------------|----------|---------------|
|        | katG       | zwf      | soi28 | nfo | clpB           | recA     | umuDC    | ada          | micF       | osmY     | uspA          |
| BDE209 | 2.5E-05    |          |       |     |                |          |          |              |            |          |               |
| ТВВРА  | 2.5E-06    | 3.13E-07 |       |     | 2.5E-06        | 2.5E-06  |          |              | 1.25E-06   |          |               |
| TBEP   |            |          | 3E-06 |     |                |          |          |              |            |          |               |
| TnBP   |            |          |       |     |                |          |          |              |            |          |               |
| TCEP   | 1.25E-03   | 1.56E-04 |       |     |                | 1.56E-04 | 6.25E-05 | 1.25E-<br>03 | 1.25E-03   | 1.56E-04 | 6.25E-04      |
| ТРР    | 1.56E-06   | 6.25E-06 |       |     |                |          |          |              | 1.25E-05   |          | 6.25E-06      |

# Preliminary results- Estrogenicity

Selative Proliferative Effect

 TPP and TBBPA shows signs of estrogenic activity

